翻折专题

合集下载

特殊四边形中的旋转、翻折问题

 特殊四边形中的旋转、翻折问题

专题02 特殊四边形中的旋转、翻折问题题型一 菱形中的旋转、翻折问题1.如图,在菱形纸片ABCD 中,60A Ð=°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C ¢处,则DEC Ð的大小为( )A .30°B .45°C .60°D .75°【解答】解:连接BD ,如图所示:Q 四边形ABCD 为菱形,AB AD \=,60A Ð=°Q ,ABD \D 为等边三角形,120ADC Ð=°,60C Ð=°,P Q 为AB 的中点,DP \为ADB Ð的平分线,即30ADP BDP Ð=Ð=°,90PDC \Ð=°,\由折叠的性质得到45CDE PDE Ð=Ð=°,在DEC D 中,180()75DEC CDE C Ð=°-Ð+Ð=°.故选:D .2.如图,在平面直角坐标系中,四边形OABC 是菱形,120AOC Ð=°,点B 的坐标为(6,0),点D 是边BC 的中点,现将菱形OABC 绕点O 顺时针旋转,每秒旋转60°,则第2021秒时,点D 的坐标为( )A .9(2B .9(2-,C .9(2,D .9(2-【解答】解:如图,连接OD ,过点C 作CH OB ^于H ,Q 四边形OABC 是菱形,120AOC Ð=°,点B 的坐标为(6,0),6OB \=,OC BC =,60BOC Ð=°,BOC \D 是等边三角形,6OC OB BC \===,Q 点D 是BC 中点,OD BC \^,3BD =,OD \==,CH OB ^Q ,60COB Ð=°,3OH BH \==,CH ==,\点(3,C -,Q 点D 是BC\点9(2D ,,Q 将菱形OABC 绕点O 顺时针旋转,每秒旋转60°,\第1秒后,点1D 坐标为(0,-,第2秒后,点2D 坐标为9(2-,,第3秒后,点3D 坐标为9(2-,,第4秒后,点4D 坐标为(0,,第5秒后,点5D 坐标为9(2,第6秒后,点6D 坐标为9(2,,¼由上可知,点D 的坐标每6个为一组依次循环着,202163715\¸=¼,\第2021秒时,点D 的坐标为9(2,故选:A .3.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 逆时针旋转105°至111OA B C 的位置,若2OA =,120C Ð=°,则点1B 的坐标为( )A .(-B .(3,C .(D .【解答】解:连接AC 与OB 相交于点E ,过点1B 作1BF x ^轴,垂足为F ,Q 四边形OABC 为菱形,120C Ð=°,OA OC =,60AOC \Ð=°,2OC OA AC ===,AC OB ^Q ,\在Rt OAE D 中,2OA =,112AE AC ==,OE \===,OB \=,又1302AOB AOC Ð=Ð=°Q ,1105BOB Ð=°,111801803010545B OF AOB BOB \Ð=°-Ð-Ð=°-°-°=°,在Rt △1B OF 中,1OB OB ==,1OF B F =,22211OF B F OB \+=,可得1OF B F ==,Q 点1B 在第二象限,\点1B 的坐标为(.故选:C .4.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且(4,0)B ,以AB 为边构造菱形ABEF ,将菱形ABEF 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转45°,则第164次旋转结束时,点164F 的坐标为( )A .(4-,B .(4,--C .,4)-D .(-,4)-【解答】解:Q 点(4,0)B ,4OB \=,4OA \=,AB \==,Q 四边形ABEF 是菱形,AF AB \==,\点F ,4),由题意可得每次8旋转一个循环,1648204\¸=¼,\点164F 的坐标与点F 坐标关于原点对称,\点164F 的坐标(-,4)-,故选:D .5.