高分子吸附材料
高分子材料的吸附性能研究
![高分子材料的吸附性能研究](https://img.taocdn.com/s3/m/0695033ae97101f69e3143323968011ca200f75f.png)
高分子材料的吸附性能研究标题:高分子材料的吸附性能研究摘要:高分子材料因其良好的吸附性能在水处理、废气处理以及环境污染治理等领域得到广泛应用。
本论文针对高分子材料的吸附性能进行研究,并探讨了其影响因素、吸附机制以及未来发展方向。
通过实验和文献综述,发现高分子材料的吸附性能受到其结构特征、孔隙结构、表面性质等多个因素的影响。
同时,不同类型的高分子材料对不同污染物的吸附也存在差异,因此需要针对具体的应用场景选择合适的高分子材料。
未来的研究可以通过优化高分子材料的结构和性能,开发新的功能化高分子材料,以提高其吸附性能和应用效果。
1. 引言高分子材料广泛应用于吸附材料领域,其良好的吸附性能能有效地去除水中的有害物质和废气中的污染物。
吸附是一种物理吸附过程,通过分子间的非共价作用力将目标物质从流体中吸附到固体表面。
本文旨在综述高分子材料的吸附性能研究,并探讨其应用领域以及未来的研究方向。
2. 高分子材料的吸附性能研究方法2.1 吸附实验方法吸附实验是研究高分子材料吸附性能的重要手段。
常用的实验方法包括批量吸附实验和动态吸附实验。
批量吸附实验通过固液分离后的溶液中目标物质的浓度变化来研究吸附过程。
动态吸附实验则模拟实际处理过程中连续进料和出料的情况,通过监测入口和出口水中目标物质的浓度变化来评估材料的吸附性能。
2.2 吸附机理研究吸附机理研究通过对高分子材料的表面性质和结构特征进行分析,探讨吸附过程中的相互作用机制。
常用的研究方法包括扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等。
3. 影响高分子材料吸附性能的因素3.1 材料结构特征材料结构特征包括孔隙结构、比表面积、孔径分布等。
具有大比表面积和多孔结构的高分子材料能提供更多的吸附位点,从而增强吸附性能。
3.2 表面性质高分子材料表面的化学性质对其吸附性能也有重要影响。
例如,具有亲水性表面的高分子材料对水中的有机污染物有较好的吸附性能。
高分子材料的吸附与分离性能研究
![高分子材料的吸附与分离性能研究](https://img.taocdn.com/s3/m/876bf1db1b37f111f18583d049649b6648d7093b.png)
高分子材料的吸附与分离性能研究高分子材料是一类由大分子化合物构成的材料,具有多样化的性质和广泛的应用领域。
其中,吸附与分离性能是高分子材料的重要特征之一,对于环境保护、资源利用和工业生产具有重要意义。
本文将探讨高分子材料的吸附与分离性能研究。
高分子材料的吸附性能指的是其对溶液中各种组分的吸附能力。
高分子材料的吸附可以通过物理吸附和化学吸附两种方式实现。
物理吸附主要是通过材料表面的物理结构和力场与溶液中的组分相互作用引起的,比如范德华力、静电作用力等。
化学吸附则是通过化学键的形成和断裂来实现,如氢键、离子键、共价键等。
高分子材料的吸附性能与其表面特性、孔隙结构、功能基团等密切相关。
不同类型的高分子材料具有不同的吸附选择性,可以选择性地吸附特定组分或一类组分。
例如,离子交换树脂可以通过交换树脂上的阴离子或阳离子基团选择性地捕捉溶液中的离子;吸附树脂则可以选择性地吸附有机物。
此外,高分子材料的吸附性能还受到溶液pH值、温度、物质浓度等因素的影响。
高分子材料的分离性能是指其在分离过程中对混合物组分的选择性分离效果。
