第四章 稳定性与李雅普诺夫方法汇总
合集下载
现代控制理论-4-控制系统的稳定性分析
2、内部稳定性:指系统在零输入条件下通过其内部状态变化 所定义的内部稳定性。状态稳定。
外部稳定性只适用于线性系统,内部稳定性不但适用于线性系 统,而且也适用于非线性系统。对于同一个线性系统,只有在 满足一定的条件下两种定义才具有等价性。
不管哪一种稳定性,稳定性是系统本身的一种特性,只和系统 本身的结构和参数有关,与输入-输出无关。
V ( x)半负定
同时有
& V
(
x
)
-
2
x22
不可能恒为零。
由判据2可知,系统在原点处的平衡状态是渐近稳定的。
27
4.5 李雅普诺夫方法 在线性系统中的应用
28
一、线性定常连续系统的稳定性分析
目的:将李氏第二法定理来分析线性定常系统 x& Ax 的稳定性
讨论:V选&(x择) 二(x次T P型x)函 x&数T PVx +(xx)TPxx& TP(xAx为)T P李x +氏x函T PA数x。
如果d 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
10
3、大范围渐近稳定
如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
- xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
(2) 求系统的特征方程:
det(lI
-
A)
l
- 1
求得: l1 2,l2 -3
外部稳定性只适用于线性系统,内部稳定性不但适用于线性系 统,而且也适用于非线性系统。对于同一个线性系统,只有在 满足一定的条件下两种定义才具有等价性。
不管哪一种稳定性,稳定性是系统本身的一种特性,只和系统 本身的结构和参数有关,与输入-输出无关。
V ( x)半负定
同时有
& V
(
x
)
-
2
x22
不可能恒为零。
由判据2可知,系统在原点处的平衡状态是渐近稳定的。
27
4.5 李雅普诺夫方法 在线性系统中的应用
28
一、线性定常连续系统的稳定性分析
目的:将李氏第二法定理来分析线性定常系统 x& Ax 的稳定性
讨论:V选&(x择) 二(x次T P型x)函 x&数T PVx +(xx)TPxx& TP(xAx为)T P李x +氏x函T PA数x。
如果d 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
10
3、大范围渐近稳定
如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
- xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
(2) 求系统的特征方程:
det(lI
-
A)
l
- 1
求得: l1 2,l2 -3
第四章(稳定性与李雅普诺夫方法)
1、构造Liaponov 函数没有确定的方法,要求一定的技巧,一般 用于非线性系统或时变系统; 2、必须是稳定性判据的标量函数,且有一阶连续偏导; 3、非唯一但不影响结论的正确性; 4、最简单的形式为二次型。
§4.4 Liaponov 方法在系统中的应用
一、线性定常连续系统渐近稳定判据 1、判据 的平衡状态xe =0 大范围渐进稳定充要条件是: 对于任意给定的正定实对称矩阵Q,存在正定的实对称矩阵P,满足 Liaponov方程: T
1、 Liyaponov意义下的稳定
0, ( , t 0 ) 0, s.t. if || x 0 x e || ( , t 0 ) || (t , x 0 , t 0 ) x e || then其解 (t 0 t )
称平衡状态xe为 Liyaponov意义下的稳定,简称稳定。
V (x) x T Px [ x1
x2
如果 pij =
p ji ,则称P
为实对称阵。例如
1 1 0 P 1 1 0 0 0 1
P为实对称阵,存在正交阵T,使当
V ( x) x Px x T PTx x T
T T T T 1
X T X
___
2 1 2 2 1 2 2 1 2 2 2 1 2
2
1
2
[例4-3]
判别下列各函数的符号性质.
