-二元一次方程教案
二元一次方程教案

二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
二元一次方程教案

二元一次方程教案教学目标:1. 理解二元一次方程的定义和性质。
2. 掌握解二元一次方程的方法。
3. 能够应用二元一次方程解决生活中的实际问题。
教学重点:1. 解二元一次方程。
2. 运用解二元一次方程解决实际问题。
教学难点:运用解二元一次方程解决实际问题。
教学准备:1. 教师准备演示材料,包括黑板或白板、彩色粉笔或白板笔。
2. 学生准备纸和笔。
教学过程:Step 1:引入讨论教师可以通过提问的方式引导学生思考:什么是二元一次方程?有什么特点?我们能够应用它解决哪些问题?Step 2:解二元一次方程1. 观察和分析给定的二元一次方程。
2. 使用“消元法”或“代入法”解决方程,得到解集。
3. 检验解集是否满足原方程。
Step 3:应用解二元一次方程解决实际问题教师出示或讲解一些实际生活中涉及到二元一次方程的问题,如两个人的年龄、两个商品的价格等等。
学生可以运用所学的解二元一次方程的方法解决这些问题。
Step 4:巩固练习教师布置一些练习题,让学生独立或小组完成,并核对答案。
可以将解题过程和答案展示在黑板或白板上,便于学生理解和学习。
Step 5:总结与评价教师与学生一起总结解二元一次方程的要点和方法,并对学生的学习进行评价和反馈。
Step 6:拓展延伸教师可以提供更多的实际问题,让学生运用解二元一次方程的方法解决,进一步巩固和应用所学知识。
教学结束提示:为了让学生更好地理解和应用解二元一次方程的方法,教师可以设计一些实际例题,让学生进行解答和思考。
同时,鼓励学生多加练习,提高解问题的能力。
七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。
二元一次方程大班教案

二元一次方程大班教案教学目标:1. 理解二元一次方程的概念和表示方法;2. 学会解二元一次方程;3. 能够应用解二元一次方程解决实际问题。
教学准备:1. 教师准备PPT或者黑板,用于呈现教学内容;2. 教师准备练习题,用于学生课堂练习。
教学过程:一、导入(5分钟)1. 教师通过提问的方式,复习一元一次方程的知识点,引导学生回忆并巩固已学内容;2. 教师介绍二元一次方程的概念,并与一元一次方程进行对比,激发学生的学习兴趣。
二、概念解释与示例(10分钟)1. 教师以具体的例子说明二元一次方程的表示方法,例如:2x + 3y = 8;2. 教师解释方程中的未知数、系数及常数项的意义;3. 教师给出几个实际问题,引导学生将问题转化为二元一次方程,并解释方程的含义。
三、解二元一次方程的方法(15分钟)1. 教师介绍两种解二元一次方程的方法:代入法和消元法;2. 教师以示例详细讲解代入法和消元法的步骤和注意事项;3. 教师鼓励学生多思考、多练习,熟练掌握解二元一次方程的方法。
四、课堂练习(15分钟)1. 教师出示多个二元一次方程的实际问题,让学生运用所学知识解题;2. 学生独立完成练习题,教师巡视并指导学生的解题思路;3. 教师选取几道典型题目,与学生一起讨论解题过程。
五、实际应用(10分钟)1. 教师以实际生活中的应用问题,如购买文具、购买食物等,引导学生运用所学知识解决问题;2. 学生积极参与,提出解题思路和答案,教师引导学生深入思考并给予认可。
六、拓展延伸(10分钟)1. 教师介绍更高级的二元一次方程,如含参数的二元一次方程等;2. 学生思考高级问题,并与同学一起合作解决;3. 教师提供实际生活中更复杂的二元一次方程问题,并鼓励学生尝试解决。
七、总结归纳(5分钟)1. 教师带领学生总结本节课学到的知识要点,并进行复习;2. 学生积极回答教师提问,巩固所学内容;3. 教师对学生的学习表现给予肯定和鼓励。
二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
初中二元一次方程数学教案三篇

