高分子化学(潘祖仁)教案-第五章-离子聚合

合集下载

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(聚合方法)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(聚合方法)【圣才出品】

如温度降到三相平衡点以下,将有凝胶枂出,乳化能力减弱。
(5)浊点
非离子型乳化剂水溶液随温度升高而分相的温度,称为浊点。在浊点以上,非离子型表
面活性剂将沉枂出来。
3.乳液聚合机理
(1)成核机理
①胶束成核
5 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

在经典乳液聚合体系中,由于胶束的表面积大,更有利于捕捉水相中的初级自由基和短 链自由基,自由基迚入胶束,引収其中单体聚合,形成活性种,这就是胶束成核。
4 / 26
圣才电子书

(1)临界胶束浓度
十万种考研考证电子书、题库视频学习平台
在一定温度下,乳化剂开始形成胶束的浓度,称为临界胶束浓度(CMC)。CMC 值越
小的乳化剂,乳化能力越强。
(2)增溶
①定义
乳化剂的存在,将使单体的溶解度增加,这称为增溶作用。
②增溶的原因
a.单体伴随乳化剂分子的疏水部分增溶在水中;
3 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、乳液聚合 1.乳液聚合概述 (1)定义 乳液聚合是指单体在水中分散成乳液状态的聚合。传统乳液聚合的基本配斱由单体、水、 水溶性引収剂和水溶性乳化剂四组分极成。 (2)特点 ①优点 a.以水作介质,环保安全,胶乳粘度低,便于混合传热、管道输送和连续生产; b.聚合速率快,产物分子量高,可在低温下聚合; c.胶乳可直接使用。 ②缺点 a.需要固体产品时,胶乳需经凝聚、洗涤、脱水、干燥等工序,成本高; b.产品中留有乳化剂,有损电性能等。 (3)乳化剂和乳化作用 ①传统乳液聚合中主要选用阴离子乳化剂,非离子型表面活性剂则配合使用。另外还有 阳离子乳化剂和两性乳化剂。 ②乳化剂的作用 a.降低表面张力,使单体分散成细小液滴; b.在液滴或胶粒表面形成保护层,防止凝聚,使乳液稳定; c.形成胶束,使单体增溶。 2.基本概念

潘祖仁《高分子化学》课后习题及详解(离子聚合)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(离子聚合)【圣才出品】

第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。

进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。

异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。

进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。

(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。

氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。

2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。

表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。

(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。

(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。

(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。

(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。

阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。

3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。

a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。

高分子化学(第五版)潘祖仁版课后习题答案

高分子化学(第五版)潘祖仁版课后习题答案

第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。

答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。

在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。

聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。

聚合度是衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X表n 示。

2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。

答:合成高分子多半是由许多结构单元重复键接而成的聚合物。

聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。

从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。

根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。

多数场合,聚合物就代表高聚物,不再标明“高”字。

齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

低聚物的含义更广泛一些。

3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。

选择其常用分子量,计算聚合度。

聚合物结构式(重复单元)聚氯乙烯-[-CH2CHCl-]- n聚苯乙烯-[-CH2CH(C6H5)-]n涤纶-[-OCH2CH2O∙OCC6H4CO-]n尼龙66(聚酰胺-66)-[-NH(CH2)6NH∙CO(CH2)4CO-]n 聚丁二烯-[-CH2CH=CHCH2 -]n天然橡胶-[CH2CH=C(CH3)CH2-]n聚合物分子量/万结构单元分子量/万DP=n 特征塑料聚氯乙烯聚苯乙烯5~1510~3062.5104800~2400960~2900(962~2885)足够的聚合度,才能达到一定强度,弱极性要求较高聚合度。