(1)设 x x1
x2
x3
T
标量函数为
2 V ( x) ( x1 x2 )2 x3
因为有V(0)=0,而且对非零x,例如 x 所以V(x)为半正定(或非负定)的. (2)设
a a 0
设V(x)为由n维矢量x所定义的标量函数,x∈Ω,且x=0处,恒有 V(x)=0。对所有在域Ω中的任何非零矢量x,如果成立 ①V(x)>0,则称V(x)为正定的.例如,V (x) x 2x V ( x) ( x x ) ②V(x)≥0,则称V(x)为半正定(或非负定)的.例如, ③V(x)<0,则称V(x)为负定的.例如,V (x) (x 2x ) ④V(x)≤0,则称V(x)为半负定的.例如,V ( x) ( x x ) ⑤V(x)>0或V(x)<0,则称V(x)为不定的.例如, V ( x) x x
第4章+稳定性与李雅普诺夫方法
若 xe 的稳定性(渐近稳定)不依赖于t0 ,则称其为 一致稳定(渐近稳定)。
图(a)、(b)、(c)分别表示平衡状态为稳定、 渐近稳定和不稳定时初始扰动所引起的典型轨迹。
4.2 李雅普诺夫第一法
李雅普诺夫第一法又称间接法。他的基本思路是通过系统状态方程的解来 判断系统的稳定性。
一、线性系统的稳定性判据
其传递函数的极点为: s1 1,s2 1
有极点在s平面的左半平面,所以系统的状态不是渐进稳定的。
(2)由输出传递函数
Wuy (s) C(sI A)1 B 1
0
s
0
1
0 1 1
(s 1)
1
s 1 1 (s 1)(s 1) (s 1)
f1 f1
x1
x2
f x
f2
x1
f2 x2
f1
xn
f2
xn
f x
称为雅克比矩阵。
fn
fn
x1 x2
fn
xn nn
若令 x x xe ,忽略高阶项,可得系统的线性化方程:
的。 (3) V (x) 0 ,则称 V (x) 为负定的。例如: (4) V (x) 0 ,则称 V (x) 为半负定(或非正定)
的。 (5)V (x) 0 或 V (x) 0 ,则称 V (x) 为不定的。
例
1) V (x) x12 x22 正定的
2) V (x) (x1 x2 )2 半正定的
1 0 1
x
0
第四章稳定性与李雅普诺夫方法
平衡状态的定义:若对所有t,状态x满足
x0 ,
则称该状态x为平衡状态,记为:x e ,满足下式:
第四章 稳定性与李雅普诺夫方法
x f ( xe , t ) ,平衡状态的各分量相对时间不再发生
变化。由平衡状态在状态空间确定的点,称为平 衡点。 平衡状态的求法: 线性定常系统 x Ax 的平衡状态 a.线性系统
x e 应满足 Ax 0 。
x Ax
xR
n
0 xe 0 A奇异:Axe 0 有无穷多个 xe
A非奇异:Axe
第四章 稳定性与李雅普诺夫方法
b.非线性系统
x f ( xe , t ) 0 可能有多个 xe
eg.
x1 x1
3 x2 x1 x2 x2
yi (t ) mi , i 1,2,, n,0 mi , t 0
第四章 稳定性与李雅普诺夫方法
对于多输入—多输出系统来说,输入量u(t)和输 出量y(t)的有界涵义,可以等效地按其每个分量 值的模的有界性来表征,即若:
u(t ) u1 (t ), u2 (t ),, un (t )
y(t ) y1 (t ), y2 (t ),, yn (t )
则有界的涵义为
T
T
ui (t ) mi , i 1,2,, n,0 mi , t 0
yi (t ) m j , j 1,2,, n,0 m j , t 0
第四章 稳定性与李雅普诺夫方法
,若任意给定实数
0, ,都存在
( , t ) 0 ,使得: x0 xe ,从初始状态 x 0 出发的解
x(t , x0 , t0 )
x0 ,
则称该状态x为平衡状态,记为:x e ,满足下式:
第四章 稳定性与李雅普诺夫方法
x f ( xe , t ) ,平衡状态的各分量相对时间不再发生
变化。由平衡状态在状态空间确定的点,称为平 衡点。 平衡状态的求法: 线性定常系统 x Ax 的平衡状态 a.线性系统
x e 应满足 Ax 0 。
x Ax
xR
n
0 xe 0 A奇异:Axe 0 有无穷多个 xe
A非奇异:Axe
第四章 稳定性与李雅普诺夫方法
b.非线性系统
x f ( xe , t ) 0 可能有多个 xe
eg.