【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
二元一次方程公开课教案(精选6篇)

二元一次方程公开课教案(精选6篇)七年级数学教案篇一一、目标1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)2.教师揭示以上这些工作实际上是在进行整式的加减运算3.回顾以上过程思考:整式的加减运算要进行哪些工作?生1:“去括号”生2:“合并同类项”师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,二、揭示如何进行整式的加减运算1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二例2 求2a2-4a+1与-3a2+2a-5的差。
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)解:(2a2-4a+1)-(-3a2+2a-5)=2a2-4a+1+3a2-2a+5=5a2-6a+63.拓展练习(1)求多项式2x -3 +7与6x -5 -2的和。
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)(2)(-3x2 –x +2)+(4x2 +3x -5)(3)(4a2 -3a )+(2a2 +a -1)(4)(x2 +5x –2 )-(x2 +3x -22)(5)2(1-a +a2)-3(2-a –a2)4.教学例3先化简下式,再求值:(做此类题目应先与学生一起探讨一般步骤:(1)去括号。
(2)合并同类项。
(3)代值)解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3=15a2b –5ab2+4ab2 -12a2b)=3a2b –ab2三、小结1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.进行化简求值计算时(1)去括号。
(2)合并同类项。
(3)代值3.通过本节课的学习你还有哪些疑问?四、布置作业习题4.5 2. (3);4. (2);5.。
五、课后反思省略元一次方程组篇二第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
苏科版七年级数学下册《二元一次方程》教案及教学反思

苏科版七年级数学下册《二元一次方程》教案及教学反思一、教学目的1.掌握二元一次方程的定义、解法和应用。
2.把握二元一次方程解法的几何意义。
3.培养解决实际问题的能力。
二、教学重点和难点1.解二元一次方程的方法和步骤。
2.把握二元一次方程解法的几何意义。
三、教学内容及教学过程1. 二元一次方程的定义和解法二元一次方程是指如下形式的方程:$$ \\begin{cases} ax+by=c\\\\ dx+ey=f \\end{cases} $$其中a,b,c,d,e,f是已知常数,x,y是未知数。
解法:方法一:消元法用一个方程的系数消去另一个方程中相同的未知数,得到一个一元一次方程。
方法二:代入法从一个方程中解出一个未知数,代入另一个方程中,得到一个一元一次方程。
2. 二元一次方程的几何意义二元一次方程可以用几何方法解释。
它表示平面上经过两个点(x,y1)和(x2,y2)的直线方程,即:1$$(y-y_1)\\div(y_2-y_1)=(x-x_1)\\div(x_2-x_1)$$我们可以把这个方程变形为:$$y = \\dfrac{(x_2-x_1)y_1+(x_1-x_2)y_2+x_1y_2-x_2y_1}{x_1-x_2}+ \\dfrac{(y_2-y_1)}{x_1-x_2}x$$它的几何意义是两点间的连线就是要求的直线。
3. 二元一次方程的应用其中一个应用是解一个生活中实际问题。
例如:“一家从事饲养鸡和鸭的农场,鸡的收入为每只 4 元,鸭的收入为每只 8 元,若该农场共出售了 10 只鸡和 8 只鸭,总收入为60 元。
问其中每种动物出售了多少只。
”设鸡的数量为x,鸭的数量为y,则可以得到方程组:$$\\begin{cases} 4x + 8y = 60 \\\\ x + y = 18\\end{cases}$$上述方程组的解为:x=10,y=8,即该农场出售了 10 只鸡和 8 只鸭。
四、教学反思在教学过程中,应该把握好难点,让学生理解二元一次方程解法的几何意义,并能够灵活运用各种解法解决实际问题。
第五章二元一次方程组-二元一次方程组的应用(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题,如购物时如何根据预算和单价计算购买数量等。
五、教学反思
在今天的课堂上,我们探讨了第五章“二元一次方程组-二元一次方程组的应用”。回顾整个教学过程,我认为有几个方面值得反思。
首先,我发现同学们在理解二元一次方程组的应用时,普遍对如何从实际问题中抽象出方程组感到困惑。在今后的教学中,我需要更加注重引导学生学会从问题中提取关键信息,培养他们的数学建模能力。
第五章二元一次方程组-二元一次方程组的应用(教案)
一、教学内容
第五章二元一次方程组-二元一次方程组的应用
1.教材章节:本节课主要基于第五章“二元一次方程组”中的第三节“二元一次方程组的应用”进行教学设计。
2.内容列举:
(1)理解并掌握二元一次方程组在现实生活中的应用;
(2)学会利用二元一次方程组解决实际问题,如速度与时间、成本与数量、面积与周长等问题;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二元一次方程组的基本概念。二元一次方程组是由两个含有两个未知数的一次方程组成的,它能够描述许多现实生活中的问题。掌握二元一次方程组不仅可以帮助我们解决实际问题,还能提高我们的逻辑思维能力。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小华同时从A、B两地出发,相向而行,经过2小时相遇。我们可以通过建立二元一次方程组来求解他们各自的速度和行驶的距离。
三、教学难点与重点
1.教学重点
二元一次方程公开课教案【优秀8篇】

