伺服驱动系统选择与设计总结

合集下载

伺服控制系统(设计)

伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。

在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。

机械参数主要包括位移、角度、力、转矩、速度和加速度。

近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。

目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。

1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。

伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。

1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。

它由检测部份、误差放大部份、部份及被控对象组成。

1.1.3 伺服系统性能的基本要求1 )精度高。

伺服系统的精度是指输出量能复现出输入量的精确程度。

2 )稳定性好。

稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。

3 )快速响应。

响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。

4)调速范围宽。

调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。

5 )低速大转矩。

在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。

《伺服系统设计》课件

《伺服系统设计》课件

了解伺服系统在机床 数控加工中的应用, 提高加工精度和效率。
自动化生产线
探索伺服系统在自动 化生产线中的应用, 实现自动化和智能化 生产。
航空航天
了解伺服系统在航空 航天领域的应用,确 保飞行器的安全和稳 定。
机器人控制
掌握伺服系统在机器 人控制中的应用,实 现精确的运动和操作。
总结
• 伺服系统的优点和局限性 • 伺服系统设计中需要注意的问题 • 未来伺服系统的发展《伺服系统设计》PPT课件。在本课程中,我们将深入探讨伺服系统 的原理、结构、参数设定以及应用,帮助您理解其功能和重要性。
课程概述
• 什么是伺服系统? • 伺服系统的功能和特点 • 伺服系统在工业控制中的重要性
伺服系统原理
• 伺服系统工作原理概述 • 伺服电机的工作原理 • 编码器的作用和原理 • 控制器的作用和原理
掌握确定参数的基本原则和方法,以实现最 佳系统性能。
2 伺服系统参数设定的方法
学习具体的参数设定方法,包括响应时间和 稳定性的平衡。
3 PID控制器参数的选取方法
4 伺服系统参数整定的实例
了解PID控制器参数选取的常用方法和技巧。
通过实例学习如何在实际应用中进行参数整 定。
伺服系统的应用
机床数控加工
伺服系统的结构
伺服系统的结构
了解伺服系统各组成部分的功能和相互关系。
伺服电机和驱动器的选择
如何根据实际需求选择合适的伺服电机和驱动器。
编码器和控制器的选择
选择适合应用的编码器和控制器,确保系统的准 确性和可靠性。
控制器与编码器的接口
了解控制器和编码器之间的连接方式和通信协议。
伺服系统的参数设定
1 伺服系统参数设定的原则

工业机器人交流伺服驱动系统设计

工业机器人交流伺服驱动系统设计

工业机器人交流伺服驱动系统设计作者:龙凯李刚成来源:《山东工业技术》2016年第11期摘要:交流伺服驱动系统是机器人设备动作实现的核心,通过电动机旋转产生的力驱动工业机器人各个关节完成相应制定的动作目标,因此设计科学、完善的工业机器人交流伺服驱动系统是提高工业机器人技术,提高我国机械制造强国战略目标的重要途径。

本文以某公司电机专用芯片TMS320F2812作为核心控制器,设计了工业机器人交流伺服驱动系统。

关键词:工业机器人;交流伺服驱动;设计;永磁同步电机DOI:10.16640/ki.37-1222/t.2016.11.0030 引言随着工业机器人在工业领域的广泛应用,工业机器人技术越来越被人们所重视,甚至工业机器人技术成为衡量国家综合实力的重要指标。

工业机器人所具备的自动化技术及应用灵活的特点能够适应各种复杂的生产环境,机器人动作的完成主要是依靠伺服驱动电机完成,因此机器人性能好坏与伺服驱动控制系统有着直接的关系。

交流永磁同步电动机能够满足机器人技术对交流伺服电动机控制系统要求的性能指标,因此该电机成为交流伺服驱动的首要选择。

1 交流伺服驱动系统的概述随着电机技术的不断发展以及各种材料的不断完善,新型永磁同步电动机已经被各行所广泛应用,根据控制系统的要求,交流伺服驱动系统主要采取闭环控制方式。

根据交流伺服驱动系统的发展现状,其未来发展趋势主要呈现出以下特点:(1)数字化,随着微电子技术的发展,控制芯片的体积越来越小,抗干扰能力越来越强,其实现控制结构越来越便利,可以随时通过编程对软件程序进行控制,因此其数字化技术越来越高;(2)智能化,随着工业生产环境的不断恶化,要求交流驱动系统要适应不同的环境,因此需要其具有智能化的特点,减少人工参与;(3)通用化,伺服驱动系统一般配有多种控制功能参数,这样做的目的就是不改变硬件电路的基础上实现不同模式的工作,保证其符合多种工作环境。