分离过程一般包括吸附、脱附和再生等步骤。
在吸附步骤中,高分子材料通过吸附选择性地将目标组分与混合物分离。
然后,在脱附步骤中,改变吸附条件使吸附在高分子材料上的目标组分从材料表面脱附出来。
最后,通过再生步骤将高分子材料恢复到吸附前的状态,以便下一轮的分离。
高分子材料的分离性能研究主要集中在以下几个方面。
首先,研究高分子材料的吸附选择性,探索不同类型材料对目标组分的吸附能力和选择性。
其次,优化高分子材料的分离工艺参数,如溶液的pH值、温度、流速等,以获得最佳的分离效果。
此外,还可以通过改变高分子材料的孔隙结构和表面性质来提高分离性能。
最后,研究高分子材料的再生和循环利用技术,减少材料的损耗和环境污染。
在研究高分子材料的吸附与分离性能时,需要采用一系列的实验技术和理论方法。
常用的实验技术包括吸附等温线、选择吸附等温线、脱附等温线、透析实验等。
高分子吸附材料1
![高分子吸附材料1](https://img.taocdn.com/s3/m/624c320879563c1ec5da71ff.png)
高分子吸附材料1.高分子吸附材料的概念高分子吸附材料是以吸附为特点,是指一类多孔性的、高度交联的高分子共聚物吸附树脂。
这类高分子材料具有较大的比表面积和适当的孔径,可从气相或溶液中吸附某些物质。
它是最近几年高分子领域里新发展起来的一种多孔性树脂,由二乙烯苯等单体,在甲苯等有机溶剂存在下,通过悬浮共聚法制得的鱼籽样的小圆球。
2.高分子吸附材料的分类吸附分离功能高分子主要包括:离子交换纤维、吸附树脂、螯合树脂、聚合物固载催化剂、高分子试剂、固定化酶等。
从广义上讲,吸附分离功能高分子还应该包括高分子分离膜材料。
以下以吸附树脂做重点介绍3.吸附树脂的发展史吸附树脂出现于上一世纪60年代,我国于1980年以后才开始有工业规模的生产和应用。
目前吸附树脂的应用已遍及许多领域,形成一种独特的吸附分离技术。
在吸附树脂出现之前,用于吸附目的的吸附剂已广泛使用,例如活性氧化铝、硅藻土、白土和硅胶、分子筛、活性炭等。
而吸附树脂是吸附剂中的一大分支,是吸附剂中品种最多、应用最晚的一个类别。
4.吸附树脂的用途由于结构上的多样性,吸附树脂可以根据实际用途进行选择或设计,因此发展了许多有针对性用途的特殊品种。
这是其他吸附剂所无法比拟的。
也正是由于这种原因,吸附树脂的展速度很快,新品种,新用途不断出现。
广泛用于废水处理、药剂分离和提纯,用作化学反应催化剂的载体,气体色谱分析及凝胶渗透色谱分子量分级柱的填料。
其特点是容易再生,可以反复使用。
如配合阴、阳离子交换树脂,可以达到极高的分离净化水平。
近年来,聚合物催化剂发展迅速,在化学工业中的应用日益广泛。
而且化学吸附是分子参与反应的重要步骤,尤其是在多项催化时,具有吸附性的催化剂在化学反应中的作用是不可忽略的。
聚合物固载的催化剂是由具有催化活性的官能团、试剂、金属及金属络合物等连接到聚合物载体上而得。
具有以下优点:催化反应易控制、反应条件温和、操作简便、催化速度快、选择性高、可回收并循环利用,反应产物易于纯化,可减少对环境的污染和对设备的腐蚀,因此具有广阔的应用前景。
功能高分子05第2章吸附性高分子材料PPT
![功能高分子05第2章吸附性高分子材料PPT](https://img.taocdn.com/s3/m/97f24028dcccda38376baf1ffc4ffe473268fd4b.png)
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。
吸附性高分子材料ppt..