二元一次方程公开课教案【优秀8篇】教学建议这次帅气的为您整理了8篇《二元一次方程公开课教案》,希望可以启发、帮助到大朋友、小朋友们。
元一次方程教学设计篇一一、教材分析《·》本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。
学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。
接着完成配套的3个习题,强化训练。
《二元一次方程》教案-叶枝梅

问题2:在一块宽20m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为570m2,问小路的宽应为多少?
第一种解法讲完之后,教师启发学生思考,是否还有其他解法?
通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.
复习一元一次方程的概念和一般形式,为后面学习一元二次方程的有关内容做好铺垫.
设计简单练习题以理解一元二次方程的概念。
此题为一元二次方程概念中常见题型,通过此题让学生加深对定义和一般形式的理解,为其他字母系数问题做好准备。
32×20-(32x+2×20x-2x2)=570
整理得x2-36x+35=0
谁还能换一种思路考虑这个问题?
把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?
(32-2x)(20-x)=570
整理得x2-36x+35=0…………②
比较一下,哪种方法更巧妙?
学生回顾一元一次方程的有关概念,从而更好地掌握一元二次方程的概念。
三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)
1、授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,注重课堂教学的有效性。
3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法。
(2)2007年蔬菜的产量比2005年增加了2x,对吗?为什么?你能用代数式表示出来吗?
二元一次方程教案15篇

二元一次方程教案15篇二元一次方程教案1一、教材分析本节内容共安排2个课时完成。
该节内容是二元一次方程(组)与一次函数及其图像的综合应用。
通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。
本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.二、学情分析学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.三、目标分析1.教学目标知识与技能目标(1) 初步理解二元一次方程和一次函数的关系;(2) 掌握二元一次方程组和对应的两条直线之间的关系;(3) 掌握二元一次方程组的图像解法.过程与方法目标(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.(3) 情感与态度目标(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.2.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.3.教学难点数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.第一环节: 设置问题情境,启发引导内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节自主探索方程组的解与图像之间的关系内容:1.解方程组2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的'交点坐标打下基础.效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.第三环节典型例题探究方程与函数的相互转化内容:例1 用作图像的方法解方程组例2 如图,直线与的交点坐标是 .意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.第四环节反馈练习内容:1.已知一次函数与的图像的交点为 ,则 .2.已知一次函数与的图像都经过点A(2,0),且与轴分别交于B,C两点,则的面积为( ).(A)4 (B)5 (C)6 (D)73.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?意图:4个练习,意在及时检测学生对本节知识的掌握情况.效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.第五环节课堂小结内容:以问题串的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.第六环节作业布置习题7.7附:板书设计六、教学反思本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.二元一次方程教案2知识与技能(1) 初步理解二元一次方程和一次函数的关系;(2) 掌握二元一次方程组和对应的两条直线之间的关系;(3) 掌握二元一次方程组的图像解法.过程与方法(1) 教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.情感与态度(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.教学难点数形结合和数学转化的思想意识.教学准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.教学过程第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)内容:1.解方程组2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的'解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.第三环节典型例题 (10分钟,学生独立解决)探究方程与函数的相互转化内容:例1 用作图像的方法解方程组例2 如图,直线与的交点坐标是 .第四环节反馈练习(10分钟,学生解决全班交流)内容:1.已知一次函数与的图像的交点为 ,则 .2.已知一次函数与的图像都经过点A(—2, 0),且与轴分别交于B,C两点,则的面积为.(A)4 (B)5 (C)6 (D)73.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?第五环节课堂小结(5分钟,师生共同总结)内容:以“问题串”的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.第六环节作业布置习题7.7A组(优等生)1、 2、3 B组(中等生)1、2 C组1、2二元一次方程教案3教学目标1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析教学难点用方程组刻画和解决实际问题的过程。
二元一次方程的应用教案