x1 x1
3 x2 x1 x2 x2
yi (t ) mi , i 1,2,, n,0 mi , t 0
第四章 稳定性与李雅普诺夫方法
对于多输入—多输出系统来说,输入量u(t)和输 出量y(t)的有界涵义,可以等效地按其每个分量 值的模的有界性来表征,即若:
u(t ) u1 (t ), u2 (t ),, un (t )
y(t ) y1 (t ), y2 (t ),, yn (t )
则有界的涵义为
T
T
ui (t ) mi , i 1,2,, n,0 mi , t 0
yi (t ) m j , j 1,2,, n,0 m j , t 0
第四章 稳定性与李雅普诺夫方法
,若任意给定实数
0, ,都存在
( , t ) 0 ,使得: x0 xe ,从初始状态 x 0 出发的解
x(t , x0 , t0 )
第4章 稳定性与李雅普诺夫方法
lim x xe
t
则称系统的平衡状态xe渐近稳定的。
4.1 李雅普诺夫关于稳定性的定义
第二种:渐近稳定 x2 S( )
经典 理论 中的 稳定 就是 这里 所说 的渐 近稳 定
S( )
x0 xe x1
x
4.1 李雅普诺夫关于稳定性的定义
第三种:大范围渐近稳定
定义: 如果系统 x f ( x, t ) 对对整个状态空间中的任意初 始状态x0的每一个解,当t→,都收敛到xe,称系统的平 衡状态xe大范围渐近稳定。
RCx1 x1 0
电容器储存的电场能为
x1 (t ) x1 (0)e
2t
t RC
1 1 2 1 2 2 v( x ) CU c Cx1 Cx1 (0)e RC 0 2 2 2
v( x )
2 v( x ) 0 RC
4.3 李雅普诺夫第二法
3 几个稳定判据
4.2 李雅普诺夫第一法
4.2 李雅普诺夫第一法
绪论
本章结构 • 第4章 稳定性与李雅普诺夫方法
4.1 李雅普诺夫关于稳定性的定义 4.2 李雅普诺夫第一法 4.3 李雅普诺夫第二法 4.4 李雅普诺夫方法在线性系统中的应用 4.5 李雅普诺夫方法在非线性系统中的应用
4.3 李雅普诺夫第二法
f ( xe , t ) 0
由平衡状态xe在状态空间中所确定的点,称为平衡点
4.1 李雅普诺夫关于稳定性的定义
(1)平衡状态
4.1 李雅普诺夫关于稳定性的定义
(1)平衡状态
对于非线性系统,方程f ( xe,t) = 0的解可能有多个,即 可能有多个平衡状态。如
04第四章 李雅普诺夫稳定性理论汇总
系统不一定都存在平衡点; 但系统也可能有多个平衡点; 平衡点多数在状态空间的原点,可通过适当 的坐标变换移到原点(针对孤立平衡点);
(4)
稳定性问题都是相对于某个状态而言的,对 多平衡点问题需针对各状态讨论。
二、李雅普诺夫意义下的稳定性 f ( x, t )平衡状态xe的H邻域为 定义4-2:系统x x xe H , H 0, 为2范数(欧几里德范数 )
1982年,俄国学者李雅普诺夫提出的稳定性 定理采用了状态向量来描述,适用于单变量, 线性,非线性,定常,时变,多变量等系统。
应用:自适应,最优控制,非线性控制等。
主要内容:
李氏第一法(间接法):根据线性系统特征值 或极点来判别稳定性。若是非线性系统,需先 线性化。 李氏第二法(直接法):利用经验和技巧来构 造Lyapunov标量函数。
A非奇异: Axe 0 xe 0
解唯一,平衡 点只有一个
xe A奇异: Axe 0 有无穷多个
b. 非线性系统
f ( xe , t ) 0 可能有一个或多个 xe x
例:
1 x1 x 2 x1 x2 x x
3 2
令
1 0 x
Xe
说明:
(1) 若系统渐近稳定,则对于x’=Ax而言,A特征值 应均有负实部。
x(t ) e x0 e A B( )u( )d
At 0 t
(2) 若系统大范围渐近稳定,则其必要条件是在整个 状态空间中只有一个平衡点。
(3) 除非S ( )对应于整个状态平面 , 否则这些定义只能应用 于平衡状态的邻域。
即 x xe
第四章 稳定性与李雅普诺夫方法
26
李雅普诺夫第一法又称间接法。 它的基本思路是通过系统状态方程的解来判别系统的稳定性。 对于线性定常系统,解出特征方程的根即可作出稳定性判断。
对于非线性不很严重的系统,可通过线性化处理,取其一次近 似得到线性化方程,然后根据其特征根来判断系统的稳定性。
16.06.2020