使用交流伺服驱动系统进行伺服控制的策略主要包括:一是恒压频比控制。

伺服系统的动力设计方法。惯量匹配;容量匹配

伺服系统的动力设计方法。惯量匹配;容量匹配

伺服系统的动力设计方法。

惯量匹配;容量匹配摘要:一、引言二、伺服系统动力设计方法概述1.惯量匹配2.容量匹配三、惯量匹配设计方法1.设计原则2.设计步骤3.应用实例四、容量匹配设计方法1.设计原则2.设计步骤3.应用实例五、设计注意事项1.系统稳定性2.系统动态性能3.系统能耗六、结论正文:一、引言伺服系统作为现代自动化控制的核心,其动力设计方法在保证系统性能和稳定性方面具有重要意义。

本文将对伺服系统的动力设计方法进行详细阐述,重点分析惯量匹配和容量匹配两种设计方法,以期为相关领域的研究和应用提供参考。

二、伺服系统动力设计方法概述伺服系统动力设计主要包括惯量匹配和容量匹配。

惯量匹配是指在设计过程中,使得系统的负载惯量与驱动器的驱动惯量达到一定程度的平衡,以提高系统的响应速度和稳定性。

容量匹配则是保证系统在不同负载条件下,电机的输出功率与负载需求相匹配,从而实现高效、稳定的运行。

1.惯量匹配(1)设计原则在惯量匹配设计中,应遵循以下原则:a.减小负载惯量对系统动态性能的影响,提高响应速度。

b.增大驱动器惯量,提高系统的稳定性和抗扰动性能。

c.使系统的固有频率远离电机的谐波频率,降低振动和噪声。

(2)设计步骤惯量匹配设计主要包括以下步骤:a.确定负载惯量和驱动器惯量的大小。

b.根据系统性能要求,设定惯量匹配目标。

c.调整负载和驱动器的惯量,使其达到匹配目标。

d.验证系统性能,如有必要,进行迭代优化。

(3)应用实例某伺服系统要求响应速度快、稳定性高。

通过分析,发现负载惯量与驱动器惯量之比为2:1。

为满足性能要求,采用惯量匹配设计方法,将驱动器惯量增大至原设计的2倍。

经过实际运行验证,系统响应速度和稳定性均得到显著提高。

2.容量匹配(1)设计原则在容量匹配设计中,应遵循以下原则:a.电机的工作点应处于其高效运行区域。

b.保证系统在不同负载条件下,电机的输出功率与负载需求相匹配。

c.避免电机过载或欠载运行,以降低能耗和延长使用寿命。

伺服系统设计步骤及方法

伺服系统设计步骤及方法

伺服系统设计步骤及方法伺服系统是指一种能够控制运动精度和位置的系统,常见于工业自动化、机器人、汽车等领域。

伺服系统设计的主要目标是提高系统的稳定性、响应速度和控制精度。

在设计伺服系统时,需要按照一定的步骤和方法进行,以确保系统能够满足要求。

下面是伺服系统设计的一般步骤及方法:1.定义系统需求:首先确定伺服系统的工作环境、运动要求和性能指标。

例如,确定系统需要在何种速度、加速度和精度下运动,以及要控制的负载和环境条件等。

2.选择伺服驱动器和电机:根据系统的需求,选择合适的伺服驱动器和电机。

此步骤需要考虑到系统的负载特性、控制精度、电源电压和电流等。

通常,选择驱动器时需要考虑其速度和定位控制的能力,选择电机时需要考虑其功率、转矩和惯性等。

3.确定控制方式:根据系统需求,确定使用的控制方式,包括位置控制、速度控制和力控制等。

对于不同的应用场景,选择合适的控制方式可以提高系统的控制效果和稳定性。

4.设计控制算法:根据系统需求和控制方式,设计控制算法。

常用的控制算法包括PID控制、滑模控制和模糊控制等。

控制算法的目标是根据系统的输入和输出,以最优的方式控制电机的速度和位置。

5.选择传感器和反馈装置:为了实现对伺服系统的准确控制,通常需要选择合适的传感器和反馈装置,用于测量和反馈系统的位置、速度和加速度信息。

常用的传感器包括编码器、光电开关和位移传感器等。

6.确定反馈控制回路:根据系统需求和传感器的信息,确定系统的反馈控制回路。

反馈控制回路可以根据测量值对系统进行修正和调整,以实现更精确的控制。

同时,反馈控制还可以稳定系统的工作状态,并减小由于负载变化和环境干扰引起的系统波动。

7.运动规划和轨迹生成:根据系统的运动需求和控制算法,进行运动规划和轨迹生成。

运动规划是指通过规划器生成一条供伺服驱动器执行的运动轨迹。

轨迹生成是指将运动规划生成的轨迹转化为伺服驱动器可以执行的轨迹。

8.系统调试和优化:完成系统的硬件搭建和软件编程后,进行系统调试和优化工作。

伺服驱动系统设计方案

伺服驱动系统设计方案

伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。

与普通电机一样,交流伺服电机也由定子和转子构成。

定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。

伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度{线数)。

伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。