如图,已知菱形ABCD 的边长2,60A Ð=°,点E 、F 分别在边AB 、AD 上,若将AEF D 沿直线EF 折叠,使得点A 恰好落在CD 边的中点G 处,则EF【解答】解:延长CD ,过点F 作FM CD ^于点M ,连接GB 、BD ,作FH AE ^交于点H ,如图所示:60A Ð=°Q ,四边形ABCD 是菱形,60MDF \Ð=°,30MFD \Ð=°,设MD x =,则2DF x =,FM =,1DG =Q ,1MG x \=+,222(1))(22)x x \++=-,解得:0.3x =,0.6DF \=, 1.4AF =,10.72AH AF \==,sin 1.4FH AF A =Ð==g ,CD BC =Q ,60C Ð=°,DCB \D 是等边三角形,G Q 是CD 的中点,BG CD \^,2BC =Q ,1GC =,BG \=,设BE y =,则2GE y =-,222(2)y y \+=-,解得:0.25y =,1.75AE \=,1.750.7 1.05EH AE AH \=-=-=,EF \===.6.已知菱形ABCD 中,120ABC Ð=°,12AB =,点E ,F 分别在边AD ,AB 上,将AEF D 沿着直线EF 折叠,使得点A 落在G 点.(1)如图1,若点G 恰好落在AC 上,且3CG =,求DE 的长;(2)如图2,若点G 恰好落在BD 上,且3BG =,求DE 的长.【解答】解:(1)连接BD ,交AC 于点O ,Q 四边形ABCD 是矩形,1602ABD ABC \Ð=Ð=°,90AOB Ð=°,2AC AO =,在Rt AOB D 中易得到AO =,AC =Q 菱形ABCD 中,AD DC =,DAC DCA \Ð=Ð,Q 点A 与点G 关于EF 轴对称,AE EG \=,DAC EGA \Ð=Ð,DCA EGA \Ð=Ð,//EG DC \,\DE CG AD AC =,\12DE =,DE \=.(2)Q菱形ABCD中,120ABCÐ=°,AD AB\=,60AÐ=°,ABD\D是等边三角形,60EDG FBGÐ=Ð=°,又由翻折可得60EGF AÐ=Ð=°,又EGB EGF FGB DEG EDG Ð=Ð+Ð=Ð+Ð,FGB DEG\Ð=Ð.DEG BGF\D D∽,\DE DG EG BG BF FG==,设DE x=,则12EG AE x==-,\9123x xBF FG-==,27BFx\=,363x FGx-=,又12 AB AF BF FG BF=+=+=,\2736312xx x-+=,解得:215x=,即215 DE=.7.四边形ABCD为菱形,BD为对角线,在对角线BD上任取一点E,连接CE,把线段CE绕点C顺时针旋转得到线段CF,使得ECF BCDÐ=Ð,点E的对应点为点F,连接DF.(1)如图1,求证:BE DF=;(2)如图2,若2DFC DBCÐ=Ð,在不添加任何辅助线的前提下,请直接写出五对线段,使每对线段的和等于(BD BE和DE除外).【解答】(1)证明:Q 四边形ABCD 为菱形,BC CD \=,Q 把线段CE 绕点C 顺时针旋转得到线段CF ,CE CF \=,ECF BCD Ð=ÐQ ,BCE DCF \Ð=Ð,在BCE D 与DCF D 中,BC CD BCE DCF CE CF =ìïÐ=Ðíï=î,()BCE DCF SAS \D @D ,BE DF \=.(2)解:BCE DCF D @D Q ,BE DF \=,BEC DFC Ð=Ð,CB CD =Q ,CBD CDE \Ð=Ð,2DFC CBD Ð=ÐQ ,2BEC CDE \Ð=Ð,CEB CDE ECD Ð=Ð+ÐQ ,EDC ECD \Ð=Ð,ED EC CF \==,BD BE EC BE CF DF DE DF CE DF CF \=+=+=+=+=+.8.如图,平行四边形ABCD 中,AB AC ^,1AB =,BC =,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F .(1)证明:当90AOF Ð=°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,AF 与CE 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AOF Ð度数.【解答】(1)证明:当90AOF Ð=°时,//AB EF ,//AF BE Q ,\四边形ABEF 是平行四边形.(2)证明:Q 四边形ABEF 是平行四边形,AO CO \=,//AF EC ,FAO ECO \Ð=Ð,在AOF D 和COE D 中,FAO OCE OA OCAOF COE Ð=Ðìï=íïÐ=Ðî,AOF COE \D @D ,AF CE \=.(3)解:结论:四边形BEDF 可能是菱形.AOF COE D @D Q ,OE OF \=,EF \与BD 互相平分,\四边形BEDF 是平行四边形,\当EF BD ^时,四边形BEDF 是菱形,在Rt ABC D 中,2AC =,1OA AB \==,AB AC ^Q ,45AOB \Ð=°,45AOF \Ð=°,\当四边形BEDF 是菱形时,45AOF Ð=°.9.