潘仁祖高分子化学课件第五章聚合方法

潘仁祖高分子化学课件第五章聚合方法

5.2 本 体 聚 合
本体聚合(Bulk polymerization )是单体本身在不加溶剂以
及其它分散剂的条件下,由引发剂或直接由光、热等作用
下引发的聚合反应。
优点:无杂质,产品ຫໍສະໝຸດ 度高,聚合设备简单,适用的反应范围较广。
缺点:体系粘度大,聚合热不易扩散,反应难以控制,易
局部过热,造成产品发黄。自动加速作用大,严重时可导
5.5.1 概述
乳液聚合(Emulsion Polymerization)是在乳化剂的作用
下并借助于机械搅拌,使单体在水中分散成乳状液,由水
T>Tg
成品
18
5.2 本 体 聚 合
5.2.2 乙烯高压连续气相本体聚合
压力:150-200MPa
温度:180-200℃
引发剂:微量O2
高温,易链转移,形成支链,不易紧密堆砌,结晶
度:55-65%,熔点105-110℃,密度0.91-0.93g·cm-3。
低密度聚乙烯(LDPE)
19
5.3 溶 液 聚 合
5.4.2 液-液分散和成粒过程
搅拌


界面张力
粘合
粘合
分散
剪切力
界面张力
剪 切 力:使单体液层分散成液滴
界面张力:使微小液滴聚集
29
5.4 悬 浮 聚 合
5.4.3 分散剂和分散作用
为了阻止单体液滴在碰撞时不再凝聚,必须加入分散剂,
分散剂在单体液滴周围形成一层保护膜或吸附在单体液滴表面,
在单体液滴碰撞时,起隔离作用,从而阻止或延缓单体液滴的
气相聚合
共聚组成及其分布……
界面缩聚
……
11
聚合体系和实施方法示例

第五章离子聚合高分子化学

第五章离子聚合高分子化学
O 环 氧乙 烷 O 四 氢呋 喃 N H 环 乙亚 胺 O O O 己 内酯 O N H O
二 氧戊 环
己 内酰 胺
5.2
5.2.3 引发剂
阳 离 子 聚 合
阳离子聚合引发剂都是亲电试剂,引发阳离子与单体加成时 阳离子聚合引发剂都是亲电试剂, 亲电试剂 总是进攻单体分子中亲核性最强的基团。 亲核性最强的基团 总是进攻单体分子中亲核性最强的基团。其引发剂主要包括 以下几类: 以下几类: 为离解产生的质子H 包括: (1)质子酸:其引发阳离子为离解产生的质子H+,包括: )质子酸: 引发阳离子为离解产生的质子 无机酸: 无机酸:H2SO4, H3PO4等 有机酸: 有机酸:CF3CO2H, CCl3CO2H等 超强酸: 超强酸: HClO4 , CF3SO3H, ClSO3H等
高 分 子 化 学
第 五 章
离 子 聚 合
5.1


活性中心是离子的聚合反应称为离子聚合, 活性中心是离子的聚合反应称为离子聚合,从微观上反 应也可分为链引发、链增长、链转移及链终止等基元反应, 应也可分为链引发、链增长、链转移及链终止等基元反应, 但其机理和动力学都与自由基聚合有所不同。 但其机理和动力学都与自由基聚合有所不同。 离子聚合的单体: 离子聚合的单体:带有供电基团的烯类单体有利于进行 阳离子聚合, 阳离子聚合,带有吸电基团的烯类单体有利于进行阴离子聚 但是单体是否能够通过离子聚合得到高分子量聚合产物, 合。但是单体是否能够通过离子聚合得到高分子量聚合产物, 还要看活性中心是否具有适当的稳定性。 还要看活性中心是否具有适当的稳定性。 一些重要聚合物,如丁基橡胶、异戊橡胶、聚甲醛、 一些重要聚合物,如丁基橡胶、异戊橡胶、聚甲醛、聚 醚等只能通过离子聚合来合成。 醚等只能通过离子聚合来合成。有些聚合物虽然可以采用多 种方法合成,如聚苯乙烯、聚丁二烯等,但利用离子聚合或 种方法合成,如聚苯乙烯、聚丁二烯等, 配位聚合却可以控制聚合物结构,改进产品性能。 配位聚合却可以控制聚合物结构,改进产品性能。

潘祖仁高分子化学(共89张PPT)

