浅谈《九章算术》与《几何原本》的异同
九章算术与几何原本思想方法特点和意义的比较
九章算术与几何原本思想方法特点和意义的比较一、思想方法特点《九章算术》内容极为丰富,是从春秋至秦汉千年时间内社会生产发展过程中各方面积累的数学知识的总汇集。
全书246 题,包含有方田、黍米、衰分、少广、商功、均输、盈不足、方程、勾股等九章,基本上包含当时所有数学分支的内容,涉及了相当多的社会问题,举凡算术、代数、几何以及某些数论知识全包括在内,近乎是那个时代的数学百科全书。
其中算术和代数水平最高,几何方面的水平也不低,特别是有些复杂的体积计算法则是《几何原本》中所没有的,如对一些楔形体体积的计算。
但在数论方面水平不如《几何原本》高,不过内容也有涉及《几何原本》主要讲几何问题,但其中七、八、九三卷讲数论问题,如求两数的最大公约数的方法、素数的个数为无限的证法等。
此外也讲到了比例理论、正方形的对角线和一边不可公度等。
值得一提的是,在《九章算术》中,几何方面也颇有建树,但其解决方法与《几何原本》的截然不同。
前者是几何代数化,即用计算的方式解决几何方面的问题,这或许就是代数法解几何问题的先例,笔者以为这一点对笛卡尔创建解析几何或许产生了一定的影响,或是不同文化背景下的殊途同归;后者是代数几何化,其中的数论题都是通过严格的逻辑得以解决,几何问题更是如此。
整体上看,两书各有长短。
《九章算术》以实用性、计算性和丰富性优于《几何原本》,而《几何原本》则以几何、数论和逻辑性超过《九章算术》。
《九章算术》与《几何原本》互为长短。
这既是两书的特点,也大体代表了古代东西方数学的特色。
二、意义1. 数学教育观数学教育观是对数学教育整体的、系统化的看法,分为数学观和教育观。
其中数学观又有动态和静态之分,教育观也是如此。
动态的数学观认为数学是一项人类活动,是一个有内部联系的、动态发展的学科;静态的数学观认为数学是定理、公式的静态积累,是一个永恒不变的学科;动态的教育观认为学生不是空着脑袋进教室的,教学活动的开展要建直在学生原有认知发展水平及已有知识经验基础之上,学生主体,教师主导,笔者认为,这实际L 是建构主义教育观;静态的教育观认为教学活动是一种程序化的过程即概念一定理一例题一练习,学生被动地接受教师传授的知识,是一种传统的教育观。
《九章算术》与《几何原本》的比较研究综述
《九章算术》与《几何原本》的比较研究综述摘要:《九章算术》和《几何原本》是东西方数学代表性的两本巨著,从中反映出两者不同的文化背景和水平。
一些研究者都对其进行比较研究,分别从数学教育视野、东西方文化差异等视角。
本文从成书的背景、内容、文化价值、数学教育启示、传播影响等方面进行研究综述。
关键词:九章算术;几何原本;历史背景;研究综述;数学文化价值;数学教育启示中图分类号:G423文献标识码:A文章编号:随着国际发展、中国崛起的形势,文化自信成为当前的发展需要。
中国科学技术文化的历史发展、层次与水平成为广大人民感兴趣的话题。
数学文化是中国近20年处于显著位置的文化现象,研究中国古代数学教育与文化现象成为数学教育界和社会各界的热门话题。
中国古代以《九章算术》为代表的数学教科书和教育载体,在长达1000多年的历史长河中一直处于特别重要的位置,近些年数学史家、数学家和科技史专家围它进行了广泛的研究,和东西方对古希腊数学典籍《几何原本》的研究形成鲜明的对照。
本文尝试对两者进行探索分析和文献综述,以期推进当前的数学课程思政和立德树人实践。
一、《九章算术》和《几何原本》成书背景比较研究邓宗琦(1994)认为,《几何原本》和《九章算术》都有十分深远的历史源头,其中《几何原本》是欧几里得将好几个世纪的数学家的创造的几何知识用演绎法进行整理,从定义、定理等出发形成的;《九章算术》是集体的成果,但产生的具体时间有待考证[1]。
张维忠(1996)认为,《九章算术》所形成的时期从墨家到刘徽时期,在中国没有形成逻辑学派,因此《九章算术》体系的非逻辑结构,反映当时数学研究的主流思想;同时当时社会生产实践的发展也快速推动应用数学发展;《几何原本》成书时候正好处在古希腊形式逻辑发展时期,将形式逻辑思想方法应用到具体数学研究,但是排除数学应用[2]。