其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。

交流伺服电机的工作原理和单相感应电动机无本质上的差异。

但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。

而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。

交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。

它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。

因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

图3 伺服电动机的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。

3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。

当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。

伺服驱动系统设计方案及对策

伺服驱动系统设计方案及对策

伺服驱动系统设计方案及对策一、硬件设计方案及对策:1.选用高性能的伺服电机和驱动器:根据具体需要选择适合的伺服电机和驱动器,确保其具备足够的功率和控制精度。

在选择过程中,需要对驱动器的技术参数进行充分了解,并评估其适用性和可靠性。

2.采用合适的编码器:编码器用于测量电机的位置和速度,对伺服驱动系统的控制精度至关重要。

选择合适的编码器,能够提供高分辨率和高精度的反馈数据,并且具备良好的抗干扰性能。

3.电源设计:伺服驱动系统对电源质量和稳定性要求较高,需要提供稳定的电源供应和电磁兼容性设计,避免电源波动对系统性能的影响。

4.散热设计:伺服电机和驱动器在运行时会产生较大的热量,必须进行有效的散热设计,以确保系统的稳定性和可靠性。

可采用风扇散热、散热片等方式来降低温度。

5.机械设计:在伺服驱动系统中,机械结构的设计对系统性能有很大影响。

需要针对具体应用场景选择合适的传动方式和结构设计,考虑到负载、速度、精度等因素。

6.停电保护设计:为了避免突发停电导致系统损坏,可以设计备用电池或超级电容器等储能装置,以保证在停电短时间内继续工作并正常停机。

二、软件设计方案及对策:1.控制算法设计:通过对伺服电机的位置、速度和加速度等参数进行精细控制,实现对运动轨迹的准确控制。

设计合理的控制算法,能够提高系统的控制精度和稳定性。

2.运动控制软件设计:根据伺服驱动系统的应用需求,设计合理的运动控制软件,包括运动插补算法、软件调速、位置校正等功能。

3.通信接口设计:伺服驱动系统通常需要与上位机或其他设备进行通信,需要设计合适的通信接口,以实现数据传输和控制。

4.用户界面设计:为了方便用户操作和监测系统运行状态,可以设计友好的用户界面,包括参数设置、故障诊断、实时监控等功能。

5.系统诊断与故障检测设计:通过设计合理的系统诊断和故障检测功能,可以检测和排除系统故障,提高系统的可靠性和稳定性。

三、通信网络设计方案及对策:1.选择适当的通信协议:根据伺服驱动系统所处的应用环境和通信要求,选择适当的通信协议,如CAN总线、以太网等。

伺服控制系统设计

伺服控制系统设计

Wop (s)
s(Ts s
K 1)(T2 s
1)
3.2 单闭环位置伺服系统
伺服系统旳闭环传递函数
W cl
(s)
TsT2 s 3
(Ts
K T2 )s2
s
K
闭环传递函数旳特性方程式
TsT2s3 (Ts T2 )s2 s K 0
3.2 单闭环位置伺服系统
用Routh稳定判据,为保证系统稳定,
须使
K
Ts T2 TsT2
单位置环伺服系统开环传递函数对数幅频特性
3.3 双闭环伺服系统
在电流闭环控制旳基础上,设计位置 调整器,构成位置伺服系统,位置调整 器旳输出限幅是电流旳最大值。 以直流伺服系统为例,对于交流伺服 系统也合用,只须对伺服电动机和驱动 装置应作对应旳改动。
3.3 双闭环伺服系统
Tm
R J CT Ce
Tl
La R
3.2 单闭环位置伺服系统
驱动器
电机
直流伺服系统控制对象构造图
采用PD调整器,其传递函数为
减速器
WAPR (s) WPD (s) K p (1 d s)
3.2 单闭环位置伺服系统
伺服系统开环传递函数
Wop (s)
s(Ts s
K ( d s 1)
1)(TmTl s2 Tms
3.5 复合控制旳伺服系统
前馈控制器旳传递函数选为
G(s) 1 W2 (s)
得到
m (s) 1
* m
(
s)
3.5 复合控制旳伺服系统
理想旳复合控制随动系统旳输出量可以完 全复现给定输入量,其稳态和动态旳给定误 差都为零。 系统对给定输入实现了“完全不变性” 。 需要引入输入信号旳各阶导数作为前馈控 制信号,但同步会引入高频干扰信号,严重 时将破坏系统旳稳定性,这时不得不再加上 滤波环节。