潘祖仁高分子化学(共89张PPT)
聚酯 -R-COO-RCOO-RCOO-
聚酰胺 –R1CONH-R2CONH-R1CONH聚氨酯 –R1-OCONHR2NHCOO-R1-0聚脲(己二胺+己二异氰酸 见后面) 聚砜(砜+双酚A 见后面)
1.2 聚合物的分类和命名
1.2.2 聚合物的命名
系统命名法较严谨,但往往名称很长,使用 不太方便。
在这种情况下,无法确定它的重复单元,仅 结构单元=单体单元
例1 聚乙烯
n C H 2 C H 2 C H 2 C H 2 n
单体单元=结构单元= 重复单元 =链节
例2 尼龙66
单体单元重复单元结构单元 H2N(CH2)6NH2
HOOC-(CH2)4COOH
1.2 聚合物的分类和命名
1.2.1 聚合物的分类
缩合聚合(缩聚反应)1234
乙烯 丙烯 氯乙烯 甲基丙烯酸甲酯
结构单元=重复单元 =链节
分加子成量 聚大合是(高加分聚子反的应通根)本过性质单体分子中的某些官能团之间的缩合聚合成高分子的
反应称为缩合反应。 加聚产物的结构单元中元素组成与其单体相同,仅是电子结构发生变化。
IUPAC不反对在一般场合使用习惯命名法和 其他能反映聚合物特征的命名法,但在学术性 较强的论文中鼓励使用系统命名法。
IUPAC不提倡采用商品名和俗称。
高分子化合物的命名
1 命名
以单体名称为基础,在前面加“聚”字
乙烯 丙烯 氯乙烯 甲基丙烯酸甲酯
聚乙烯 聚丙烯 聚氯乙烯 聚甲基丙烯酸甲酯
取单体简名,在后面加“树脂” 、“橡胶”二字
共聚物(由两种或两种以上单体进行聚合) 无规共聚物 嵌段共聚物 交替共聚物 接枝共聚物
无规共聚、交替共聚、接枝共聚、嵌段共聚

潘祖仁《高分子化学》名校考研真题及详解(聚合方法)【圣才出品】

潘祖仁《高分子化学》名校考研真题及详解(聚合方法)【圣才出品】

第5章聚合方法一、选择题1.下列化合物中用作自由基乳液聚合引r发剂的是()。

[北京理工大学2007研] A.路易斯酸B.AIBNC.BPOD.过硫酸钾【答案】C【解析】乳液聚合需要水溶性引发剂。

A项是阳离子聚合的引发剂,不属于自由基聚合的引发剂选用范围;B项,AIBN是自由基聚合的油溶性引发剂;D项,过硫酸钾只属于氧化剂组分,还需要还原剂组分组成氧化-还原体系才能引发自由基聚合。

2.不属于乳液聚合基本组分的是()。

[杭州师范大学2011研]A.乳化剂B.单体C.引发剂D.溶剂【答案】D【解析】乳液聚合配方的主要成分有:单体、水、水溶性引发剂、水溶性乳化剂,不需要溶剂。

溶液聚合配方的主要成分有:单体、引发剂、溶剂。

3.制备分子量分布较窄的聚苯乙烯,应选择()。

[杭州师范大学2011研]A.配位聚合B.阳离子聚合C.自由基聚合D.阴离子聚合【答案】D【解析】活性阴离子聚合有以下四大特征:①大分子具有活性末端,有再引发单体聚合的能力;②聚合度与单体浓度/起始引发剂浓度的比值成正比;③聚合物分子量随转化率线性增加;④所有大分子链同时增长,增长链数不变,聚合物分子量分布窄。

4.对单体纯度要求最高的逐步聚合方法是:()。

[中科院研究生院2012研]A.界面聚合B.溶液聚合C.熔融聚合【答案】C【解析】A项,界面缩聚:静态界面缩聚与单体溶度无关,动态界面缩聚,对单体浓度要求较高;B项,溶液缩聚:希望在单体浓度尽可能高的情况下进行,但浓度太高会使反应物料变得粘稠影响正常反应;C项,熔融缩聚:对原料单体纯度的数值要求精确,否则,投入原料的比例有误差,直接影响产物的分子量;单官能团的杂质易引起封端作用;有些杂质影响反应速度,产物结构,分子量分布等。

二、名词解释1.界面聚合[中国科学技术大学2010研]答:界面聚合是指将两种互相作用而生成高聚物的单体分别溶于两种互不相溶的液体(通常是水和有机溶剂)中,形成水相和有机相,当两相接触时,在界面处发生聚合而生成高聚物的一种聚合方法。