王晓亚、张守波、范文贵、司成勇(2011)认为,《九章算术》产生时候体现非逻辑特点,但不是一点形式逻辑没有,“问-答-术”中的“术”是通过简单推理证明而得到;《几何原本》诞生于形式逻辑鼎盛阶段,将其思想运用到数学研究是非常自然的事,当然当时数学的特点排斥数学应用,但是其思维方式也是特别严密、理性的[3]。
几何原本读后感600(共17页)
几何原本读后感600[模版仅供参考,切勿通篇使用]读后感大全一:比较九章算数和几何原本、《九章算术》和《几何原本》在思维方法上有很大的不同我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》。
其中的勾股章提出了勾股数问题的通解公式,在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。
勾股章还有些内容,在西方却还是近代的事。
《九章算术》及其刘徽注,以杰出的数学成就,独特的数学体系。
不仅对东方数学,而且对整个世界数学的发展产生了深远的影响,在科学史上占有极为重要的地位。
它的出现,标志着从公元前1世纪开始,中国取代古希腊成为世界数学的中心,为此后中国数学领先世界1500多年奠定了基础。
《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。
它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。
由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。
从数学教育的角度比较分析《九章算术》与《几何原本》
从数学教育的角度比较分析《九章算术》与《几何原本》【摘要】本文主要从数学教育的角度比较分析了《九章算术》与《几何原本》这两部经典著作。
在我们介绍了这两部著作,并阐明了比较分析的目的和意义。
在我们对这两部著作的历史背景进行了分析,并比较了它们的教学内容和教学方法,同时探讨了它们在数学教育中的影响与应用。
我们对这两部著作在当今教学环境中的现状进行了分析。
在我们总结了比较分析的结果,并展望了未来这两部著作在数学教育中的发展前景。
通过本文的分析,可以更好地了解《九章算术》与《几何原本》在数学教育中的地位和作用,为今后的教学实践提供参考和借鉴。
【关键词】九章算术,几何原本,数学教育,比较分析,历史背景,教学内容,教学方法,影响与应用,教学现状,总结分析,未来发展。
1. 引言1.1 介绍《九章算术》与《几何原本》《九章算术》是中国古代数学经典之一,是我国古代最重要的数学著作之一,《九章算术》中有“两筹”、“阵”、“野算”、“分甘”、“阶”、“方田”、“平尺”七种运算法则和“正”、“方程”二种方法,主要是为了解决实际生活和生产中的计算问题而编写的。
而《几何原本》是古希腊数学家欧几里得创作的几何学著作,是几何学的经典之作,在几何学发展史上具有非常重要的地位。
《九章算术》和《几何原本》都是古代数学的经典著作,虽然分别来自不同的文化和思想体系,但都对后世数学的发展产生了深远影响。
通过比较分析这两部作品,可以更好地了解古代数学在不同文化背景下的发展和特点,进一步挖掘其中蕴含的数学思想与方法,对于推动数学教育的发展和提高数学教学水平都具有重要的意义。
1.2 目的与意义《九章算术》与《几何原本》是中国古代数学领域的两部重要著作,它们对中国数学教育的发展起到了重要作用。
通过比较分析这两部著作,我们可以更加深入地了解中国古代数学的发展历程,及其对现代数学教育的启示。
2. 通过比较分析《九章算术》与《几何原本》的教学内容和方法,可以帮助我们更好地发掘和利用这些古代数学文化遗产。
《几何原本》与《九章算术》——中西古代数学思想的差异及教学的启示
《几何原本》与《九章算术》——中西古代数学思想的差异
及教学的启示
何一鸾;邓鹏
【期刊名称】《中学教研:数学版》
【年(卷),期】2008(000)001
【摘要】欧几里得的《几何原本》和中国古代的《九章算术》是2部里程碑式的名著,它们分别以其突出的贡献和重大的历史意义,在人类科学史尤其是数学史上各领风骚数千年,直到今天对后世的数学研究和发展仍能带来启迪作用.本文仅谈一谈其中折射出的东西方古代数学思想的差异,及对当今新课程改革下中学数学课程及教学的启示.