如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,//AD x 轴且4AD =,60A Ð=°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A .(0,B .(2,4)-C .0)D .(0,或(0,-【解答】解:根据菱形的对称性可得:当点C 旋转到y 轴负半轴时,A 、B 、C 均在坐标轴上,如图,60BAD Ð=°Q ,4AD =,30OAD \Ð=°,2OD \=,AO OC \====,\点C 的坐标为(0,-,同理:当点C 旋转到y 轴正半轴时,点C 的坐标为,\点C 的坐标为或(0,-,故选:D .10.如图,在菱形ABCD 中,1AB =,60DAB Ð=°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ¢¢¢,其中点C 的运动路径为 CC ¢,则图中阴影部分的面积为 342p +【解答】解:连接CD ¢和BC ¢,60DAB Ð=°Q ,30DAC CAB \Ð=Ð=°,30C AB Т¢=°Q ,A \、D ¢、C 及A 、B 、C ¢分别共线.AC \=\扇形ACC ¢4p =,AC AC =¢Q ,AD AB¢=\在OCD D ¢和△OC B ¢中,CD BC ACO AC D COD C OB ¢=¢ìïÐ=Т¢íïТ=ТîOCD \D ¢@△()OC B AAS ¢.OB OD \=¢,CO C O=¢60CBC Т=°Q ,30BC O Т=°90COD \Т=°1CD AC AD ¢=-¢=-Q 1OB C O +¢=\在Rt BOC D ¢中,222(1)1)BO BO +-=解得12BO =,32C O ¢=-,1324OC B S BO C O ¢\=¢=-V g \图中阴影部分的面积为:3242OC B ACC S S p¢¢-=+V 扇形.故答案为:342p+-题型二 矩形中的旋转、翻折问题11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .9(5-,12)5B .12(5-,95C .16(5-,125D .12(5-,16)5【解答】解:过点1C 作1C N x ^轴于点N ,过点1A 作1A M x ^轴于点M ,由题意可得:1190C NO A MO Ð=Ð=°,123Ð=Ð=Ð,则△1A OM ∽△1OC N ,5OA =Q ,3OC =,15OA \=,13A M =,4OM \=,\设3NO x =,则14NC x =,13OC =,则22(3)(4)9x x +=,解得:35x =±(负数舍去),则95NO =,1125NC =,故点C 的对应点1C 的坐标为:9(5-,12)5.故选:A .12.如图,在矩形ABCD 中,3AB =,4BC =,将矩形ABCD 绕点C 旋转,点A 、B 、D 的对应点分别为A ¢、B ¢、D ¢,当A ¢落在边CD 的延长线上时,边A D ¢¢与边AD 的延长线交于点F ,联结CF ,那么线段CF【解答】解:Q 四边形ABCD 是矩形,3AB CD \==,4AD BC ==,90ADC Ð=°,90A DF CDF ¢\Ð=Ð=°,由旋转的性质得:3CD CD ¢==,4A D AD ¢¢==,90ADC A D C ¢¢Ð=Ð=°,5A C ¢\==,532A D A C CD ¢¢\=-=-=,在Rt CDF D 和Rt △CD F ¢中,CF CF CD CD =ìí¢=î,Rt CDF Rt \D @△()CD F HL ¢,DF D F ¢\=,设DF D F x ¢==,则4A F x ¢=-,在Rt △A DF ¢中,由勾股定理得:2222(4)x x +=-,解得:32x =,32DF \=,CF \===.13.如图,矩形纸片ABCD 中,6AD =,E 是CD 上一点,连结AE ,ADE D 沿直线AE 翻折后点D 落到点F ,过点F 作FG AD ^,垂足为G .若3AD GD =,则DE 的值为( )A B .52C D 【解答】解:过点E 作EH FG ^,交FG 于点H ,如图,由题意:AEF AED D @D ,则6AF AD ==,DE EF =.6AD =Q ,3AD GD =,2GD \=.624AG AD DG \=-=-=.FG AD ^Q ,FG \===.Q 四边形ABCD 是矩形,90D \Ð=°,FG AD ^Q ,EH FG ^,\四边形GHED 为矩形.GH DE \=,2HE GD ==.