高分子化学(潘祖仁)教案-第5章-离子聚合

高分子化学(潘祖仁)教案-第5章-离子聚合

质子对碳-碳双键有较强的亲合力
增长反应比其它副反应快,即生成的碳阳离子有适 当的稳定性
对单体种类进行讨论 (可由热焓-△H判断):
-烯烃
CH2 CH2
-△H( kJ/mol) 640
CH2 CH
CH3
757
CH2 CH
C2H5
791
无取代基,不易 极化,对质子亲 和力小,不能发 生阳离子聚合
质子亲和力较大,有利于反应
CH3 CH A X
条件
酸要有足够的强度产生H+,故弱酸不行
酸根的亲核性不能太强,否则会与活性中心 结合成共价键而终止,如
CH3 CH A X
A CH3 CH
X
不同质子酸的酸根的亲核性不同
氢卤酸的X-亲核性太强,不能作为阳离子聚 合引发剂,如HCl引发异丁烯
(CH3)3C Cl
(CH3)3C Cl
[HM (CR) ] = K ki [C] [RH] [M]
kt
Rp =
K ki kp [C] [RH] [M]2 kt
Rp 对引发剂、共引发剂浓度呈一级反应, 对单体浓度呈二级反应
讨论:
是假定引发过程中引发剂引发单体生成碳阳离子的反应 是控制速率反应,因此Ri与单体浓度有关; 若引发剂与共引发剂的反应是慢反应,则 Ri与单体浓 度无关,Rp与单体浓度一次方成正比 该动力学方程也适合于与反离子加成终止、向单体转移 终止(表达式有变动), 但不宜推广到其它聚合体系
POCl3,CrO2Cl,SOCl2,VOCl3
绝大部分Lewis酸都需要共(助)引发剂,作为 质子或碳阳离子的供给体
共引发剂有两类:
析出质子的物质:H2O,ROH,HX,RCOOH 析出碳阳离子的物质:RX,RCOX,(RCO)2O

潘祖仁版高分子化学(第五版)课后习题答案.

潘祖仁版高分子化学(第五版)课后习题答案.
5•写出下列单体的聚合反应式,以及单体、聚合物的名称。
a.CH2=CHF
b.CH2=C(CH32
c.HO(CH25COOH e. NH2(CH26NH + HOOC(CH24COOH
CH2-CH2
CH2-O
I
I
d.
答:
序号单体
聚合物
a CH 2=CHF氟乙烯-卜CH 2-CHF-]-n聚氟乙烯
b CH 2=C(CH 32异丁烯-卜CH 2-C(CH 32-]-n聚异丁烯
10.什么叫玻璃化温度?橡胶和塑料的玻璃化温度有何区别?聚合物的熔点有什 么特征?
答:玻璃化温度及熔点是最重要的热转变温度。
玻璃化温度是聚合物从玻璃态到高弹态的热转变温度。受外力作用•玻璃态时 的形变较小,而高弹态时的形变较大,其转折点就是玻璃化温度,可用膨胀计或热机械 曲线仪进行测定。玻璃化温度是非晶态塑料(如聚氯乙烯、聚苯乙烯等的使用上限 温度•是橡胶(如顺丁橡胶、天然橡胶等的使用下限温度n引入极
带有潜在官能团的线形或支链大分子受热后•在塑化的同时,交联成体形聚合物, 冷却后固化。以后受热不能再塑化变形,这一热行为特称做热固性。但已经交联的 聚合物不能在称做热固性。
聚氯乙烯,生橡胶,硝化纤维:线形,热塑性
纤维素:线形,不能塑化,热分解
酚醛塑料模制品.硬橡皮:交联,已经固化,不再塑化
9•举例说明橡胶、纤维、塑料的结构-性能特征和主要差别。
逐步聚合是无活性中心•单体中不同官能团之间相互反应而逐步增长,每步反应 的速率和活化能大致相同。大部分缩聚属于逐步聚合机理•但两者不是同义词。
聚加成反应是含活泼氢功能基的亲核化合物与含亲电不饱和功能基的亲电化合 物之间的聚合。属于非缩聚的逐步聚合。

潘祖仁第五版高分子化学知识点

潘祖仁第五版高分子化学知识点

第一章:绪论一、基本概念高分子、高分子化合物单体结构单元重复结构单元单体单元聚合度全同立构高分子间同立构高分子立构规整性高分子无规立构高分子遥爪高分子:含有反应性末端基团、能进一步聚合的高分子。