【总页数】2页(P45-46)
【作者】何一鸾;邓鹏
【作者单位】四川西华师范大学数学与信息学院,637002
【正文语种】中文
【中图分类】O112
【相关文献】
1.中西外语教学文化差异的对比分析及教学启示 [J], 陈建军
2.由中西文化差异探究我国古代数学衰落的原因及启示 [J], 卫艳荣;郝祥晖
3.中西思维方式差异对英语写作教学的启示 [J], 胡延伟
4.中西方商务文化差异研究及对商务英语教学的启示 [J], 王柔曦
5.中西方商务文化差异研究及对商务英语教学的启示 [J], 王柔曦
因版权原因,仅展示原文概要,查看原文内容请购买。
九章算术几何原来的差别与影响
《九章算术》和《几何原本》的差别与影响《九章算术》是我国古代第一部数学专著,是算经十书中最重要的一种。
该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。
全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。
《九章算术》确定了中国古代数学的框架,以计算为中心的特点,具有很强的使用性。
然而《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。
《几何原本》由欧几里得在公元前300年间完成,又称欧几里得几何学,全书共分13卷。
书中包含了5条“公理”、5条“公设”、23个定义和467个命题。
在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。
推导出一系列定理,这使得全书的论述更加紧凑和明快,这就是几何原本的特征。
《九章算术》和《几何原本》是完全类似的书,是两地的学者在几乎同一历史时期取得的数学成就,本是相同的内容,风格却迥然不同。
正如上所述,《九章算术》没有任何数学概念的定义,没有给出任何推导和证明。
在《几何原本》有确切的概念,严密的逻辑推理和证明。
国内很多学者研究《九章算术》和《几何原本》,得出了同样的结论,《几何原本》是理性的,《九章算术》是实用的,功利的。
[1-7] 所谓理性的含义就是《几何原本》中的逻辑性,一个很微妙的问题是,为什么中国古代的数学家们没有阐明其中的逻辑关系呢?在古希腊产生很多伟大的哲学家,如苏格拉低、亚里士多德、伊壁鸠鲁等等,他们建立了逻辑的思维方法,所以古希腊的数学是在哲学基础上产生的,这就注定了数学体系的逻辑演绎性。
这正是中国古文化中所缺少的元素,所以在《九章算术》中没有逻辑的条理。
在我们都熟悉的几何学中的简洁明快的推理,确切的定义就是逻辑的思维在几何学中的表现。
浅谈《九章算术》与《几何原本》的异同
浅谈《九章算术》与《几何原本》的异同就数学而言,古代东西方文明都对其发展作出了不可磨灭的贡献;其中以中国的《九章算术》和西方的欧几里得的《几何原本》的贡献最大。
以下,我就这两部经典的数学著作谈谈我的读后感。
一、结构:《几何原本》分十三篇。
含有467个命题;有5个公理和5条公设;大部分的命题都是由极少数的公理逻辑推理而来《九章算术》共收有246个数学问题,包括方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。
其中的绝大多数内容是与当时的社会生活密切相关的。
其数学成就也是多方面的。
贡献:《几何原本》对世界数学的贡献主要是:1. 建立了公理体系,明确提出所用的公理、公设和定义。
由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2. 把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。
3. 示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。
为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。
二千年来,一直被公认为初等数学的基础教材。
《九章算术》对世界数学的贡献主要有:1. 开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。
2. 方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。
3. 负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。
二、两部著作中的一些内容比较:《九章算术》在方程理论中的多元联立一次方程组的出现比高斯后来提出的消去法早了很多年;在解线性方程组时,首次提出了负数的加减法法则,这对数学的贡献是非常巨大的;在代数方面,开方术也是《九章算术》的一大贡献;其开方程序是独创先河;例如,秦九韶算法也的源于此;在几何方面,《九章算术》主要是面积(方田)和体积(商功)的计算;以计算为中心;任何问题,都要计算出具体的数字作为答案;几乎没有关于任何数的性质、图形的定性的关系命题。
从数学教育的角度比较分析《九章算术》与《几何原本》
从数学教育的角度比较分析《九章算术》与《几何原本》【摘要】本文通过对《九章算术》和《几何原本》两部古代数学经典著作进行比较分析,从数学教育的角度探讨它们的特点、基础知识、教学方法以及对数学教育的启示。
在《九章算术》中,强调实用计算方法和应用技巧;而《几何原本》则注重几何理论的发展和应用。
基础知识方面,《九章算术》更注重运算技巧,而《几何原本》更侧重几何原理的理解。
在教学方法上,前者偏向实践操作,后者则更注重推理和证明。
文章总结比较分析的结果并展望未来,指出古代数学经典对当代数学教育的启示和借鉴意义。
通过本文的研究,可以更全面地了解两部古代数学经典著作,为数学教育提供新的思路和启示。
【关键词】数学教育、《九章算术》、《几何原本》、比较分析、背景介绍、研究意义、特点、基础知识、教学方法、启示、总结、展望未来1. 引言1.1 背景介绍《九章算术》与《几何原本》是中国古代数学经典之作,分别展现了古代数学和几何学的辉煌成就。
《九章算术》是我国古代一部重要的数学著作,内容包括有关算术、代数、几何等方面的知识,被誉为中国古代数学的“集大成者”。
而《几何原本》则是古希腊数学家欧几里得所著,是世界几何学的奠基之作,其中包含了几何学的基本概念、定理和证明方法。
这两部经典著作在数学教育领域具有重要的地位,对于了解古代数学和几何学的发展历程以及学习数学的方法和技巧具有重要意义。
本文将从数学教育的角度比较分析《九章算术》与《几何原本》,探讨它们在数学教育中的作用和价值,为今后的数学教育提供借鉴和启示。
1.2 研究意义《九章算术》和《几何原本》作为中国古代数学经典著作,对于了解我国古代数学教育和数学思想具有重要的意义。
通过对这两部著作的比较分析,可以帮助我们更好地把握古代数学教育的特点和发展轨迹,进而启发和促进当代数学教育的发展。
深入研究这两部著作也有助于我们更好地挖掘和传承我国数学文化的精髓,为提高学生的数学素养提供更好的教育资源和参考。
数学教育视野下《九章算术》与《几何原本》的比较研究
作者简介 : 王晓亚(9 5一) 女 , 18 , 渤海大学硕士研究生 , 从事课程论研究.