设DE x =,则GH EF x ==,HF x =,在Rt HEF D 中,222HF HE EF +=Q ,\222)2x x -+=.解得:x =DE \=故选:C .14.如图,点E 在矩形ABCD 边CD 上,将ADE D 沿AE 翻折,点D 恰好落在BC 上的点F 处,若2AB CF =,3CE =,连接DF ,与AE 交于H 点,连接BH ,则点F 到BH 的距离为【解答】解:根据折叠的性质知:AD AF BC ==,DE EF =,AE 是线段DF 的垂直平分线,H 是DF 的中点,设DE EF x ==,则3DC AB x ==+,11(3)22FC AB x ==+,在Rt EFC D 中,222FC EC EF +=,即2221[(3)]32x x ++=,解得:5x =或3x =-(舍去),538DC AB \==+=,4FC =,设AD AF BC y ===,则4BF y =-,在Rt ABF D 中,222AB BF AF +=,即2228(4)y y +-=,解得:10y =,6BF \=,过H 作HN BC ^于N ,过F 作FM BH ^于M ,Q 四边形ABCD 是矩形,//HN CD \,142HN CD \==,122FN FC ==,8BN BF FN \=+=,由勾股定理得:BH ==,1122BHF S BF HN BH FM D =´=´Q ,BF HN FM BH ´\===15.如图,在平面直角坐标系中,四边形OABC 是矩形,6OA =,将ABC D 沿直线AC 翻折,使点B 落在点D 处,AD 交x 轴于点E ,若30BAC Ð=°,则点D 的坐标为( )A .2)-B .3)-C .3)-D .(3,-【解答】解:过D 点作DF x ^轴,垂足为F ,则//DF y 轴,Q 四边形AOCB 为矩形,90OAB AOC B \Ð=Ð=Ð=°,6BC AO ==,AB OC =,\=,OC AB12AC==,由折叠可知:30Ð=Ð=°,AD ABDAC BAC==,\Ð=°,OAE30OE\=,AE=,\=,ED//Q轴,DF y\Ð=Ð=°,30EDF EAODF=,\=,3EF\=+=,OF OE EF-,\点坐标为,3)D故选:B.16.如图,四边形ABCD中,//AD BC,AB BCBCDÐ=°,将CD绕点D逆时针旋转90°至ED,^,45延长AD交EC于点F.(1)求证:四边形ABCF是矩形;AD=,3(2)若2BC=,求AE的长.【解答】(1)证明://BCDÐ=°,^,45Q,AB BCAD BCBCD FDCÐ=Ð=°,\Ð=Ð=°,4590B BAFQ将CD绕点D逆时针旋转90°至ED,Ð=°,EDCDE DC\=,90EDF FDC\Ð=°=Ð,45\^,DF CE\Ð=°,AFC90即90Ð=Ð=Ð=°,B BAF AFC\四边形ABCF是矩形;(2)解:Q四边形ABCF是矩形,\==,AF BC3\=-=,321DFQ,90Ð=°,DFEÐ=°45EDF\Ð=Ð=°,45DEF EDF\==,1DF EF在Rt AFED中,由勾股定理得:AE===.AB=,217.如图,矩形OABC中,1¢¢,则AO=,将矩形OABC绕点O按顺时针转90°,得到矩形OA B CBB¢【解答】解:如图所示:Q矩形OABC中,1AB=,2AO=,将矩形OABC绕点O按顺时针转90°,得到矩形OA B C¢¢,B D¢=,\=,13BD则BB¢==..AB=,618.如图,在矩形ABCD中,4D沿AE折叠,使点B落在矩形BC=,点E为BC的中点,将ABE内点F处,连接CF,则CF的长为( )A .95B .125C .165D .185【解答】解:连接BF ,6BC =Q ,点E 为BC 的中点,3BE \=,又4AB =Q ,5AE \==,由折叠知,BF AE ^(对应点的连线必垂直于对称轴)125AB BE BH AE ´\==,则245BF =,FE BE EC ==Q ,90BFC \Ð=°,185CF \==.故选:D .19.已知,如图,四边形ABCD 中,90D Ð=°,AB AC =,DAC B Ð=Ð,点E 是BC 的中点.(1)求证:四边形AECD 是矩形;(2)若8AD =,6CD =,点F 是AD 上的点,连接CF ,把D Ð沿CF 折叠,使点D 落在点G 处.当AFG D 为直角三角形时,求CF 的长度.【解答】解:(1)证明:AB AC =Q ,B ACB \Ð=Ð.DAC B Ð=ÐQ ,DAC ACB \Ð=Ð.//AD EC \.AB AC =Q ,E 是BC 的中点,AE BC \^.90AEC \Ð=°.18090EAD AEC \Ð=°-Ð=°.90D Ð=°Q ,\四边形AECD 为矩形.