27
一、线性系统的稳定判据(特征值判据)
当A为非奇异矩阵时,满足Axe0的解xe=0是系统唯一存在的一 个平衡状态。
而当A为奇异矩阵时,则系统将有无穷多个平衡状态。
16.06.2020
16
对非线性系统,通常可有一个或多个平衡状态。
x 1 x1 x2 x1 x2 x23
0
0
0
xe1 0 ,xe2 1 ,xe1 1
稳定性问题都是相对于某个平衡状态而言的。
第四章 稳定性与李雅普诺夫方法
16.06.2020
1
一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于 工程实施的。
系统的稳定性,表示系统在遭受外界绕扰动偏离原来的平衡状态, 而在扰动消失后,系统自身仍有能力恢复到原来平衡状态的一种 “顽性”。
可按两种方式来定义系统运动的稳定性:
通过输入―输出关系来表征的外部稳定性 通过零输入状态下的状态运动的响应来表征的内部稳定性
对于线性系统来说,由于满足叠加原理,如果平衡状态是渐近 稳定的,则必然是大范围渐近稳定的。
对于非线性系统,使xe为渐近稳定平衡状态的球域s()一般是不 大的,常称这种平衡状态为小范围渐近稳定。
16个实数>0和任一实数>0,不管这个实数多么小, 由s()内出发的状态轨线,至少有一个轨线越过s(),则称这种 平衡状态xe不稳定。
结论2:线性定常系统是BIBO稳定的,不能保证系统必是渐近稳 定的。
第4章稳定性与李雅普诺夫方法
21
4.3 李雅普诺夫第二法
3、希尔维斯特判据
设实对称阵
p11 p12
P
p21
p22
pn1
p1n
,
pij
p ji
pnn
i 为其各阶顺序主子式,即
1 p11 ,
2
p11 p21
p12 , p22
,n P
矩阵P或V(x)定号性的充要条件是:
22
4.3 李雅普诺夫第二法
(1)若 i 0 (i 1, 2, , n), 则 P 正定;
要条件是整个状态空间只有一个平衡点。
线性系统:渐近稳定 大范围渐近稳定 非线性系统:一般小范围渐近稳定
6
4. 不稳定
4.1.2 稳定性的几个定义
对于某个实数 和任意
,在超球域
内始终存在状态 ,使得从该状态开始的运动轨迹要 突破超球域 。
7
4.1.2 稳定性的几个定义
此三个图分别表示平衡状态为稳定、渐近稳定 和不稳定时初始扰动所引起的典型轨迹。
28
4.3 李雅普诺夫第二法
说明: (1)V (x) 0 ,则此时 V (x) C,系统轨迹将在某个曲面上,
而不能收敛于原点,因此不是渐近稳定。 (2)V (x)不恒等于0,说明轨迹在某个时刻与曲面 V (x) 相C 交,
但仍会收敛于原点,所以是渐近稳定。
x0
x0
(3)稳定判据只是充分条件而非必要条件!
于是知系统在原点处不稳定。
33
4.3 李雅普诺夫第二法
4.3.3 对李雅谱诺夫函数的讨论 (1) V(x)是正定的标量函数,V(x)具有一阶连续偏导数; (2)并不是对所有的系统都能找到V(x)来证明该系统稳定 或者不稳定; (3)V(x)如果能找到,一般是不唯一的,但关于稳定性的 结论是一致的;
4.3 李雅普诺夫第二法
3、希尔维斯特判据
设实对称阵
p11 p12
P
p21
p22
pn1
p1n
,
pij
p ji
pnn
i 为其各阶顺序主子式,即
1 p11 ,
2
p11 p21
p12 , p22
,n P
矩阵P或V(x)定号性的充要条件是:
22
4.3 李雅普诺夫第二法
(1)若 i 0 (i 1, 2, , n), 则 P 正定;
要条件是整个状态空间只有一个平衡点。
线性系统:渐近稳定 大范围渐近稳定 非线性系统:一般小范围渐近稳定
6
4. 不稳定
4.1.2 稳定性的几个定义
对于某个实数 和任意
,在超球域
内始终存在状态 ,使得从该状态开始的运动轨迹要 突破超球域 。
7
4.1.2 稳定性的几个定义
此三个图分别表示平衡状态为稳定、渐近稳定 和不稳定时初始扰动所引起的典型轨迹。
28
4.3 李雅普诺夫第二法
说明: (1)V (x) 0 ,则此时 V (x) C,系统轨迹将在某个曲面上,
而不能收敛于原点,因此不是渐近稳定。 (2)V (x)不恒等于0,说明轨迹在某个时刻与曲面 V (x) 相C 交,
但仍会收敛于原点,所以是渐近稳定。
x0
x0
(3)稳定判据只是充分条件而非必要条件!