ቤተ መጻሕፍቲ ባይዱ
第1 期
王晓 亚 , 守波 , 张 范文 贵 , : 学教 育视 野 下《 等 数 九章 算术 》 几何 原本 》 与《 的比较研 究 2 3
发展 演绎 推理 。
《 几何原本》 成书时的古希腊 与《 九章算术》 成书时中国的情形完全不同 , 当时的古:腊正处于形式 希 逻辑 的发 展时 期 。把形 式逻 辑 的思 想方 法运 用 于数 学 研究 并 排 斥 数 学应 用 , 当 时形 成 了一种 强 大 的 在 思潮 . 欧几 里得 ( ul ) E c d 正处 于这 个 时 期 , i 他在 几 个 世 纪 以 来 的几 代 数 学 家 的 肩膀 上 , 几 何 知 识 用 演 将
几何原本与九章算术的异同
《几何本来》与《九章算术》的异同《几何本来》和《九章算术》都是经典的数学著作,一部是西方的著作,一部是中国的古代著作,这两部著作都对此后的数学发展做出了很大的贡献,并对人类文明产生深远的影响。
《几何本来》和《九章算术》自己是对于纯数学的专著,但高度抽象化的数学是必然是需要和其余的学科相联合的。
下边,我就《几何本来》和《九章算术》的异同做一些论述,第一,《几何本来》和《九章算术》产生的背景不一样:《几何本来》产生的背景:欧几里得的平生,此刻知道的甚少,欧几里得在公元前 300 年左右,到达亚历山大里亚教课.人们夸赞欧几里得治学精神谨慎、谦逊,是一个温良敦朴的数学教育家.欧几里得在从事数学教育中,老是谆谆教导地启迪学生,倡导勤苦研究,弄懂弄通,反对谋利钻营、急于求成的狭小思想.欧几里得在从事数学教育中,擅长累积数学知识,并进行了拓宽与创新.他的巨著《几何本来》是一世中最重要的工作,这部著作的形成拥有无以伦比的历史意义.他精僻地总结了人类长期间累积的数学成就,成立了数学的科学系统,为后代持续学习和研究数学供给了课题和资料,使几何学的发展充满了活的活力.这部著作长期间被人崇敬、崇奉,素来没有一本教科书,像《几何本来》那样长久广为歌颂.从 1482年到 19 世纪末,欧几里得《几何本来》的印刷本竟用各样文字印刷 1000 版以上,在此从前,它的手手本统御几何学也已达近 1800 年之久.欧几里得继承和发展了古人的数学知识,《几何本来》所用到的资料大多半是希腊先期各学派创立的成就.欧几里得是柏拉图的门徒,他的著作基本沿续了柏拉图的传统思想,承继了《共和国》中所论及的科学方法.欧几里得在《几何本来》中,发展了柏拉图的以哲学为基础,“数论、几何、音乐、天文”4 科为内容的科学思想.此外,欧几里得还采纳了欧多克索斯等学者的一些定理,并加以完善.《几何本来》所采纳的公义、定理都是经过仔细商酌、挑选而成,并按谨慎的科学系统进行编排,使之系统化、理论化,超出了从前的所有著作,所以,当《几何本来》问世以后,其余诸类渐渐偃旗息鼓了.《九章算术》的背景:中国数学经过长久累积,到西汉期间已有了相当丰富的内容.除《周髀算经》外,西汉早期出现了第一部数学专著 ---《算术书》,用竹简写成.全书共60多个标题,如“相乘”、“增减”、“少广”、“税田”、“金价”、“合分”等,标题以下有各样问题.《九章算术》的体例便遇到《算术书》的影响.此外,当时西汉已有初步的负数及比率观点,面积和体积计算的知识也增加了.这些都为我国初等数学系统的形成准备了条件.现传本《九章算术》约成书于西汉末年,作者不详,可能经多人之手而成.它是一部承上启下的著作,一方面总结了西汉及西汉从前的数学成就,集当时初等数学之大成;另一方面又对后代数学发展产生了深远的影响.其次,《几何本来》和《九章算术》的内容的异同:<<几何本来本 >>各卷简介 :第一卷:几何基础。
从数学教育的角度比较分析《九章算术》与《几何原本》6页word文档
从数学教育的角度比较分析《九章算术》与《几何原本》《九章算术》是“算经十书”中最重要的一种,该书内容非常丰富,且系统化总结并概括了战国、秦朝,以及汉时期的数学成就。
此外,该书在数学领域也取得了杰出的成就,首次提出分数、负数及加减运算法则等。
概括来说,《九章算术》是一本综合性的数学历史著作,该书的出现标志着中国古代数学体系的基本形成。
《几何原本》在数学界又被称为《原本》,该书为欧洲数学的发展奠定了良好的基础,且被广泛认为是历史上最成功的教科书,书中主要总结并归纳了平面几何的五大公设。
除此之外,《几何原本》在西方也占据着相当重要的位置,仅次于《圣经》。
这两本著名的数学著作对数学的发展都发挥着非常重要的作用,但是二者还存在诸多差异。
本文对这两本书从成书背景、体例、内容等方面进行研究后,得出二者的差异所在。
在此基础上,对其数学教育观、数学教育目的、数学教材及数学文化也进行了详细论述,基于现代数学视野,对现代数学教育改革提供启示,以供参考。
一、成书背景的对比《九章算术》是中国古代的数学专著,也是“算经十书”中最重要的一种。
众所周知,我国春秋战国时期,诸子百家争鸣,众多学派相继出现,在形式逻辑研究方面,相比其他学派而言,墨家比较突出,但之后形式逻辑在我国并没有太大的进展,而《九章算术》恰巧问世。
该书成书最迟是在东汉前期,但内容的定型却在西汉后期,这时候出现,就注定其呈现出非逻辑结构的特点。