![吸附性高分子材料ppt..](https://img.taocdn.com/s3/m/231a161fb52acfc789ebc9f8.png)
O OH
OH
CH2OH
O
水解
NaOH
O
OH
O
CH2 n-2 OH
CH
y
CH2
CH COONa
中和
x
湿 脂干料
纤维素接枝共聚反应过程
淀 区 别 与 优 联 点 共 同 点
粉
系
纤维素系 抗霉解性优
合成系 工艺简单,吸水、
价格低廉、生物降解性能好 缺 点
合成工艺复杂,易腐败,耐热性不佳,吸水后 保 水 能 力 强 吸 水 速 凝胶强度低,长期保水性差,耐水解性较差。 度较快耐水解、吸
二、活性碳纤维
概述
活性碳纤维是以高聚物为原料,经高温碳化和活化而制成的 一种纤维状高效吸附分离材料。 一般根据原料的名称分类和命名,例如:以聚丙烯腈为原料 制得的称为聚丙烯腈活性碳纤维等。 活性碳纤维的制备工艺可概括为预处理、碳化和活化三个 主要阶段。
特性与应用(Properties and application)
高吸水性树脂
高吸油性树脂
一、吸附树脂
概述(Summary)
吸附树脂是一类多孔性的、高度交联的高分子共
聚物,亦称为高分子吸附剂。
吸附树脂具有多孔结构,其外观为球形颗粒,颗
粒内部由众多微球堆积、连接在一起。正是这种多孔
结构赋予吸附树脂优良的吸附性能。
制备(Preparation)
吸附树脂的制备技术主要包括成球和致孔两方面。
交 联 点
(内)
吸水树脂的离子型网络
随着吸水量的增大,网络内外的渗透压差趋向于零;而网络 扩张的同时,其弹性收缩力也在增加,逐渐抵消阴离子的静电 排斥,最终达到吸水平衡。
吸水剂微球吸水过程的体积变化示意图
高分子吸附材料
![高分子吸附材料](https://img.taocdn.com/s3/m/a0b7745d974bcf84b9d528ea81c758f5f71f2911.png)
高分子吸附材料
高分子吸附材料是一类具有高吸附性能的材料,广泛应用于环境保护、能源开发、化工等领域。
它们具有大的比表面积、丰富的表面官能团以及良好的机械性能,能够高效地吸附和分离目标物质。
在环境治理和资源回收利用等方面具有重要的应用前景。
首先,高分子吸附材料在环境保护方面发挥着重要作用。
例如,通过改性的高
分子吸附材料可以高效去除水中的重金属离子、有机污染物等有害物质,净化水质。
同时,高分子吸附材料还可用于大气污染物的捕集和处理,对减少环境污染具有积极的意义。
其次,高分子吸附材料在能源开发领域也有着重要应用。
例如,通过改性的高
分子吸附材料可以高效地吸附和分离天然气中的杂质,提高天然气的纯度,满足工业生产和生活用气的需求。
同时,高分子吸附材料还可用于油气田开发中的气体分离和提纯,提高资源利用效率。
此外,高分子吸附材料在化工领域也具有广泛的应用前景。
例如,高分子吸附
材料可以用于有机溶剂的回收,提高溶剂利用率,降低生产成本。
同时,高分子吸附材料还可用于有机物的分离和纯化,满足不同化工生产过程中的需求。
总的来说,高分子吸附材料作为一种新型的功能材料,具有广阔的应用前景。
随着科学技术的不断发展,高分子吸附材料的研究和应用将会得到进一步的推广和深化,为环境保护、能源开发和化工领域的发展做出更大的贡献。
希望通过不断的创新和探索,能够开发出更多性能优良的高分子吸附材料,推动相关领域的可持续发展。
研究新型高分子材料在水处理中的应用
![研究新型高分子材料在水处理中的应用](https://img.taocdn.com/s3/m/31889fc9d1d233d4b14e852458fb770bf78a3b0c.png)
研究新型高分子材料在水处理中的应用随着人口增长和工业化进程加速,水资源面临着越来越大的压力。
水处理技术成为解决水资源短缺和水污染问题的重要途径之一。
近年来,研究人员纷纷将目光投向新型高分子材料,探索其在水处理中的应用潜力。