两轴伺服控制系统设计

两轴伺服控制系统设计

两轴伺服控制系统设计伺服控制系统是一种能够精确控制运动过程中位置、速度和力度的系统,常用于机械、自动化和机器人领域。

在此,我们将设计一个两轴伺服控制系统,用于控制一个机器人的两个关节。

系统结构设计:1.控制器:使用一款高性能的双轴伺服控制器,能够实现对两个轴的独立控制,并具有足够的计算能力和通信接口。

2.编码器:每个关节安装一个编码器,用于实时反馈关节的位置信息,以便控制器实现闭环控制。

3.伺服驱动器:每个关节连接一个伺服驱动器,用于控制伺服电机的速度和位置,以实现对关节的精确控制。

4.伺服电机:每个关节使用一款高性能的伺服电机,具有高转矩和响应速度,能够满足机器人关节的动力需求。

5.通信接口:控制器与计算机或人机界面之间通过以太网或串口通信,实现参数设置和监控功能。

系统功能设计:1.其中一个轴作为主轴,另一个轴作为从轴,主轴和从轴之间通过齿轮传动或同步带传动连接。

2.控制器通过内置的PID控制算法实现对主轴和从轴的位置控制,可以实现位置或速度控制模式。

3.控制器通过接收编码器反馈信号,实时计算主轴和从轴的位置误差,不断调整伺服电机的输出信号,使得两个轴的位置保持一致。

4.控制器具有多段加减速功能,可以设置不同的加减速时间和速度曲线,实现平滑的运动过程。

5.控制器具有位置误差补偿功能,可以根据实际应用场景进行参数调整,提高系统的稳定性和精度。

6.用户可以通过计算机或人机界面对系统参数进行设置和监控,实现对系统的远程控制和故障诊断。

系统性能设计:1.系统具有高精度的位置控制能力,可以实现微米级的定位精度,满足高精度加工和装配应用的要求。

2.系统具有高响应速度和稳定性,能够在短时间内完成复杂的运动任务,确保机器人的稳定性和可靠性。

3.系统具有较强的负载能力,能够承受较大的负载力和惯性力,保证机器人在运动过程中不产生位移和抖动。

4.系统具有较高的可靠性和稳定性,能够长时间稳定运行,减少故障率和维护成本。

基于gan功率器件伺服驱动系统的设计与研究

基于gan功率器件伺服驱动系统的设计与研究

供电方式,这会造成电机损耗大,轴电流大,缩短
关将造成极大的 du/dt 和 di/dt[6-8];其次,目前的控
电机寿命。若采用正弦波电压驱动,可有效解决
制器和控制策略还没有经过高频化的控制验
上述问题。若要获得正弦波电压,需在 PWM 逆
证[9-10];最后,电机驱动系统中的电机本体及传动
变器后增加滤波器,但受限于现有功率半导体器
WANG Pinhe,YANG Ming,
SHANG Shuyu,
LÜ Zekai,XU Dianguo
(Department of Electrical Engineering,
Harbin Institute of Technology,
Harbin 150001,
Heilongjiang,
China)
ELECTRIC DRIVE 2019 Vol.49 No.10
电气传动 2019 年 第 49 卷 第 10 期
基于 GaN 功率器件伺服驱动系统的设计与研究
王品贺,杨明,商书宇,吕泽楷,徐殿国
(哈尔滨工业大学 电气工程系,黑龙江 哈尔滨 150001)
摘要:GaN 等高频功率器件应用于电机驱动领域,高频化后的驱动系统能够显著减小系统的体积、重量和
永磁同步电机的硬件驱动系统由控制部分
和功率部分组成。控制部分以 FPGA 为控制核
Abstract: Power devices such as GaN are used in motor drives. High-frequency drive systems can significantly
reduce the size,weight,and cost of the system,but they also cause excessive du/dt and di/dt. Firstly,the hardware