中国古代数学专著都是在不断总结生活现象的过程中逐渐衍生而来的,《九章算术》也不例外,该书主要强调的是数学知识的应用,在不断地总结、归纳、推理、论证的过程中,最终发展成演绎推理。
《几何原本》是一部集前人思想和欧几里得个人创造于一体的不朽之作,整本书的内容是把人们公认的一些事实归纳成定义和公理,将形式逻辑的方法运用于教学研究。
通过这些定义和公理对几何图形的性质进行探讨,最终建立起一套数学理论体系,简称几何学。
该书的成书与《九章算术》有着不同的背景,当时古希腊正处于形式逻辑的发展时期,形式逻辑的思想方法被运用到了数学及其应用领域中,逐渐形成了强大的数学思潮,之后欧几里得不断研究和探索,将其用演绎法进行归类和整理,编写成《几何原本》一书。
比较九章算数和几何原本.doc
《九章算术》和《儿何原本》在思维方法上有很大的不同我国数学史上有一部堪与欧几里得《几何原木》媲美的书,这就是历来被尊为算经之首的《九章算术》。
其中的勾股章提出了勾股数问题的通解公式,在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这己比《九章算术》晚约3个世纪了。
勾股章还有些内容, 在西方却还是近代的事。
《九章算术》及其刘徽注,以杰出的数学成就,独特的数学体系。
不仅对东方数学,而且对整个世界数学的发展产生了深远的影响,在科学史上占有极为重要的地位。
它的出现,标志着从公元前1世纪开始,中国取代古希腊成为世界数学的中心,为此后中国数学领先世界1500多年奠定了基础。
《儿何原本》是欧儿里德一生著有的多部数学著作其中最有价值的一部。
它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系一一几何学。
《九章算术》是一部经儿代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(公元前一世纪)。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。
由于历史条件的限制,欧儿里得在《儿何原本》中提出儿何学的“根据” 问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。
《九章算术》与《几何原本》作业
《九章算术》与《几何原本》异同一、《九章算术》与《几何原本》的内容相似有以下几个方面:1、《九章算法》的第一章“方田”:主要讲述了平面几何图形面积的计算方法。
包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法;而《几何原本》第一卷:几何基础。
重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理;第二卷:几何与代数。
讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。
第四卷:讨论圆内接和外切多边形的做法和性质;它们都是在平面上来研究几何图形的面积及性质。
2、《九章算术》第四章“少广”:已知面积,体积,反求其一边长和径长等;第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;而《几何原本》第十一卷、十二、十三卷:最后讲述立体几何的内容.它们研究都涉及立体几何的内容。
3、《九章算术》第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题;而《几何原本》第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是“最重要的数学杰作之一”。
第六卷:讲相似多边形理论,并以此阐述了比例的性质。
第五、第七、第八、第九、第十卷:讲述比例和算术的理论。
它们都涉及到比例的算法。
4、《九章算术》第九章“勾股”:利用勾股定理求解的各种问题,提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理。
在它们研究的范围内都用到勾股定理。
二、《九章算术》与《几何原本》的思维方面有很大的区别:1、《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
《九章算术》与《几何原本》的比较解析
包头师范学院本科毕业论文二〇一三年三月摘要《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,是现代数学思想的两大源泉。
两书同是古代数学名著,却有着截然不同的风格。
将从数学教育的角度,解读一下两书在成书背景、结构和内容等方面的不同,并从比较研究中得到一些对当代数学教育改革的启示。