本文将重点介绍新型高分子材料在水处理中的应用,并对其性能和发展前景进行评估。
一、高分子净水材料1. 新型高分子吸附剂新型高分子吸附剂是近年来研究的热点之一。
它们可通过物理吸附、化学吸附或离子交换等机制去除水中的有机物、重金属离子和污染物。
例如,聚苯乙烯磺酸盐通过吸附作用可高效地去除水中的重金属离子,聚丙烯酰胺也可用于去除水中的颜料和重金属。
2. 高分子凝胶材料高分子凝胶材料可用于水净化和固液分离。
它们具有可调控孔隙结构和表面性质的特点,可高效地去除水中的悬浮物、胶体和微生物等。
例如,聚合物纳米凝胶可用于去除水中的有机物污染物和微生物,通过调节纳米凝胶的孔隙大小和化学结构,可以实现对不同尺寸的污染物的选择性吸附和分离。
二、高分子材料在水净化中的应用1. 膜分离技术高性能薄膜的应用极大地推动了水净化技术的发展。
通过选择合适的高分子材料制备薄膜,可以实现对水中离子、有机物和微生物等的高效分离。
例如,聚醚砜膜在反渗透脱盐和超滤等领域得到广泛应用,其优良的分离性能使其成为水处理领域的重要技术。
2. 高分子和纳米材料的复合应用将高分子与纳米材料相结合,可以构建具有优异性能的水处理材料。
例如,将高分子和纳米颗粒复合制备的纳米复合材料,在水处理中表现出更高的吸附能力和抗菌性能。
此外,高分子和纳米纤维的复合应用也可以用于制备高效的过滤材料,用于去除水中的微米颗粒和胶体。
三、新型高分子材料的发展前景新型高分子材料在水处理中的应用仍处于不断发展阶段,但已经取得了一些显著的进展。
随着材料科学和纳米技术的不断推进,高分子材料的制备和改性技术得到了很大的提升。
新型高分子材料的应用也将越来越广泛,比如基于高分子凝胶的复合材料、基于薄膜的分离材料等。
高分子材料的吸附性能研究
![高分子材料的吸附性能研究](https://img.taocdn.com/s3/m/8241453549d7c1c708a1284ac850ad02de800728.png)
高分子材料的吸附性能研究下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高分子材料在吸附性能研究中扮演着至关重要的角色。
高分子吸附材料
![高分子吸附材料](https://img.taocdn.com/s3/m/26f6cec6aff8941ea76e58fafab069dc5122477e.png)
高分子吸附材料【高分子吸附材料】是一种具有很强吸附能力的材料,主要由高分子聚合物构成。
它在环境领域、医药领域、工业领域等方面都有广泛的应用,能够有效地去除污染物、净化水质、治疗疾病等。
首先,高分子吸附材料在环境领域中发挥着重要的作用。
例如,它可以用于水处理,帮助去除水中的有害物质,如重金属离子、有机污染物等。
高分子吸附材料具有较大的比表面积和丰富的吸附位点,能够有效地与污染物发生吸附作用,从而净化水质。
此外,高分子吸附材料还可以用于空气净化,吸附空气中的颗粒物和有害气体,保障人民的健康。
其次,高分子吸附材料在医药领域中也具有重要的应用价值。
它可以用于药物的吸附和缓释。
许多药物在体内吸收后,容易发生分布不均、排泄快速等问题,导致药效不稳定。
通过将药物与高分子吸附材料结合,可以提高药物的生物利用度,延缓药物的释放速度,从而提高疗效。
此外,高分子吸附材料还可以用于一次性医疗器械的制备,提高器械的生物相容性和安全性。
最后,高分子吸附材料在工业领域中也具有广泛的应用前景。
例如,在食品加工过程中,高分子吸附材料可以用于提取食品中的色素、香精等物质,去除杂质,提高产品的质量。
此外,高分子吸附材料还可以用于废水处理,吸附重金属离子和有机物,从而减少对环境的污染。
此外,它还可以用于气体的吸附和分离,如二氧化碳的捕集和储存等。
综上所述,高分子吸附材料是一种具有广泛应用前景的材料。
它在环境领域、医药领域、工业领域等方面都能发挥重要的作用,具有很强的吸附能力和良好的稳定性。