伺服系统的优缺点

伺服系统的优缺点

伺服系统的优缺点伺服系统是一种广泛应用于工业自动化领域的控制系统,它通过精确地控制驱动器和伺服电机,实现对工作装置位置和速度的高精度控制。

尽管伺服系统在许多应用中表现出色,但它也存在一些优点和缺点。

本文将探讨伺服系统的优缺点,并说明其应用领域和局限性。

一、优点1. 高精度控制:伺服系统能够以非常高的精度控制工作装置的位置和速度。

这使得它适用于需要精确控制的应用,如机械加工、组装线和机器人等。

高精度控制可以提高生产效率和产品质量,并且能够满足一些特殊需求,如微切割和精密定位等。

2. 快速响应:伺服系统具有快速响应的特点,可以在短时间内对系统的输入做出相应调整,从而实现快速而准确的控制。

这使得伺服系统非常适用于要求高速精确定位、频繁起动和停止的应用,如流水线传送、打印机和纺纱机等。

3. 良好的稳定性:伺服系统经过精心调试和设计后,具有良好的稳定性。

它可以稳定地工作在不同的负载情况下,对外界干扰和变化具有较强的抗干扰能力。

这使得伺服系统能够应对复杂的工作环境和变化的负载,并保持稳定的运行。

4. 高扭矩密度:伺服电机具有高扭矩密度,可以在相对较小的体积和重量下提供较大的输出扭矩。

这使得伺服系统具有更高的动态响应能力和更小的惯性负载,可以实现更高的生产效率和更好的机械性能。

二、缺点1. 复杂的调试和维护:伺服系统相对于传统的控制系统具有更高的复杂性,需要专门的技术人员进行调试和维护。

对于一些不熟悉伺服系统的人员来说,可能需要更多的时间和精力来掌握其操作和故障排除方法。

2. 高成本:伺服系统相对于一般的控制系统来说,具有较高的成本。

它需要使用专门的驱动器和伺服电机,并且需要进行精确的调试和安装。

这使得伺服系统在一些成本敏感的应用中可能不太适用,或者需要仔细权衡成本与性能之间的关系。

3. 对电源质量要求高:伺服系统对电源质量有较高的要求,需要提供稳定的和纯净的电源供应,以避免对系统的运行和性能产生不利影响。

这可能增加了系统的设计和安装的难度,以及对环境电源的要求。

伺服控制设计总结范文

伺服控制设计总结范文

随着现代工业自动化技术的飞速发展,伺服控制系统在各个领域的应用越来越广泛。

伺服控制系统作为一种高性能、高精度的自动化控制系统,其设计的好坏直接影响到系统的性能和可靠性。

以下是对伺服控制设计的一次总结。

一、设计原则1. 系统稳定性:在设计伺服控制系统时,首先要保证系统的稳定性,避免系统出现自激振荡、超调等现象。

2. 系统响应速度:响应速度是伺服控制系统的重要性能指标之一,提高响应速度可以缩短系统动态过程,提高生产效率。

3. 系统精度:伺服控制系统的主要作用是实现高精度控制,因此在设计过程中要充分考虑系统精度。

4. 系统抗干扰能力:在工业现场,伺服控制系统会面临各种干扰,如电磁干扰、温度干扰等,设计时要提高系统的抗干扰能力。

5. 系统可靠性:提高系统的可靠性,降低故障率,确保系统长期稳定运行。

二、设计方法1. 硬件设计:根据系统需求,选择合适的伺服驱动器、伺服电机、传感器等硬件设备,并合理布局,确保系统性能。

2. 控制算法设计:根据系统特点,选择合适的控制算法,如PID控制、模糊控制、神经网络控制等,并对其进行优化。

3. 软件设计:编写控制程序,实现控制算法,并进行调试和优化,确保系统稳定运行。

4. 系统仿真:利用仿真软件对系统进行仿真,验证系统性能,发现问题并及时解决。

5. 系统测试:在实际运行环境下对系统进行测试,验证系统性能,确保系统满足设计要求。

三、设计要点1. 选择合适的伺服驱动器和伺服电机:根据系统负载、精度等要求,选择合适的伺服驱动器和伺服电机,确保系统性能。

2. 设计合理的控制算法:根据系统特点,选择合适的控制算法,并对其进行优化,提高系统性能。

3. 优化硬件布局:合理布局硬件设备,减少电磁干扰,提高系统稳定性。

4. 软件优化:优化控制程序,提高系统响应速度和精度。

5. 抗干扰设计:在设计过程中,充分考虑抗干扰措施,提高系统抗干扰能力。

四、总结伺服控制系统设计是一项复杂而重要的工作,需要综合考虑系统稳定性、响应速度、精度、抗干扰能力等因素。

机电一体化第六章伺服驱动控制系统设计

机电一体化第六章伺服驱动控制系统设计
更加简单。步进电机既是驱动元件,又是脉冲角位移变换元件。 E. 当控制脉冲数很小,细分数较大时,运行速度达到每转30分
钟。 F.体积小、自定位和价格低是步进电动机驱动控制的三大优势。 G. 步进电机控制系统抗干扰性好
上一页 下一页
二、 伺服驱动控制系统设计的基本要求
1. 高精度控制 2. 3. 调速范围宽、低速稳定性好 4. 快速的应变能力和过载能力强 5. 6.
闭环调节系统。
(4) ①
② 调节方法。
(5) ① 使用仪器。用整定电流环的仪器记录或观察转速实际值波形,电
② 调节方法。
上一页 下一页
六、 晶体管脉宽(PWN)直流调速系统
晶体管脉宽直流调速系统与用频率信号作开关的晶闸管系统相比,具 (1) 由于系统主电源采用整流滤波,因而对电网波形影响小,几乎不 (2) 由于晶体管开关工作频率很高(在2 kHz左右),因此系统的 (3) 电枢电流的脉动量小,容易连续,不必外加滤波电抗器也可平稳 (4) 系统的调速范围很宽,并使传动装置具有较好的线性,采用Z2
上一页 下一页
(2) ① A. 步进电动机型号:130BYG3100D (其他型号干扰大) B. 静转矩15 N·m C. 步距角0.3°/0 6°
D. 空载工作频率40 kHz E. 负载工作频率16 kHz ② A. 驱动器型号ZD-HB30810 B. 输出功率500 W C. 工作电压85~110 V D. 工作电流8 A E. 控制信号,方波电压5~9 V,正弦信号6~15 V ③ 控制信号源。
(3) ① 标准信号控制系统(如图6-16) ②检测信号控制系统 (如图6-17)
③ 计算机控制系统(如图6-18)
上一页 返 回
图6-16 标准信号控制系统图 图6-17 检测信号控制系统图 图6-18 计算机控制系统图

伺服控制工程课程设计报告

伺服控制工程课程设计报告

一.设计要求和条件本课程设计要求选择步进电机和交流伺服电机为驱动装置,以可编程控制器(PLC)为控制器,配合相应的伺服驱动器,设计并实现伺服电机对异步电机速度的跟随控制系统。