关键词:九章算术;几何原本;形式逻辑;数学教育AbstractNine Chapters of Arithmetic”and”Principles of Geometry”are two famous books in the world history of mathematics,serving as two origins of modem mathematics education.The two books belong to famous ancient mathematics books,but with different styles.From the perspective of mathematics education,a compari-son is made of the two books in their backgrounds,structures and content,and some enlightenment is derivedfrom them for current mathematics education reforill.目录引言(绪论) (5)一《几何原本》 (6)(一)《几何原本》的基本内容 (6)(二)《几何原本》的特点 (7)1.封闭的演绎体系 (7)2.抽象化的内容 (8)3.公理化的方法 (8)(三)《几何原本》的意义 (9)二、《九章算术》 (10)(一)《九章算术》的基本内容 (11)(二)《九章算术》的特点 (11)1.开放的归纳体系 (11)2.算法化的内容 (12)3.模型化的方法 (12)(三)《九章算术》的意义 (12)1.《九章算术》的影响巨大而深远 (12)2.《九章算术》中的数学成就是多方面的 (12)3.《九章算术》对中国周边国家数学及社会的发展也有一定的作用 (13)4.《九章算术》的思想方法不仅对古代数学的发展产生了重大影响,而且也是现代数学思想发展的源泉 (13)三.《九章算术》与《几何原本》的比较 (13)(一)形成《九章算术》与《几何原本》迥异的背景 (13)(二)两书体例的比较 (14)(三)两书内容的比较 (15)(四)对当代数学教育改革的启示 (15)1.数学教育观 (15)2.数学教育目的 (16)3.数学教材 (17)4.数学文化 (18)参考文献 (19)引言(绪论)《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,某种意义上说是现代数学思想的两大源泉。
论《九章算术》与《几何原本》的特点
龙源期刊网
论《九章算术》与《几何原本》的特点
作者:陈家欣
来源:《文理导航》2017年第32期
【摘要】《九章算术》是中国古代数学著作,是当时世界上最先进的应用数学,它的出现标志着中国古代数学形成了完整的体系;《几何原本》是古希腊时期乃至整个人类历史上最重要的数学著作,是数学史上一个伟大的里程碑,它不仅是几何学建立的标志,同时也是公理体系在具体学科中应用成功的标志。
【关键词】九章算术;几何原本;代数;几何
引言
《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,是数学思想方法的两个源头。
《九章算术》强调辩证思维,特别注重实事求是,理论联系实际。
全书的246道题,都建立在与生活和生产相关的应用上,形成了以计算为中心的数学体系,对中国古算影响深远;而《几何原本》则相反,与生活和社会的实际问题无关,全书没有一道应用题,全部是纯粹的数学问题。
两书同为古代数学的巨著,对近代数学的发展影响深远,那两书到底有着怎样不同的风格特点,本文将从以下三个方面来论述。
1.体系
《九章算术》开放的归纳体系,全书共246个与生产生活相关的算术题目,同一类型的计算问题化归为一章,共九章。
现将各章内容简介如下:
第一章“方田”:田亩面积计算;(“方”面积单位)
第二章“粟米”:谷物粮食之间互相兑换;(“粟”谷物)
第三章“衰分”:比例分配;(“衰”按比例)
第四章“少广”:已知面积、体积、求其一边宽广等;(“少”多少,“广”宽广)
第五章“商功”:土木工程、体积计算;(“商”度量,“功”工程)
第六章“均输”:合理摊派赋税;(“均”匀,“输”财物)
第七章“盈不足”:解应用;。
九章算术与几何原本的比较讲解
LOGO
作者简介
欧几里得( 约公元前330年—前275年)古希腊数 学家,被称为“几何之父”。他活跃于托勒密一 世(公元前323年-前283年)时期的亚历山大里 亚,他最著名的著作《几何原本》是欧洲数学 的基础,提出五大公设,发展欧几里得几何,被广泛的认为是 历史上最成功的教科书。除《几何原本》外还有不少著作 , 如《已知数》,《纠错集》,《圆锥曲线论》,《曲面轨迹》, 《观测天文学》等 ,遗憾的是 除《几何原本》外这些都没有 留存下来消失在时空的黑暗之中了。
3与实际的联系九章与外界关系是极为密切的其中的每一间题均为日常生活中的实际间题如田地丈量钱粮分配等原本与外界几乎毫无关系开始给出定义公设和一般概念然后根据它们去解决一个个命题可以说九章是开放性的而原本是封闭的从而九章具有广泛的实用价值相对来说原本就差得多了
LOGO
《九章算术》与《几何原本》 的比较
-------------By herococo
是极限思想的雏形。
第十一卷、十二、十三卷:最后讲述立体几何的内容.