相信随着科学技术的不断发展,高分子吸附材料的应用领域会更加广泛,为人民生活和工业生产带来更多的便利和效益。
功能高分子02-吸附分离高分子材料
![功能高分子02-吸附分离高分子材料](https://img.taocdn.com/s3/m/eb53f02e0912a21614792942.png)
CH=CH 2 CH=CH 2 + CH=CH 2 CH-CH 2 CH-CH 2 CH-CH 2 CH-CH 2-CH-CH 2 CH-CH 2 n CH-CH 2
CH-CH 2
CH-CH 2
CH-CH 2
交联苯乙烯
P
交联苯乙烯
+ H 2SO4(发烟)
P
SO3H + H 2O
强酸性阳离子交换树脂 水处理剂、酸性催化剂
含有-SO3H交换基团的离子交换树脂称为氢型阳离子交 换树脂,其中H+为可自由活动的离子。由于它们的贮存 稳定性不好,且有较强的腐蚀性,因此常将它们与NaOH 反应而转化为Na型离子交换树脂。Na型树脂有较好的贮 存稳定性。
2.1离子交换树脂的结构
离子交换树脂是一类带有可离子化基团的三维网状高分子 材料,其外形一般为颗粒状,不溶于水和一般的酸、碱, 也不溶于普通的有机溶剂如乙醇、丙酮和烃类。粒径一般 为0.3~1.2mm。一些特殊用途的离子交换树脂的粒径可 能大于或小于这一范围。
离子交换树脂外观
树脂由三部分组成:三维空间结 构的网络骨架;骨架上连接的可 离子化的功能基团;功能基团上 吸附的可交换的离子。 强酸型阳离子交换树脂的功能基 团是—SO3-H+,它可解离出H+, 而H+可与周围的外来离子互相 交换。功能基团是固定在网络骨 架上的,不能自由移动。由它解 离出的离子却能自由移动,并与 周围的其他离子互相交换。这种 能自由移动的离子称为可交换离 子。
②
按树脂的物理结构分类
按其物理结构的不同,可将离子交换树脂分为凝胶型、 大孔型和载体型三类。
不同物理结构离子交换树脂的模型
有机高分子吸湿材料的吸附模型与机理
![有机高分子吸湿材料的吸附模型与机理](https://img.taocdn.com/s3/m/5f778170590216fc700abb68a98271fe900eaf10.png)
有机高分子吸湿材料的吸附模型与机理
有机高分子吸湿材料的吸附模型和机理如下:
1. 吸附模型:有机高分子吸湿材料的吸湿主要遵循准二级动力学模型。
这表明吸湿过程并非单一机制,而是由多种因素共同作用。
Freundlich吸附等温模型也表明,有机高分子吸湿材料吸湿并非单层吸附,而是物理吸附和化学吸附同时发生,且多以化学吸附为主。
2. 吸附机理:高分子材料由许多分子构成,分子之间存在着相互吸引的力,这种力使得高分子材料可以吸附空气中的湿气分子。
当湿气分子接触到高分子材料表面时,它们会被高分子材料的吸附力所吸附,并被固定在高分子材料的表面。
这样,空气中的湿气分子就被高分子材料吸附下来,从而降低了空气中的湿度。
这个过程是吸热反应且可自发进行。
总的来说,有机高分子吸湿材料的吸附模型和机理主要涉及到动力学、物理化学吸附以及热力学等方面的知识。
如需更多信息,建议查阅相关文献或咨询专业人士。
吸附分离高分子材料课件
![吸附分离高分子材料课件](https://img.taocdn.com/s3/m/07d47011b207e87101f69e3143323968001cf41b.png)
正相悬浮交联
高分子化合物作为反应物,成本较高 主要用于天然高分子,如壳聚糖用戊二醛交联成球,葡
聚糖采用环氧氯丙烷交联 优点:
交联密度均匀 孔结构分散性好
2、吸附树脂的成孔技术
要使吸附树脂有足够的吸附容量,必须在使用状态下有较高的比表面积。
提高比表面积
提高吸附容量
大量微孔
成孔技术
孔的形成及孔径大小
苯乙烯、二乙烯基苯,悬浮聚合,制成凝胶(不 加致孔剂)或多孔性的低交联度(<1%)共聚物
用氯甲醚进行氯甲基化反应(傅-克反应) 自交联