于是知系统在原点处不稳定。
33
4.3 李雅普诺夫第二法
4.3.3 对李雅谱诺夫函数的讨论 (1) V(x)是正定的标量函数,V(x)具有一阶连续偏导数; (2)并不是对所有的系统都能找到V(x)来证明该系统稳定 或者不稳定; (3)V(x)如果能找到,一般是不唯一的,但关于稳定性的 结论是一致的;
稳定性与李雅普诺夫
1)V(x) > 0,则称V(x)为正定。例如V(x)=x12 +x22; 2)V(x) ≥ 0,则称V(x)为半正定(或非负定)。例如
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
现代控制理论第四章稳定性理论及Lyapunov方法
【解】(1) 平衡状态为: xe 0 0 T
构造李雅普诺夫函数 V (x) x12 x22 V (x) (2x12 6x22 ) 0
系统在平衡状态渐近稳定,并且 x ,V (x) ,是
大范围渐近稳定。
(2) 平衡状态为: xe 0 0 T
主要知识点: 1、 BIBO (有界输入有界输出)稳定的定义、定理。
§4-3 李雅普诺夫稳定性的概念
主要知识点:
1、系统状态的运动和平衡状态
2、李雅普诺夫意义下稳定、渐近稳定、全局渐近稳 定和不稳定的定义
§4-4 李雅普诺夫间接法(第一法)/线性化局部稳定 主要知识点: 1、线性系统的稳定性判别定理 2、内部稳定和外部稳定的关系 3、非线性系统线性化方法和稳定性判别定理(李雅普诺夫间 接法/第一法)
1 2
x1 x2
x14
x12
2
x22
2
x1
x2
0
V(x) 4x13x1 2x1 x1 4x2 x2 2x1 x2 2x1 x2 2(x14 x22) 0
因此系统在坐标原点是渐近稳定的,并且 x ,V (x) ,
1 0 0
19/ 78 10/ 39 1/ 2
由方程 GT PG P I 解出 P 10 / 39 49 / 78
19
/13 26
不定号,因此系统不渐近稳定。
实际上,该系统的特征值为0.1173+2.6974i, 0.1173-2.6974i, -1.2346都在单位圆外,系统是不稳定的。
试确定其平衡状态的稳定性。
【解】 系统平衡状态为: xe 0 0 T
现代控制理论_稳定性与李雅普诺夫方法汇总
状态稳定性
两个推论:
线性定常系统如果是状态稳定的,则系统一定 是输出稳定的 。
线性定常系统如果是输出稳定的,则系统未 必是状态稳定的。
参见例4.1
4.3 李雅普诺夫第二法 无需求解微分方程,直接判断系统稳定性。
系统运动需要能量。在非零初始状态作用下的运动过 程中,若能量随时间衰减以致最终消失,则系统迟早 会达到平衡状态,即系统渐近稳定。 反之,系统则不稳定。若能量在运动过程中不增不减, 则称为李雅普诺夫意义下的稳定。
mx kx
选
x
x1
x2
x
x
0 xe 0
状态方程
x1
x2
x2
k m
x1
系统能量 正定
能量不变 恒等于0
V
(x)
1 2
kx12
1 2
mx22
V (x) kx1x1 mx2x2 0
李雅普诺夫意义下的稳定
定理4
时变系统 x f (x,定t)常, t 系 t统0 :
x f (x), t 0
+
S
R
C
uc
E
解:选择电容电压uc为状态变量x1
RCx1 x1 0
t
x1(t) x1(0)e RC
V (x)
1 2
CU
2 c
1 2
Cx12
1 2
Cx12
(0)e
2t RC
0
V(x) 2 V (x) 0 RC
渐近稳定!