均聚物:由一种(真实的、隐含的或假设的)单体聚合而成的聚合物。

共聚物:由一种以上(真实的、隐含的或假设的)单体聚合而成的聚合物。

生成共聚物的聚合反应称为共聚反应。

逐步聚合反应:是指在反应过程中,聚合物链是由体系中所有聚合度分子之间通过缩合或加成反应生成的。

链式聚合反应:是指在聚合反应过程中,聚合物链是仅由单体和聚合物链上的反应活性中心之间的反应生成,并且在新的聚合物链上再生反应活性点。

聚合物的多分散性:聚合物是由一系列分子量不等的同系物高分子组成,这些同系物高分子之间的分子量差为重复结构单元分子量的倍数,这种同种聚合物分子长短不一的特征称为聚合物的多分散性。

平均分子量:聚合物的分子量或聚合度是统计的,是一个平均值,叫平均分子量或平均聚合度。

数均分子量和重均分子量及多分散系数二、基本理论1、聚合物的分类:来源:天然高分子、半天然高分子和合成高分子主链元素组成:碳链高分子、杂链高分子和元素有机高分子性质和用途:塑料、纤维和橡胶,以及功能高分子、胶粘剂和涂料2、聚合物的命名:习惯命名和IUPAC命名第二章缩聚及逐步聚合反应一、基本概念缩合聚合和逐步加成聚合,线形逐步聚合反应和非线形逐步聚合反应,平衡线形逐步聚合反应和不平衡线形逐步聚合反应,单体功能度和平均功能度,均缩聚和混缩聚,熔融缩聚、界面缩聚和固态缩聚,凝胶化现象和凝胶点,无规预聚体和确定结构预聚体。

二、基本理论1.逐步聚合反应的特征:a. 反应是逐步进行的;b. 每一步反应的速率和活化能大致相同;c. 反应体系始终由单体和分子量递增的一系列中间产物组,单体以及任何中间产物两分子间都能发生反应;d. 聚合产物的分子量是逐步增大的。

2. 线形逐步聚合反应聚合产物分子量的控制与稳定(1)数均聚合度与功能基摩尔比、反应程度的关系rP2-r 1r 1X n ++= 若r ≠1, P 指量少功能基的反应程度 (2)反应程度的影响因素:平衡常数(3)单功能基化合物的作用:a. 分子量调节剂,[r = N A /(N B +2N B ’)]; b. 单功能基化合物对聚合物进行封端,起稳定分子量的作用(分子量稳定剂)。

潘祖仁《高分子化学》课后习题及详解(聚合方法)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(聚合方法)【圣才出品】

第5章聚合方法(一)思考题1.聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互间的区别和关系。

答:(1)根据聚合物反应物的相态考虑,有本体聚合、溶液聚合、悬浮聚合。

①本体聚合是指不加其他介质,仅有单体本身和少量引发剂(或不加)的聚合;②溶液聚合是指单体和引发剂溶于适当溶剂的聚合;③悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

(2)根据聚合体系的溶解性,聚合反应可以分为均相聚合和非均相聚合。

①单体、溶剂、聚合物之间具有很好的相容性时,聚合为均相聚合;②单体、溶剂、聚合物之间相容性不好而产生相分离的聚合,为非均相聚合。

(3)在聚合初期,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相体系。

①单体对聚合物溶解不好,聚合物从单体中析出时,此时的本体聚合成为非均相的沉淀聚合;②溶液聚合中聚合物从溶剂中析出,就成为沉淀聚合,有时也称为淤浆聚合。

2.本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答:(1)有机玻璃板制备主要采用间歇本体聚合法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90~95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的粘度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40~50℃)下聚合至转化率90%。

低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(l00~120℃)下,使残留单体充分聚合。

(2)通用级聚苯乙烯可以采用本体聚合法生产。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 阳离子聚合
到目前为止,对阳离子聚合的认识还不很深入
原因:

阳离子活性很高,极易发生各种副反应,很难获 得高分子量的聚合物
碳阳离子易发生和碱性物质的结合、转移、异构化 等副反应——构成了阳离子聚合的特点

引发过程十分复杂,至今未能完全确定
目前采用阳离子聚合并大规模工业化的产品只 有丁基橡胶
1. 阳离子聚合单体

HSO4- H2PO4-的亲核性稍差,可得到低聚体 HClO4,CF3COOH,CCl3COOH的酸根较弱, 可生成高聚物

Lewis酸引发
F-C反应中的各种金属卤化物,都是电子的接 受体,称为Lewis酸
从工业角度看,是阳离子聚合最重要的引发剂

Lewis酸包括: 金属卤化物: BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物: POCl3,CrO2Cl,SOCl2,VOCl3 绝大部分Lewis酸都需要共(助)引发剂,作为 质子或碳阳离子的供给体
R t = k t [HM (CR) ]
建立稳态
Ri = Rt
K k i [C] [RH] [M ] kt

[HM (CR) ] =

Rp =
K ki kp [C] [RH] [M ] 2 kt
Rp 对引发剂、共引发剂浓度呈一级反应, 对单体浓度呈二级反应
讨论:




是假定引发过程中引发剂引发单体生成碳阳离子的反 应是控制速率反应,因此Ri与单体浓度有关; 若引发剂与共引发剂的反应是慢反应,则 Ri与单体浓 度无关,Rp与单体浓度一次方成正比 该动力学方程也适合于与反离子加成终止、向单体转 移终止(表达式有变动), 但不宜推广到其它聚合体系 离子聚合无双基终止,不会出现自动加速现象

共引发剂有两类:
析出质子的物质:H2O,ROH,HX,RCOOH 析出碳阳离子的物质:RX,RCOX,(RCO)2O
如:无水BF3不能引发无水异丁烯的聚合,加入痕 量水,聚合反应立即发生: 引发剂共引发剂 H (BF 3OH) BF 3 + H2O 络合物
CH3 CH2 C + CH3 H (BF 3 O H) CH3 CH3 C (BF 3 O H) CH3

动力学链不终止 向单体转移终止 活性链向单体转移,生成的大分子含有不饱 和端基,同时再生出活性单体离子对
CH3 H CH2 C CH3 n CH2 CH3 C (BF 3 O H)
H+

CH3 + CH2 C CH3
CH3
CH3 H CH2 C CH3 n CH2
CH3 C CH2 + CH3
CH3 C (BF 3 O H)

两个甲基使双键电子云密度增加很多, 易与质子亲合, 820 kJ / mol 生成的叔碳阳离子较稳定,可得高分 子量的线型聚合物
CH3 C CH3
亚甲基上的氢,受四个甲基的保护, 不易夺取,减少了重排、支化等副 反应
是唯一能进行阳离子聚合的-烯烃

烷基乙烯基醚
CH2
CH OR
p- 共轭
诱导效应使双键电子云密度降低,氧的电负性较大 共轭效应使双键电子云密度增加,占主导地位 共振结构使形成的碳阳离子上的正电荷分散而稳定:
H CH2 C O R CH2 H C O R
能够进行阳离子聚合

共轭烯烃
如;St,-MeSt,B,I 电子的活动性强,易诱导极化,既能阳离子 聚合,又能阴离子聚合 但聚合活性远不如异丁烯、乙烯烷基醚,工业 很少进行这类单体的阳离子聚合
2. 阳离子聚合引发体系及引发作用
阳离子聚合的引发剂都是亲电试剂,即电子接受体
CH3
反应通式为
HM nM (CR) + M k tr,m M n+1 + HM (CR)
转移速率为:
R tr,m = k tr,m [HM (CR) ] [M ]
特点:
向单体转移是主要的链终止方式之一 向单体转移常数CM,约为10-2~10-4,比自由基 聚合(10-4~10-5)大,易发生转移反应 是控制分子量的主要因素,也是阳离子聚合必须 低温反应的原因
2
CH
2
C
(BF 3 OH)
C
OH
+ H (BF
3 OH)
CH 3
CH 3

水过量可能生成氧翁离子,其活性低于引发剂-共引发 剂络合物,故Rp下降
BF 3 + H 2 O
H 2O
H (BF 3 OH)
(H 3 O) (BF
3 OH)
氧翁离子,活性较低

其它物质引发
其它物质包括:I2,高氯酸乙酸酯,氧翁离子
自发终止速率:
R t = k t [HM (CR) ]