二元一次方程的应用教案
二元一次方程是初中阶段数学中的重要内容,它在现实生活中有着广泛的应用。
设计一堂关于二元一次方程应用的教案需要考虑到学生的实际水平和兴趣,同时要注重培养学生的实际问题解决能力。
以下是一个可能的教案设计:
第一步,导入。
教师可以通过提出一个实际问题引入二元一次方程的概念,比如某商场举办促销活动,购买两种商品A和B的总价是100元,已知商品A的价格是商品B的2倍,让学生思考如何利用方程解决这个问题。
第二步,概念讲解。
在学生对实际问题有了一定的认识后,教师可以引入二元一次方程的概念,解释方程中的系数、常数项以及未知数的含义,并通过实际例子让学生理解方程的表示方法。
第三步,示范案例。
教师可以通过几个具体的案例,比如两个未知数的加减法方程和乘法方程,让学生跟随教师的指导一起解决问题,加深学生对二元一次方程的理解。
第四步,小组讨论。
让学生分成小组,提供一些实际问题,让他们应用所学的二元一次方程知识解决问题,鼓励他们在小组内进行讨论和合作,培养学生的团队合作精神。
第五步,展示和总结。
让每个小组展示他们解决问题的方法和答案,教师进行点评和总结,引导学生总结归纳二元一次方程的应用方法和技巧。
通过以上教学设计,学生不仅可以掌握二元一次方程的基本概念和解题方法,还能够在实际问题中灵活运用所学知识,培养学生的数学建模能力和解决实际问题的能力。
同时,教师在教学中要注重引导学生思考、讨论和合作,营造积极的学习氛围,激发学生学习数学的兴趣。
数学教案-二元一次方程与一次函数(优秀6篇)

数学教案-二元一次方程与一次函数(优秀6篇)元一次方程教案篇一一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2.由上题可知一元二次方程的系数与根有着密切的关系。
其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。
)(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1?x2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0 (2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x=3(5)x2-1=0 (6)x2-2x+1=0例2 不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3 已知一元二次方程的`两个根是-1和2,请你写出一个符合条件的方程。
初中数学二元一次方程精品教案