大网均孔结构,比表面积>1000m2/g
3、吸附树脂的主要品种
按照高分子主链的化学结构,主要有: 聚苯乙烯型 聚丙烯酸酯型 其他类型
(1)聚苯乙烯型
水
甜叶菊
FeSO4絮凝
过滤 AB-8吸附 废水
70%
浓缩 大孔阴离子交换树脂
乙 醇
大孔阳离子交换树脂
干燥 产品
(4)在制酒工业中的应用 酒中的高级脂肪酸脂易溶于乙醇而不溶于水。当制备低度 白酒时,需向高度酒中加水稀释。高级脂肪酸脂类溶解度 降低,容易析出而呈浑浊现象,影响酒的外观。吸附树脂 可选择性地吸附酒中分子较大或极性较强的物质,较小或 极性较弱的分子不被吸附而存留。如棕榈酸乙酯、油酸乙 酯和亚油酸乙酯等分子较大的物质被吸附,而己酸乙酯、 乙酸乙酯、乳酸乙酯等相对分子质量较小的香味物质不被 吸附而存留,达到分离、纯化的目的。
无机小分子的 半径<1nm
➢ 在水中会溶胀成凝胶状,并呈现大分子链的间隙孔,2-4nm
➢ 无水状态分子链紧缩,体积缩小,无机小分子无法通过
➢ 在干燥条件下或油类中将丧失离子交换功能。
第七章吸附型高分子材料
![第七章吸附型高分子材料](https://img.taocdn.com/s3/m/487aaeb484868762caaed545.png)
第四节 高吸水性高分子材料
所谓高吸水性高分子材料是指具有与水接触后能迅速吸收 高于自身质量若干倍的高分子材料。
最早的高吸水性高分子材料是在1974年由美国农业部的研 究人员首先研制的。
目前已经有淀粉衍生物系列、纤维素衍生物系列、聚丙烯 酸和聚乙烯醇系列。 由于其重要的应用价值,在科研和生产方面都取得了快速 发展。 主要应用于农业、建筑材料、医疗卫生、林业、食品工业。
因汞在过量氯离子存在下能生成稳定的络阴离子 [HgCl4]-2, 所以可采用离子交换法,选用强碱性阴离子树脂来吸附 它。
29
(2)含铬废水的处理 铬也是毒性较大的重金属,因而规定废水中铬含量在5×10-8 以下才能排放。含铬酸的废水主要来自电镀行业。
将废水通过Cl-式强碱性阴离子交换树脂,铬酸被树脂交换 吸附,而后用再生剂NaOH溶液脱附,生成Na2CrO4再生废 液。它的铬酸浓度比原废水中铬酸含量高了几百倍。将再 生废液通过一H+式强酸性阳离子交换树脂柱,变成纯度很 高的铬酸返回应用。
30
3. 离子交换树脂提取铀和贵金属
离子交换是冶金工业的重要单元操作之一。在铀、钍等超铀 元素、稀土金属、重金属、轻金属、贵金属和过渡金属的分 离、提纯和回收方面,离子交换树脂均起着十分重要的作用。
离子交换树脂在原子能工业上的应用包括核燃料的分离、 提纯、精制、回收等。用离子交换树脂制备高纯水,是核 动力用循环、冷却、补给水供应的唯一手段。离子交换树 脂还是原子能工业废水去除放射性污染处理的主要方法。
3.吸附树脂的宏观结构
4
三、影响吸附树脂性能的外界因素 1.温度因素 2.树脂周围介质的影响 3.其他影响因素
5
二、吸附性高分子材料的制备方法 1.微孔(凝胶)型吸附树脂
新型高分子材料在水处理中的应用研究
![新型高分子材料在水处理中的应用研究](https://img.taocdn.com/s3/m/e8330dee48649b6648d7c1c708a1284ac85005a5.png)
新型高分子材料在水处理中的应用研究随着城市化进程的不断加速,环境污染成为了一个严重的问题。
水资源是人类生存和发展的必需品,但是水污染却威胁到了人类的健康和生存。
因此,水处理成为了一项非常重要的任务。
近年来,新型高分子材料得到了广泛的研究和应用,这些材料具有很好的抗污染性和处理效果,成为了水处理领域的热门研究方向之一。
一、新型高分子材料的分类和特点1. 示例一新型高分子材料是指在功能、性质或结构上有独特性质的高分子材料,按照用途和性质的不同,可以分为以下几类:(1)吸附型高分子材料这种材料可以通过表面活性剂或吸附剂的特殊结构,吸附水中的有害物质,达到净化水的目的。