从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完
全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千
多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把
它叫做欧几里得几何学,或简称为欧氏几何。
4 具体与抽象
《九章》中的向题是具体的, 而《原本》却是很抽象的. 从而《九章》 易为一般人所接受,《原本》却不能.
5 逻辑性
《九章》中的问题由于是实际间题的排列, 所以并无逻辑性可言. 而《
原本》却有比较严格的逻辑性. 命题中所运用的概念, 一般必须是前面
已定义的, 前面命题可以作为后面命题的推理根据, 而不能由后面的命
《九章算术》与《几何原本》的比较
包头师范学院本科毕业论文二〇一三年三月摘要《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,是现代数学思想的两大源泉。
两书同是古代数学名著,却有着截然不同的风格。
将从数学教育的角度,解读一下两书在成书背景、结构和内容等方面的不同,并从比较研究中得到一些对当代数学教育改革的启示。
关键词:九章算术;几何原本;形式逻辑;数学教育AbstractNine Chapters of Arithmetic”and”Principles of Geometry”are two famous books in the world history of mathematics,serving as two origins of modem mathematics education.The two books belong to famous ancient mathematics books,but with different styles.From the perspective of mathematics education,a compari-son is made of the two books in their backgrounds,structures and content,and some enlightenment is derivedfrom them for current mathematics education reforill.目录引言(绪论) (5)一《几何原本》 (6)(一)《几何原本》的基本内容 (6)(二)《几何原本》的特点 (7)1.封闭的演绎体系 (7)2.抽象化的内容 (8)3.公理化的方法 (8)(三)《几何原本》的意义 (9)二、《九章算术》 (10)(一)《九章算术》的基本内容 (11)(二)《九章算术》的特点 (11)1.开放的归纳体系 (11)2.算法化的内容 (12)3.模型化的方法 (12)(三)《九章算术》的意义 (12)1.《九章算术》的影响巨大而深远 (12)2.《九章算术》中的数学成就是多方面的 (12)3.《九章算术》对中国周边国家数学及社会的发展也有一定的作用 (13)4.《九章算术》的思想方法不仅对古代数学的发展产生了重大影响,而且也是现代数学思想发展的源泉 (13)三.《九章算术》与《几何原本》的比较 (13)(一)形成《九章算术》与《几何原本》迥异的背景 (13)(二)两书体例的比较 (14)(三)两书内容的比较 (15)(四)对当代数学教育改革的启示 (15)1.数学教育观 (15)2.数学教育目的 (16)3.数学教材 (17)4.数学文化 (18)参考文献 (19)引言(绪论)《九章算术》与《几何原本》是数学史上东西辉映的两大巨著,某种意义上说是现代数学思想的两大源泉。
几何原本VS九章算术,中西数学的差别在哪里?
几何原本VS九章算术,中西数学的差别在哪里?记得小时候,如果数学考试没考好,家长们就会非常郑重地告诉我们:“数学可是非常重要的,如果数学没学好,去买菜老板找错钱你都不知道,那就亏大了。
”想想也对,我们吃鱼吃肉绝不吃亏,数学好像真的很重要。
到后来,有人开始反对数学。
准确的说是反对高等数学,给出的理由是:你买菜会用到微积分么?那些日常的计算问题,我学会了初中的加减乘除就已经足够了。
对于那些不是科学家、工程师的人,可能他一辈子也不会再用到什么解析几何、微积分,那我还要浪费时间去学这些东西干嘛呢?所以,一般人数学只要学到初中就够了。
这种观点你一听很想去反驳,但是仔细一想好像确实也有道理,毕竟买菜真的不需要微积分。
为什么我们会觉得上面两种说法好像都很有道理呢?为什么我们潜意识里会觉得“学好数学以方便买菜”是理所当然的事情呢?因为我们的数学,自古以来就是奔着实用性去的。
中国古代以农业立国,给每个农民分多少地,这需要去测量计算。
造物造船等工程问题,也需要去计算各种物料。
可以说,如何更好的计算这些实际问题,就是中国古代数学的核心。
因此,我们古人其实并不说什么“数学”,而是说“算术”。
算术算术,直观的看,这就是和计算相关的一些技巧和经验。
【中国古代数学以实用性为导向】对中国古代影响最大的数学书是什么?答案是《九章算术》,它在中国被当了一千多年的数学教科书。
如果翻一翻这本书就会发现它跟我们现在的数学书风格上是完全不一样的。
它就是一本应用问题集:搜集了246个与生产、生活实践相关联的应用问题。
书的第一章第一段就是这样写的:“假如一块方田广15步,纵16步,它的面积是多大?答:1亩。
”后面也都是这种问答的形式,在这里看不到什么“公理”“定理”这样熟悉的数学字眼,没有什么整数或者直线的定义,也没有什么证明和推理,看到的都是跟生活相关的各种实际计算题。
《九章算术》给中国的古代数学定了一个基调,于是我们对数学的理解也就这样潜移默化的形成了:数学就是用来计算这些实际问题的,它要讲究实用性。