初中数学二元一次方程精品教案二元一次方程教学目标:一、知识与技能目标:1.理解二元一次方程的定义;2.能够准确叙述二元一次方程解的概念;3.能熟练求出二元一次方程的一个解。
二、过程与方法目标:通过探索二元一次方程的解的过程,培养学生的数学交流和归纳猜想的能力。
三、情感态度与价值观目标:体会到数学推理的奥妙,能用数学知识解决实际问题。
重点:1.探索二元一次方程的解的过程;2.利用一元一次方程求解的方法求二元一次方程的一个解。
难点:二元一次方程的解的求解。
教学过程:一、课前回顾在前面的研究中,我们已经了解了一元一次方程的概念,包括定义和相关概念。
请大家回忆一下相关知识。
一元一次方程是指“含有一个未知数,并且未知数的项的次数为一次的方程”。
例如“x=3x、2x=6x-1、9x-6=2x”都是一元一次方程,特别注意的是这里的一元是指含有一个未知数,一次是指未知数的次数为一次。
那么如果含有两个未知数,那么我们应该如何处理呢?在本节课中,我们将进一步研究有两个未知数的方程的相关知识。
二、活动探究在高速公路上,一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程多20千米。
设轿车的速度为a千米/时,卡车的速度为b千米/时,可列方程:2a = 3b + 20.1)这是一元一次方程吗?2)一元一次方程是怎样的?3)你觉得这个方程应该叫什么?探究结果:请阅读教材第32页,与你的答案有何不同?三、课堂练通过课堂练,巩固概念,介绍二元一次方程解的概念。
归纳:1)解的形式(成对出现);2)一般情况下,二元一次方程的解有无数个。
三、例题讲解归纳:提问:根据表格,你能写出该方程的一个解吗?例2:已知方程3x+2y=10.1)用关于x的代数式表示y。
2)求当x=-2,0,3时对应的y值,并写出3x+2y=10的三个解。
分析:要用关于x的代数式表示y,只要把3x+2y=10看做未知数是y的一元一次方程。
解:1)移项,得2y=10-3x。
二元一次方程组的数学教案最新9篇