(2)凝聚型高分子材料凝聚型高分子材料可以通过自我聚集体系来净化水,包括沉降、过滤、双极凝聚、纳米材料等。
(3)反应型高分子材料反应型高分子材料可以在水中引起化学反应,例如电解、光解和氧化等,从而达到净化水的目的。
2. 示例二新型高分子材料具有以下优点:(1)高分子吸附材料具有高效、低成本、易反应、可再生等优点,在水处理中得到广泛的应用。
(2)新型高分子材料的生产成本低,易于制备和使用,广泛应用于一些废水处理、海水淡化和工业废水处理等领域。
(3)新型高分子材料抗污染性能好,在环境污染严重的情况下,仍能维持其原有的特性,因此,可以大大减少环境污染。
二、新型高分子材料在水处理中的应用1. 示例一(1)吸附型高分子材料吸附型高分子材料在废水处理中起到了非常重要的作用。
通过这些材料,大量的重金属离子、有机物质等有害物质可以被吸附和净化。
例如,活性炭、纳米复合材料、聚合物、生物吸附材料等都是吸附型高分子材料的代表。
(2)凝聚型高分子材料凝聚型高分子材料在污水处理中也有很好的应用。
通过这些材料,污水中的微生物、悬浮颗粒和沉淀物可以被凝聚在一起,从而达到净化水的目的。
例如,高岭土、淀粉酸钠、聚丙烯酰胺和聚乳酸等都是凝聚型高分子材料的代表。
2. 示例二反应型高分子材料在水处理中也有一定的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据材料来源
• 天然高分子吸附材料:活性炭、硅藻土、 氧化铝、甲壳质和纤维素等
• 合成高分子吸附材料:离子交换树脂、高 分子螯合剂、吸附性树脂、吸水性树脂等
根据高分子材料的性质和用途
• 非离子型吸附树脂 • 吸水性高分子吸附剂 • 金属阳离子配位型吸附树脂 • 离子型吸附树脂
二、吸附性高分子材料的结构及制 备方法
• 微孔型吸附树脂 • 大孔型吸附树脂 • 米花型吸附树脂 • 交联大网状吸附树脂
• 微孔型吸附树脂外观呈颗粒状,在干燥状 态下树脂内的微孔很小,也很少,因此作 为吸附剂使用时必须用一定溶剂进行溶胀 ,溶胀后树脂内的三维网状结构被扩张,
三、聚合物化学结构与吸附性能之 间的关系
• 化学组成与功能基团
1、元素组成的影响 2、功能基团的影响 3、分子极性的影响
聚合物的链结构和超分子结构 吸附树脂的宏观结构
四、影响吸附树脂性能的外部因素
• 温度因素 • 树脂周围介质的影响 • 其他影响因素
吸附性高分子材料的结构
吸附性高分子材料主要由单体和适 量的交联剂通过共聚反应合成。
吸附性高分子材料
微孔型(凝胶型)
大孔型
米花型
大网状树脂
悬浮聚合 制备方法本体聚合
溶液聚合
微孔型吸附树脂
• 制备方法:一般都是用悬浮聚合的方法制 成粒经为0.3~1.0mm的吸附树脂。特点, 外观呈颗粒状,树脂内部空隙小。
例如,单体(二乙烯基苯)、致孔剂(甲苯 )和引发剂(过氧化二苯甲酰)按一定的 比例混合,用悬浮聚合的方法即可制得非 极性的吸附树脂。
交联大网状吸附树脂
• 大网状吸附树脂是三维交联的网状聚合物 ,主要是在线性聚合物的基础上,加入交 联剂进行交联反应制备的。聚合过程中需 加入成孔剂。
•Than叶龙福 刘广学
第八章 吸附性高分子材料
第一节 吸附性高分子材料概述
一、吸附性高分子材料的定义和分类
• 定义:吸附性材料主 要是指那些对某些特 定离子或分子有选择 性亲和作用,是两者 之间发生暂时或永久 性结合,进而发挥各 种功效的材料。
根据材料的结构和属性
• 无机吸附材料:分子筛、硅胶、活性炭等 • 有机吸附材料:聚苯乙烯、葡聚糖凝胶、
• 采用悬浮聚合主要优点:反应易控制,散 热比本体聚合快。另外直接生成球状颗粒 ,无需再加工
大孔型吸附树脂
• 一般也采用悬浮聚合法制备,主要特点是 干燥状态时有较高的孔隙率和较大的孔径 。
米花型吸附树脂
• 外观:白色不透明颗粒,类似于膨化的米 花。
• 特点:具有多孔性、不溶解性和较低的体 积密度。不溶于大多数溶剂,不溶胀。