4.3.1 预备知识 1、标量函数的符号性质
在零平衡状态 xe 0的邻域内
仅有数学方程,没有物理意义的系统
虚构一个与时间有关的能量函数(李雅普诺夫
函数)V (x,t) ——标量函数。 求出能量随时间变化率 V(x,t)。
两个推论:
线性定常系统如果是状态稳定的,则系统一定 是输出稳定的 。
线性定常系统如果是输出稳定的,则系统未 必是状态稳定的。
参见例4.1
4.3 李雅普诺夫第二法 无需求解微分方程,直接判断系统稳定性。
系统运动需要能量。在非零初始状态作用下的运动过 程中,若能量随时间衰减以致最终消失,则系统迟早 会达到平衡状态,即系统渐近稳定。 反之,系统则不稳定。若能量在运动过程中不增不减, 则称为李雅普诺夫意义下的稳定。
mx kx
选
x
x1
x2
x
x
0 xe 0
状态方程
x1
x2
x2
k m
x1
系统能量 正定
能量不变 恒等于0
V
(x)
1 2
kx12
1 2
mx22
V (x) kx1x1 mx2x2 0
李雅普诺夫意义下的稳定
定理4
时变系统 x f (x,定t)常, t 系 t统0 :
x f (x), t 0
+
S
R
C
uc
E
解:选择电容电压uc为状态变量x1
RCx1 x1 0
t
x1(t) x1(0)e RC
V (x)
1 2
CU
2 c
1 2
Cx12
1 2
Cx12
(0)e
2t RC
0
V(x) 2 V (x) 0 RC
渐近稳定!
4.3.1 预备知识 1、标量函数的符号性质
在零平衡状态 xe 0的邻域内
仅有数学方程,没有物理意义的系统
虚构一个与时间有关的能量函数(李雅普诺夫
函数)V (x,t) ——标量函数。 求出能量随时间变化率 V(x,t)。
第4章 李雅普诺夫稳定性分析
t e
i
i t j i t
ˆ ) A , i ji i ( A i
(4 394)
2)结论2)证明
由式(4-390)可知,当且仅当‖eAt‖ 对一切 t≥0为有界,且当t→0时 ‖eAt‖ →0,零平衡状态 xe= 0 为渐近稳定。如上所证,当且仅当 A 的所有特征 值均具有负或零实部时,‖eÂt‖有界。又根据式(4-393)和式(4-394)可知 当且 t j t 0 t→0时‖eAt‖→0,这就等价于A的特征值均具 仅当t→∞时 t e ,可保证 有负实部。结论2)证毕。
t
则称此平衡状态是渐近稳定的。这时,从S(δ)出发的轨迹不仅不会超出 S(ε),且当t→∞时收敛于xe,显见经典控制理论中的稳定性定义与渐近稳定 性对应。
若δ 与t0无关,且上式的极限过程与t0无关,则称平衡状态是一致渐近 稳定的。 4 大范围(全局)渐近稳定性 当初始条件扩展至整个状态空间,且平衡状态均具有渐近稳定性时,称 此平衡状态是大范围渐近稳定的。此时,δ→∞,S(δ) →∞。当t→∞时,由状 态空间中任一点出发的轨迹都收敛于xe 。 对于严格线性的系统,如果它是渐近稳定的,必定是大范围渐近稳定, 这是因为线性系统的稳定性与初始条件的大小无关。而对于非线性系统来说, 其稳定性往往与初始条件大小密切相关,系统渐近稳定不一定是大范围渐近 稳定。
S ( ) x0
xe
xe
xe
x1
x1
x1
(a) 李雅普诺夫意义下的稳定性
(b) 渐近稳定性
(c) 不稳定性
4.2 李雅普诺夫第一法(间接法)
间 接 法:利用状态方程解的特性来判断系统稳定性的方法。 适应范围:线性定常系统、线性时变系统、非线性函数可线性化的系统。
第4章 稳定性和李雅普诺夫方法PPT学习课件
–定常系统 –时变系统 –非线性系统
,由V(x) 的符号判断
本章完
42
作业:P186 4-7 4-8 4-11
43
17
离散控制系统稳定的充分必要条件
s平面与z平面的映射关系
S平面
z平面
18
4.4.3 线性定常离散时间系统渐近稳定判据
定理:设线性定常离散时间系统的状态方程为:
(8)
则平衡状态
渐近稳定的充要条件为:G 的特征
根均在单位开圆盘内。