要求了解相关检测元件,掌握系统搭建的基本方法,用触摸屏设计监控界面,完成系统的程序编写与调试,并完成设计说明书的编写。

二. 设计目的通过在实验平台上完成伺服电机对异步电机速度的跟随控制,巩固和深化所学的专业理论,提高解决实际问题的能力。

使我们了解伺服控制系统的应用领域;掌握常用检测元件的选择和使用;掌握各种伺服驱动器的使用方法;能够设计并实现基本伺服运动控制电路;三.设计方案论证(一).硬件的选择:台达ASD-A0421-AB系列伺服驱动器,VFD-M系列变频器,ECMA-C30604ES伺服电机,台达DVP40ES00T2系列PLC,台达触摸屏DOP-A57BSTD,增量式编码器和异步电机。

(二).硬件的介绍:(1)VFD-M系列变频器:变频器面板主要包括:编程/功能选择键,资料确认键,频率设定旋钮,启动运行,停止按钮等此次设计中用到的几个重要变频器参数设定:P 00: 04 数字操作器上的V.R.控制P 01: 00 运转指令有数字操作器控制P 02: 00 电机以减速刹车方式停止01 电机一自由运转方式停止P 03: 50.00~400.00HZ 最高操作频率选择P 04: 10.00~400.00HZ 最大电压频率选择(2)台达ASD-A0421-AB系列伺服驱动器:伺服驱动器的连接器与端子:L1,L2为控制回路电源输入端,U,V,W为电机连接线,CN1为I/O连接器,CN2为编码器连接器,CN3通讯口连接器。

主要参数设定:P1-00=2(外部脉冲列指令输入形式设定)P1-01=0(控制模式及控制命令输入源设定)P2-10=101(数字输入接脚DI1功能规划)P2-11=104(数字输入接脚DI2功能规划)P1-02=00(速度及扭距限制设定)(三). 系统结构框图:根据试验台的架构和实验要求此次设计的系统框图如下图所示:四.系统流程图:此设计所用的设备有台达变频器,异步电机,旋转编码器,台达PLC,伺服电机等,台达变频器控制异步电机,通过改变频率来改变异步电机速度,并利用旋转编码器使异步电机与伺服电机建立联系,最终使伺服电机跟随上异步电机的速度,伺服电机正反转的速度通过台达触摸屏来设置。

无刷直流伺服驱动系统设计

无刷直流伺服驱动系统设计

无刷直流伺服驱动系统设计陈玄【摘要】This article through to the digital dc servo drive system theory of research on the control strategy of the analysis and application of the system of high response and high precision. Starting from the first permanent magnet dc motor of the mathematical model of dynamic mathematical model is set up, consider all sorts of interference and parameters change, the corresponding control strategy to apply to the motor control, understand the inner structure servo drive, the best control strategy, make the performance of the system to achieve the expected goal. The fuzzy adaptive control system, write PID algorithm and optimized the speed of the stability and precision control. MATLAB software basedon the servo system model, and the simulation PID algorithm of the motor speed control%本文通过对全数字直流伺服驱动系统的理论研究,进行控制策略的分析与应用,实现系统的高响应和高精度。

伺服电机设计方案

伺服电机设计方案

伺服电机设计方案1. 引言伺服电机是一种能够通过反馈信号来控制输出位置、速度或力矩的电机。

它广泛应用于机械、自动化、机器人等领域。

本文将介绍伺服电机的设计方案,从电机选型、控制系统设计以及应用注意事项等方面进行阐述。

2. 电机选型在进行伺服电机设计前,首先需要进行电机选型。

电机选型的关键是根据实际应用需求确定电机参数,例如额定功率、电压、转速范围等。

同时,还要考虑电机的尺寸、重量、使用环境和成本等因素。

常见的伺服电机类型包括直流伺服电机(DC Servo Motor)、步进伺服电机(Stepper Servo Motor)和交流伺服电机(AC Servo Motor)。

根据具体应用需求,选择合适的电机类型。

3. 控制系统设计伺服电机的控制系统设计是确保电机准确控制和稳定性的关键。

一个典型的伺服电机控制系统包括以下几个部分:3.1 反馈传感器反馈传感器用于感知电机的转动角度、速度和位置等信息,并将这些信息反馈给控制系统。

常用的反馈传感器包括编码器(Encoder)、霍尔传感器(Hall Sensor)和光电传感器(Photoelectric Sensor)。

选择合适的反馈传感器能够提高伺服电机的控制精度。

3.2 控制器控制器是伺服电机控制系统的核心部分,它负责接收来自反馈传感器的信号,并通过算法计算出反馈信号与设定值之间的误差,并产生控制信号输出给电机驱动器。

常见的控制器类型包括PID控制器、模糊控制器和自适应控制器。

选择合适的控制器能够保证伺服电机的稳定性和控制精度。

3.3 电机驱动器电机驱动器用于控制电机的运行,接收控制器发出的信号,并将其转换为合适的电流、电压或脉冲信号。

不同类型的伺服电机需要配备相应的电机驱动器。

在选购电机驱动器时,要考虑驱动器的功率范围、响应速度和保护功能等。

4. 应用注意事项设计伺服电机时,还需要注意以下几个方面:4.1 温度控制伺服电机在长时间运行中会产生热量,需要进行合理的散热设计,以避免过热对电机和控制系统的影响。