动力学链终止

与反离子加成终止
HM nM (CR) HM nM(CR)

与反离子中的阴离子部分加成终止
CH3 CH2 C (BF 3 O H) CH2 CH3 C O H + BF 3
CH3
CH3

加入链转移剂或终止剂(XA)终止
是阳离子聚合的主要终止方式 链终止剂 XA 主要有: 水、醇、酸、酐、酯、醚、胺

自发终止或向反离子转移终止
增长链重排导致活性链终止,再生出引发剂-共 引发剂络合物
CH H CH
2 3
CH n CH 2 C
3
C CH
CH
3
(BF OH)
3 3
CH
CH
3
3 2
H CH
2
C CH
3
n
CH 2 C CH
+
H (BF OH)
3
反应通式:
HM nM (CR)
kt
M n+1 +
H (CR)
离 子 聚 合
5
5.1 引言

离子聚合的理论研究开始于五十年代
1953年,Ziegler在常温低压下制得PE 1956年,Szwarc发现了“活性聚合物”


离子聚合有别于自由基聚合的特点:
根本区别在于聚合活性种不同 离子聚合的活性种是带电荷的离子:
通常是 碳阳离子 碳阴离子

离子聚合对单体有较高的选择性
共引发剂的活性视引发剂不同而不同
如异丁烯聚合,BF3为引发剂,共引发剂的活性: 水 :乙酸 :甲醇= 50 :1. 5 :1
对于多数聚合,引发剂与共引发剂有一最佳比, 在此条件下,Rp最快,分子量最大
原因:

过量的共引发剂,如水是链转移剂,使链终止,分 子量降低
CH 3 CH 3 + H 2O CH
CH
2
CH N
+ TCEБайду номын сангаас
[电荷转移络合物]
TCE
CH
CH
2
3 阳离子聚合机理

N
链引发
以引发剂Lewis酸(C)和共引发剂(RH)为例
C + H (CR) RH + M
K
H (CR)
ki
HM (CR)
若是第一步是速率控制反应,则引发速率为
Ri = ki [C] [RH] 此时,引发速率与单体浓度无关 若第二步是速率控制反应

质子对碳-碳双键有较强的亲合力 增长反应比其它副反应快,即生成的碳阳离子有 适当的稳定性

对单体种类进行讨论 (可由热焓-△H判断):

-烯烃
CH2 CH2
CH2
CH CH3
CH2
CH C 2 H5
-△H( kJ/mol) 640 无取代基,不易 极化,对质子亲 和力小,不能发 生阳离子聚合
对特定的反应条件: 苯乙烯-SnCl4体系,终止反应是向反离子转 移(自发终止) 动力学方程可参照自由基聚合来推导
动力学方程
引发:
Ri = ki [H (CR) ] [M]
R i = K k i [C] [RH] [M ]
引发剂引 发生成碳 阳离子的 反是控制 速率反应
增长 终止
R p = k p [HM (CR) ] [M]

聚合度

自发终止为主要终止方式时
Xn = RP Rt = k p [HM (CR) ] [M ] k t [HM (CR) ] = kP kt [M ]

向单体链转移为主要终止方式时
R
P
Xn =

R
=
k [HM (CR) ] p
[M] =
k k
P
=
1 C
M
tr,M
k tr,m [HM (CR) ] [M]

H A
CH3 CH A X

条件

酸要有足够的强度产生H+,故弱酸不行 酸根的亲核性不能太强,否则会与活性中 心结合成共价键而终止,如
A CH3 CH A X

CH3
CH X
不同质子酸的酸根的亲核性不同

氢卤酸的X-亲核性太强,不能作为阳离子聚 合引发剂,如HCl引发异丁烯
(CH3) 3C Cl (CH3) 3C Cl
带有1,1-二烷基、烷氧基等推电子基的单体才能进 行阳离子聚合
具有腈基、羰基等强吸电子基的单体才能进行阴离 子聚合
羰基化合物、杂环化合物,大多属离子聚合

聚合机理和动力学研究不如自由基聚合成熟
聚合条件苛刻,微量杂质有极大影响,聚合重现性差
原因 聚合速率快,需低温聚合,给研究工作造成困难
反应介质的性质对反应也有极大的影响,影响因素 复杂
相关文档
最新文档