命题2:G Rnn 的所有特征根均在单位开圆盘内(模小于
1),等价于存在实对称矩阵P,使得 GT PG P 0 。
V(x) f T (x)[ J T (x) J (x)] f (x)
推论: 对于线性定常系统 x Ax ,若矩阵A非奇
异,且矩阵 AT A 0 为负定,则系统的平衡状态
xe 0 是大范围渐近稳定的,因为
V (x) f T (x) f (x) xT AT Ax Ax 2
0 0.5 p11
0.5
1
p12
p12 0
p22
0.5
0.5 1
p11 p12
p12 p22
1
0
0 1
由此解出
21
P
p11 p12
52
p12 p22
27 40
称矩阵P,使得 AT P PA 0 。
结论:任意给定实对称Q>0,若存在实对称P>0, 满足李雅
普诺夫方程 AT P PA Q, 则可取
,由V(x) 的符号判断
本章完
42
作业:P186 4-7 4-8 4-11
43
17
离散控制系统稳定的充分必要条件
s平面与z平面的映射关系
S平面
z平面
18
4.4.3 线性定常离散时间系统渐近稳定判据
定理:设线性定常离散时间系统的状态方程为:
(8)
则平衡状态
渐近稳定的充要条件为:G 的特征
根均在单位开圆盘内。
命题2:G Rnn 的所有特征根均在单位开圆盘内(模小于
1),等价于存在实对称矩阵P,使得 GT PG P 0 。
V(x) f T (x)[ J T (x) J (x)] f (x)
推论: 对于线性定常系统 x Ax ,若矩阵A非奇
异,且矩阵 AT A 0 为负定,则系统的平衡状态
xe 0 是大范围渐近稳定的,因为
V (x) f T (x) f (x) xT AT Ax Ax 2
0 0.5 p11
0.5
1
p12
p12 0
p22
0.5
0.5 1
p11 p12
p12 p22
1
0
0 1
由此解出
21
P
p11 p12
52
p12 p22
27 40
称矩阵P,使得 AT P PA 0 。
结论:任意给定实对称Q>0,若存在实对称P>0, 满足李雅
普诺夫方程 AT P PA Q, 则可取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/1/3
8
对于该式所描述的线性定常系统,其为渐近稳定的充分必要条 件是矩阵A的所有特征值均具有负实部,即:
Re{i ( A)} 0, i 1,2, n
其中n为系统的维数。 当矩阵A给定后,则一旦导出其特征多项式:
( s) det( sI A) s n an 1s n 1 a1s a0
2019/1/3
7
二、部稳定性
Ax Bu x y Cx Du x(0) x 0
如果外输入u(t)0,初始状态x0为任意,且由x0引起的零输入响 应(t;0, x0,0)满足关系式:
t
lim (t ;0, x 0 ,0) 0
则称系统是内部稳定的,或称为是渐近稳定的。
2019/1/3 3
本章重点讨论李雅普诺夫第二法。
它的特点是不求解系统方程,而是通过一个叫李雅普诺夫函数的 标量函数来直接判定系统的稳定性。
因此,它特别适用于那些难以求解的非线性系统和时变系统。 李雅普诺夫第二法除了用于对系统进行稳定性分析外,还可用于 对系统瞬态响应的质量进行评价以及求解参数最优化问题。 此外,在现代控制理论的许多方面,例如最优系统设计、最优 估值、最优滤波以及自适应控制系统设计等,李雅普诺夫理论 都有广泛的应用。
设所研究的齐次状态方程为:
f ( x, t ) x
f为与x同维的向量函数,是x的各元素x1,x2,,xn和时间t的函数。
2019/1/3
14
运动、状态轨线
设方程式在给定初始条件(t0,x0)下,有唯一解:
x (t ; x 0 , t 0 ) x 0 (t 0 ; x 0 , t 0 ) 表示x在初始时刻t0的状态。
2019/1/3
4
4.1
外部稳定性和内部 稳定性
2019/1/3
5
一、外部稳定性