伺服控制方案

伺服控制方案

伺服控制方案伺服控制是一种通过控制系统对伺服电机进行精确控制的技术。

它广泛应用于工业机械、机器人、自动化设备等领域。

伺服控制方案的设计和实施对于提高设备的运动控制精度和稳定性至关重要。

本文将介绍伺服控制方案的基本原理以及常见的设计方法。

一、伺服控制方案的基本原理伺服控制是通过反馈控制的方式实现的。

控制系统首先需要获取被控对象的准确位置或速度信息,以便对其进行实时调整。

这一信息通常通过编码器或传感器来获取。

控制系统将反馈的位置或速度信号与设定值进行比较,然后根据比较结果来控制伺服电机的输出,以使被控对象达到设定值并保持稳定。

二、伺服控制方案的设计方法1. 确定系统需求:在设计伺服控制方案之前,需要明确系统的运动需求,包括位置精度、速度要求等。

这些需求将直接影响到伺服电机的选型和控制参数的设置。

2. 选型与参数设置:根据系统需求选择合适的伺服电机,并根据实际情况设置伺服控制器的参数,如增益、速度限制等。

参数的设置需要结合实际测试和调整,以保证系统的稳定性和控制精度。

3. 编码器或传感器的选择:选择合适的编码器或传感器来获取被控对象的准确位置或速度信息。

常见的编码器类型包括光电编码器、磁编码器等。

传感器的选择需要考虑到被控对象的特点和工作环境。

4. 控制算法的选择:根据实际情况选择合适的控制算法,如PID控制、模糊控制等。

控制算法的选择应综合考虑系统的动态响应、稳定性以及抗干扰能力。

5. 系统建模与仿真:使用系统建模软件对伺服控制系统进行建模和仿真,以评估控制方案的性能。

通过仿真可以提前检测和调整可能存在的问题,减少实际实施中的风险。

6. 系统实施与调试:在实施伺服控制方案之前,需要根据设计结果进行系统布线和接线,然后进行系统调试和优化。

调试过程中需要根据实际情况进行参数调整,以保证系统的准确性和稳定性。

三、伺服控制方案的应用领域伺服控制方案广泛应用于工业机械、机器人、自动化设备等领域。

具体应用包括:1. 机床控制:伺服控制方案可以用于实现机床的精密定位和运动控制,提高加工精度和生产效率。

伺服驱动系统设计方案及对策

伺服驱动系统设计方案及对策

伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。

与普通电机一样,交流伺服电机也由定子和转子构成。

定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。

伺服电机部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度{线数)。

伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。

其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。

交流伺服电机的工作原理和单相感应电动机无本质上的差异。

但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓"自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。

而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。

交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。

它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。

因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

图3 伺服电动机的转矩特性2、运行围较宽如图3所示,较差率S在0到1的围伺服电动机都能稳定运转。

3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。

当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动,负载变化,环境误差的影响),只要干扰因素不引起“丢步”,
二、步进电机的种类
(一)按运动形式:有旋转式和直线步进电机;
(二)从励磁相数分有(3、4、5、6相等)。 (三)就常用的旋转式步进电机的转子结构来说可分为三种:
1、反应式(可变磁阻型)
图 反应式步进电机 1-定子 2-转子
2、永磁式(PM);
三、机电一体化系统对其伺服系统的要求
1)快速性: 2)精确性: 3)稳定性 : 即输出量能迅速而精确地响应
指令输入的变化,称为随动系统或
自动跟踪系统。
四、执行元件的类型及特点
1、执行元件作用
它位于电气(电子)装置与机 械部件之间,根据指令进行能量的 转换,将输入的各种形式的能量 (如电能、液压能、气压能、化学
1、按其控制原理——开环、全闭环和半闭环;
2、按其驱动方式 ——电气伺服、气压伺服、液压伺服 3、按其被测控量的性质
——速度、位置、同步、扭矩控制等形式;
4、按其执行元件 ——步进伺服、直流伺服、交流伺服等形式。 应用提示:开环系统的执行元件大多采用步进电机、闭环和半 闭环伺服系统的执行元件大多采用直流伺服电机。
制量的一种自动控制系统。它在控制命令的指挥下,控制执行元件工作,使机
械运动部件按照控制命令的要求进行运动,并具有良好的动态性能,实现机电 一体化的驱动(操作)功能。
(二)一般组成
电源装置
信号 + 信号转换电路 输入 - 检测装置 补偿装置 放大装置 输出 执行机构 被控对象
图 伺服系统的一般组成
二、伺服系统的分类
五、机电一体化系统对执行元件的要求
1、惯量小、动力大; 2、体积小,重量轻; 3、便于维修,安装; 4、快速性能好,即加(减)速扭矩大,频率特性好; 5、可靠性高,寿命长; 6、便于微机控制。
六、伺服系统选择和设计要点
1、选择适用范围的伺服系统;
2、适当精度的控制方式;
3、简单的机械传动方案。
第二节 步进电机及其控制
四、主要性能指标
1、步距角
360 , KPZ
0
拍数(m) K 相数(P)
注, ① n
60 f PKZ