比较九章算数和几何原本
、《九章算术》和《几何原本》在思维方法上有很大的不同我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》。
其中的勾股章提出了勾股数问题的通解公式,在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。
勾股章还有些内容,在西方却还是近代的事。
《九章算术》及其刘徽注,以杰出的数学成就,独特的数学体系。
不仅对东方数学,而且对整个世界数学的发展产生了深远的影响,在科学史上占有极为重要的地位。
它的出现,标志着从公元前1世纪开始,中国取代古希腊成为世界数学的中心,为此后中国数学领先世界1500多年奠定了基础。
《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。
它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。
主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。
《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。
它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。
由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈《九章算术》与《几何原本》的异同
就数学而言,古代东西方文明都对其发展作出了不可磨灭的贡献;其中以中国的《九章算术》和西方的欧几里得的《几何原本》的贡献最大。
以下,我就这两部经典的数学著作谈谈我的读后感。
一、结构:
《几何原本》分十三篇。
含有467个命题;有5个公理和5条公设;大部分的命题都是由极少数的公理逻辑推理而来
《九章算术》共收有246个数学问题,包括方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。
其中的绝大多数内容是与当时的社会生活密切相关的。
其数学成就也是多方面的。
贡献:
《几何原本》对世界数学的贡献主要是:
1. 建立了公理体系,明确提出所用的公理、公设和定义。
由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2. 把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。
3. 示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。
为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。
二千年来,一直被公认为初等数学的基础教材。
《九章算术》对世界数学的贡献主要有:
1. 开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。
2. 方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。
3. 负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。
二、两部著作中的一些内容比较:
《九章算术》在方程理论中的多元联立一次方程组的出现比高斯后来提出的消去法早了很多年;在解线性方程组时,首次提出了负数的加减
法法则,这对数学的贡献是非常巨大的;在代数方面,开方术也是《九
章算术》的一大贡献;其开方程序是独创先河;例如,秦九韶算法也的
源于此;
在几何方面,《九章算术》主要是面积(方田)和体积(商功)的计算;以计算为中心;任何问题,都要计算出具体的数字作为答案;几乎没有关于任何数的性质、图形的定性的关系命题。
例如三角形全等、三角形相似的条件在《九章算术》中都没有相关的表述。
有的只有算出线段的长、图形的面积和体积。
《几何原本》中的命题是通过公理和定义以及公设经逻辑推理而来;
它建立了公理化的思想;也赋予了数学逻辑性强、严密的特点。
《几何原本》更多的是在给出相关图形的概念、性质等的表述;这就是它与《九章算术》最大的不同之处。
在几何方面,《几何原本》进一步地概括了一些概念;例如,对于“曲线”的概念,古希腊人只限于用尺规作图来得到;而由《几何原本》而来的解析几何把“曲线”概括成任意的几何图形。
其次,再一次突破直观的限制,打开了数学发展的新思路。
笛卡儿和费马首先建立起来的是二维平面上的点和有序实数对之间的对应,按同样的思想,不难得出通过三个坐标轴得出三维空间的点和实数的有序三数组之间的对应关系。
现实的空间仅限于三维,由于解析几何中采用了代数方法,平面上的点对应于有序实数对,空间的点对应着三元有序实数组,那么代数中的四元有序实数组当然可以与此类比,构成一个四维空间,由此类推,提出了高维空间的理论。
这是现代数学极重要的思想,开拓了数学的新领域《九章算术》涵盖的开放化的归纳体系中对不同的问题都有一定的归纳总结,算法化的内容对不同的实际问题予以程序化的求解;模型化的思想针对具体问题予以模型化的求解。
所以,它像一台计算机。
然而一些一般性的问题,可能就不能求解。
《几何原本》创立的公理化体系,以及解析几何的思想,揭示了数学的内在统一性;同时《几何原本》也提供了解决一般性问题的方法。
但它其中的一些定理存在错误或者并不严密;例如,第五公设在球面几何上就不成立。
三、传播:
《九章算术》采用的是中国古代的天干地支语言进行编写;其语言生涩难懂;因此,不便于传播;而《几何原本》用的是相对通俗易懂的数学符号语言书写,方便书写也方便记忆。
以上,是我对这两部数学著作的一些浅见;还望老师予以批评和指导。