二元一次方程组的数学教案最新9篇公式法解二元一次方程教案篇一一。
教学目标(一)教学知识点1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二。
教学重点1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三。
教学难点1、消元的思想。
2、化未知为已知的化归思想。
四。
教学方法启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。
二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五。
教具准备投影片两张:第一张:例题(记作7.2A);第二张:问题串(记作7.2B)。
六。
教学过程Ⅰ。
提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。
所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。
我们知道二元一次方程的解有无数个。
难道我们每个方程组的解都去这样试?[生]太麻烦啦。
[生]不可能。
[师]这就需要我们学习二元一次方程组的解法。
Ⅰ。
讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:5x+3(8-x)=34解得x=5将x=5代入8-x=8-5=3答:成人去了5个,儿童去了3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、教学重点:二元一次方程及其解的概念
教学难点:(1)用列表法求二元一次方程的解
(2)把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形成,其实质是解一个含有字母系数的方程,是难点。
3、教学方法:启发式讲授法、合作探究法
[能力目标]
(1)经历分析实际问题中数量关系的过程,体会二元一次方程是刻画现实世界的有效教学模型,增强学生的教学应用意识和能力。
(2)经历用尝试的方法探索二元一次方程的解,并了解解的不唯一性,并体会方法的多样性。
(3)使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式。
[情感目标]
x
5
y
10
某球员在一场篮球比赛中共得35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?你能列出方程吗?
2、请你也设计一张表格,列出这名球员投中的两分球和三分球的各种可能情况。并请回答下列问题:
(1)这名球员最多投中了多少个三分球?
(2)这名球员最多投中了多少个球?
(3)如果这名球员投中了10个球,那么他投中了几个两分球?几个三分球?
1、方程mx-2y=x+5是二元一次方程时,m的取值为()
A、m≠0ﻩﻩﻩB、m≠1C、m≠-1ﻩﻩD、m≠2
2、方程 的公共解是()
A、 B、 C、 D、
3、若 , 的符号为()
A、 同号B、 异号C、 可能同号可能异号D、
4、二元一次方程2x+y= 5中,当x=2时,y=;
5、把二元一次方程 写成用含x的代数式表示y的形式是
(1)列出关于x、y的二元一次方程;
(2)如果x=12,求y的值;
(3)请将关于x、y的二元一次方程写成用含x的代数式表示y的形式
7、探究:根据下列语句,分别设适当的未知数,列出二元一次方程:一个长方形的周长是20cm,求这个长方形的长和宽.
8、巩固练习
(1)判断下列方程哪些是二元一次方程,哪些不是?
巩固练习,拓展思维
例1:下列方程中,哪些是二元一次方程?不是的说明理由.
(3)3pq=-8(4)2y2-6y=1
.-二元一次方程教案
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
10.1二元一次方程
学习目标1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效的数学模型。
2、了解二元一次方程的概念,并会判断一组数是否是某个二元一次方程的解。
6、已知方程 是二元一次方程,则m=_____;n=______.
7、方程 的非正整数解有组,分别为。
8、写出一个二元一次方程,使其满足 的系数是大于2的自然数, 的系数是小于-3的整数,且 是它的一个解。。
9、校初一年级200名学生参加期中考试,数学成绩情况如下表,问这次考试中及格和不及格的人数各是多少人?(只列方程)
教师追问:我们知道,每取一个x,就有一个y相对应;反之,若先确定y,x能否确定?
情景二:
一球员在一场篮球比赛中共得35分(其中罚球得10分),问他分别投中了多少个两分球和三分球?
请你设计一张表格,列出这名球员投中的两分球和三分球的各种可能情况。
根据你所列的表格,回答下列问题:
(1)这名球员最多投中了多少个三分球?
① 6x+3y=4z②7xy+y=9 ③2x+y+1 ④ 2(x+y)= 8-x
(2)把下列方程写成用含x的代数式表示y的形式
①2x+y=10②x+y=20③2x+3y=12
三、归纳总结:
1、体会方程是刻画现实世界的有效的数学模型。
2、掌握二元一次方程的概念及二元一次方程解的写法。
【课后作业】
班级姓名学号
(1)列出关于x,y的二元一次方程.
(2)如果x=5,那么y的值是多少?
(3)如果乙种铅笔买了10枝,那么甲种铅笔买了多少枝?
10.1 二元一次方程
1、教学目标
[知识目标]
(1)使学生了解二元一次方程的概念;
(2)了解二元一次方程的解的概念和解的不唯一性,会判断一对数值是否为某二元一次方程的解;
(3)会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
4、提问方程2x+y=20和2x+3y=25有哪些共同得特点?
5、概括总结:
像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
适合二元一次方程的一对未知数的值称为这个二元一次方程的一个解。
记作:
6、典型例题:
例1甲种物品每个4kg,乙种物品每个7kg.现有甲种物品x个,乙种物品y个,共76kg .
平均分
及格学生
87
不及格学生
43
初一年级
76
ﻫ10、如图,等腰三角形ABC,AB=x,BC=y,周长为12.
(1)列出关于x、y的二元一次方程
(2)求该方程的所有整数解。
11、已知 是方程2x+3y=5的一
个解,求a的值.
12、甲种铅笔每枝0.2元,乙种铅笔每枝0.5元,现在某人买了x枝甲种铅笔,y枝乙种铅笔,共花了7元.
4、教学过程
教师活动
学生活动
设计意图
情景一:
根据篮球比赛规则:赢一场得2分,输一场得1分,在一次中学生篮球联赛中,一支球队赛完若干场后得20分。问该队赢多少场?输多少场?
师(故作聪明状):哇,太简单了!x=5,y=10呗!
师点拨:用表格的方法列出输赢的所有可能情况。
思考:(1)你是怎样列表的?
(2)填表过程中有什么发现?
学习难点判断一组数是否是某个二元一次方程的解。
教学过程
一、情境引入:
根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少 场?输了多少场?
这可以转化为数学上的问题,设该队赢了x场,输了y场,那么2x+y=20
二、探究学习:
1、你能说出输赢的所有可能情况吗?
(2)这名球员最多投中了多少个球? Nhomakorabea(3)如果这名球员投中了10个球,那么他投中了几个两分球?几个三分球?
回顾旧知,学习新课:
一元一次方程的概念及一元一次方程解的概念。
2x+y=20,2x+3y=25是什么方程?这两个方程有哪些共同的特点?
二元一次方程的概念
二元一次方程解的概念
解的表示方法:
记作:
师追问:(1)一个二元一次方程有多少个解?(2)在上述两个具体情境中呢?