②目前我国步进电动机的步距角为0.360~900,最常用的为:
能等)转换为机械能(机械部件运
动所需的)。
2、执行元件的种类
图 执行元件的种类
控制用电机的种类、特点及选用(结合表书3.2)
图 常用电动 机适用范围
3、执行元件的特点
类型 电 气 式 特 点 优 点 缺 点
可使用商用电源;信号 操作简单;编程容易;能 与动力的传送方向相同; 实现规定位伺服;响应快、 有交流和直流之别,须 易与CPU相接;体积小,动 注意电压的大小 力较大;无污染 瞬时输出功率大;过载差, 特别是由于某种原因而卡 住时,会引起烧毁事故, 易受外部噪声影响。 功率小,体积大,动作不 够平稳;不易小型化;远 距离传输困难;工作噪声 大、难于伺服、
图 步进电机 1-定子 2-转子 3-励磁线圈
3、混合式(HB)
步进电机工作原理
典型结构
U1
V2 W2
W1
U2
V1
三、步进电机工作原理(以反应式为例)
拍——定子绕组每改变一次 通电方式。(旋转一周改变次数) 单——每次切换前后只有项 通电。 双——有两相通电。
图 步进电机简图
表 反应式步进电机环形分配方式
步进电机是一种将脉冲信号变换成相应的直线位
移(或角位移)的数字/模拟变换器。
一、步进电机的特点
1、输出转角与输入脉冲严格成正比,且在方向上与输入脉冲同 步。每输入一个电脉冲,电机就转动一个角度(步距角),当连续 不断地输入机各相绕组的通电顺序可以控
第三章 机电一体化系统执行元件的选择与设计
第一节 伺服系统与执行元件概述
第二节 步进电动机及其驱动 第三节 直流(DC)伺服电动机 第四节 交流伺服电机 第五节 执行元件的特性分析
第一节 伺服系统与执行元件概述
一、伺服系统的基本概念及一般组成
(一)伺服系统定义
伺服系统:以机械参数(位移、速度、加速度、力和力矩等)作为被控
三相六拍(1-2相励磁)
四相单四拍(1相励磁) 四相双四拍(2相励磁) 四相八拍(1-2相励磁) 五相单五拍(1相励磁) 五相双五拍(2相励磁) 五相十拍(2-3相励磁) 六相单六拍(1相励磁) 六相双六拍(2相励磁) 六相六拍(3相励磁) 六相十二拍(2-3相励磁)
2
1 1 2 1 1 2 1 1 1 2
气 压 式
液 压 式
空气压力源的压力为 气源方便、成本低;无泄 (5~7)×105Pa;要求 漏污染;速度快、操作比 操作人员技术熟悉。 较简单
设备难于小型化;液压源 要求操作人员技术熟练; 输出功率大,速度快,动 或液压油要求(杂质、温 液压源压力为(20~80) 作平稳,可实现定位伺服; 度、测量、质量)严格, ×105Pa 易与CPU相接;响应快。 易泄漏且有污染
相 数
3 3
环形分配方式
A-B-C-A…… AB-BC-CA-AB……
名称
三相单三拍(1相励磁) 三相双三拍(2相励磁)
系 数k
1 1
3
4 4 4 5 5 5 6 6 6 6
A-AB-B-BC-C-CA-A……
A-B-C-D-A…… AB-BC-CD-DA-AB…… A-AB-B-BC-C-CD―D―DA-A…… A-B-C-D―E―A…… AB-BC-CD-DE-EA-AB…… AB-ABC-BC-BCD-CD-CDE-DE-DEA-EA-EAB-AB…… A-B-C-D-E-F-A…… AB-BC-CD-DE-EF-FA-AB…… ABC-BCD-CDE-DEF-EFA-FAB-ABC…… AB-ABC-BC-BCD-CD-CDE-DE-DEF-EF-EFA-FA-FAB-AB……
制电机转角、转速与转向(很容易用微机实现数字控制)。
2、输出转角的精度高,虽有(相邻)步距角误差,但无累积 误差,有步距角误差,但转子转速转过一转以后,其(一转内)累
积误差为“0”,不会长期积累。
3、可实现平滑无级调速。调速范围较宽。 4、步进电机的工作状态不易受各种干扰因素影响(如电压波 就不影响正常工作。 5、其它:启停时间短,一般在信号输入几毫秒后就使电动机 达到同步转速,信号切断后电机立即停止转动。
相关文档
最新文档