考虑一个线性因果系统,如果对应于一个有界的输入u(t),即满足 条件:
u(t ) k1 , t t 0 ,
的输入u(t),所产生的输出y(t)也是有界的,即成立:
y(t ) k 2 , t t 0 ,
12
线性系统的稳定性只决定于系统的结构和参数,而与系统的初 始条件及外界扰动的大小无关。 非线性系统的稳定性则还与初始条件及外界扰动的大小有关。 因此在经典控制理论中没有给出稳定性的一般定义。 李雅普诺夫给出了对任何系统都普遍适用的稳定性的一般定义
2019/1/3
13
一、系统状态的运动及平衡状态
这是因为具有正实部的特征 值2=+1被系统的零点s=+1对 消了,所以在系统的输入输 出特性中没被表现出来。
det( I A) ( 1)( 1) 0
故系统不是内部稳定的。
11
可得特征值1=-1,2=+1。
2019/1/3
4.2 李雅普诺夫关于稳 定性的定义
2019/1/3
第四章
稳定性与李雅普诺夫方法
2019/1/3
1
一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于 工程实施的。
系统的稳定性,表示系统在遭受外界绕扰动偏离原来的平衡状态, 而在扰动消失后,系统自身仍有能力恢复到原来平衡状态的一种 “顽性”。
可按两种方式来定义系统运动的稳定性: 通过输入―输出关系来表征的外部稳定性 通过零输入状态下的状态运动的响应来表征的内部稳定性 只是在满足一定的条件时,系统的内部稳定性和外部稳定性之 间才存在等价关系。
x描述了系统在n维状态空间中从初始条件(t0,x0)出发的一条状 态运动的轨线,称系统的运动或状态轨线
那么就可利用劳斯-赫尔维茨判据,直接由特征多项式的系数 来判断系统的渐近稳定性。
2019/1/3
9
三、内部稳定性和外部稳定性间的关系
结论1:线性定常系统是内部稳定的,则其必是BIBO稳定的。
结论2:线性定常系统是BIBO稳定的,不能保证系统必是渐近稳 定的。 证:由系统结构的规范分解定理可知,通过引入线性非奇异变换, 可将系统分解为能控能观、能控不能观、不能控能观和不能控不 能观四个部分,而输入-输出特性只能反映系统的能控能观部分。 因此,系统的 BIBO稳定只是意味着其能控能观部分为渐近稳定, 它既不表明也不要求系统的其它部分是渐近稳定的。 结论3:如果线性定常系统为能控和能观的,则其内部稳定性与 外部稳定性必是等价的。
2019/1/3 10
举例
1 0 x x 1 0 y 1 0x 1 1u
分析系统的外部稳定性与内部稳定性
传递函数的极点s=-1位于s的 左半平面,故系统外部稳定。
1
W ( s ) c ( sI A) 1 b 0 1 s 1 1 0 1 0 s 1 s 1 1 ( s 1)( s 1) s 1
2019/1/3 2
在经典控制理论中,对于单输入单输出线性定常系统,应用劳 斯(Routh)判据和赫尔维茨(Hurwitz)判据等代数方法判定系统的 稳定性,非常方便有效。 至于频域中的奈奎斯特 (Nyquist) 判据则是更为通用的方法,它 不仅用于判定系统是否稳定,而且还指明改善系统稳定性的方 向。 上述方法都是以分析系统特征方程在根平面上根的分布为基础 的。但对于非线性和时变系统,这些判据不适用了。 早在1892年,俄国数学家李雅普诺夫就提出将判定系统稳定性 的问题归纳为两种方法:李雅普诺夫第一法和李雅普诺夫第二 法。 前者是通过求解系统微分方程,然后根据解的性质来判定系统 的稳定性。它的基本思想和分析方法与经典理论是一致的。
则称此因果系统是外部稳定的,也即是有界输入-有界输出稳 定的,并简称为BIBO稳定。
2019/1/3
6
在讨论外部稳定性时,必须假定系统的初始条件为零;
在这种假定下,系统的输入-输出描述才是唯一的和有意义的。
对于零初始条件的线性定常系统,G(s)为其传递函数阵,则系统 为BIBO稳定的充要条件是: 当G(s)为真的有理分式函数矩阵时,G(s)的每一个元传递函数的 所有极点均具有负实部。