(2)当90AGF Ð=°时,G 在AC 上,如图,8AD =Q ,6CD =,10AC \==.CG CD =Q ,4AG AC CG \=-=.设DF x =,则8AF x =-,GF DF x ==,由勾股定理得:222AG GF AF +=.2224(8)x x \+=-.解得:3x =.\CF ===当90AFC Ð=°时,G 在CE 上,此时四边形CDFG 为正方形,如图:CF \=;当90FAG Ð=°时,G 在AB 上,此时6CG CD ==,而8CE AD ==,Q斜边大于直角边,\不可能在AB边上.G综上,CF=.20.矩形ABCD绕点A顺时针旋转至矩形AEFG,使B点正好落在CD上的点E处,连BE.(1)求证:2Ð=Ð;BAE CBE(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论.【解答】(1)证明:Q四边形ABCD是矩形,\Ð=Ð=°,C CBA90CBE ABE\Ð+Ð=°,90Q将矩形ABCD绕点A顺时针旋转至矩形A点正好落在CD上的点E处,=,Ð=°,AE AB\=,90BC AGEAG\Ð=Ð,ABE AEBQ,Ð+Ð+Ð=°BAE ABE AEB180\Ð+Ð=°,ABE BAE2180Q,Ð+Ð=°CBE ABE90\Ð+Ð=°,CBE ABE22180\Ð=Ð.BAE CBE2(2)2=,AF MN证明:过B作BO AE^于O,连接EG,Q四边形AEFG是矩形,Ð=Ð=°,MAG BOM\=,90AF EG90C CBA Ð=Ð=°Q ,90AEB ABE CBE \Ð=Ð=°-Ð,90CEB CBE Ð=°-Ð,CEB OEB \Ð=Ð,在CBE D 和OBE D 中,90CBE OBE C BOE BE BE Ð=ÐìïÐ=Ð=°íï=î,()CBE OBE AAS \D @D ,EC OE \=,BO BC AD AG ===,在BOM D 和GAM D 中,AMG BME BOM GAM BO AG Ð=ÐìïÐ=Ðíï=î,()BOM GAM AAS \D @D ,BM GM \=,Q 点N 为BE 的中点,12MN EG \=,EG AF =Q ,2AF MN \=.题型三 正方形中的旋转、翻折问题21.如图,在正方形ABCD 中,E 是BC 边上的一点,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC于G ,连接AG ,则EAG Ð= 45 度.【解答】解:Q 四边形ABCD 是正方形,AB AD \=,90ABE BAD ADG Ð=Ð=Ð=°,由翻折可知:AB AF =,90ABE AFE AFG Ð=Ð=Ð=°,BAE EAF Ð=Ð,90AFG ADG Ð=Ð=°Q ,AG AG =,AD AF =,Rt AGD Rt AGF(HL)\D @D ,GAF GAD Ð=Ð,1()452EAG EAF GAF BAF DAF \Ð=Ð+Ð=Ð+Ð=°.故答案为:45.22.如图,正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到如图所示的位置,使得点B 落在对角线CF 1- .【解答】解:方法一:正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,1EF CE \==,CF \=,1BF \=-,45BFE Ð=°Q ,\阴影部分的面积211111)122=´´-´=-;方法二:Q 过E 点作//MN BC 交AB 、CD 于M 、N 点,设AB 与EF 交于点P 点,连接CP ,如下图所示,B Q 在对角线CF 上,45DCE ECF \Ð=Ð=°,1EC =,ENC \D 为等腰直角三角形,MB CN \===,又BC AD CD CE ===,且CP CP =,PEC D 和PBC D 均为直角三角形,Rt PEC Rt PBC(HL)\D @D ,PB PE \=,又45PFB Ð=°,45FPB MPE \Ð=°=Ð,MPE \D 为等腰直角三角形,设MP x =,则EP BP ==,MP BP MB +=Q ,\x +=x =,1BP \==-,\阴影部分的面积12211)12PBC S BC BP D ==´´´=´-=-.1.23.如图,将边长为3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形AB C D ¢¢¢,则图中阴影部分面积为 9-【解答】解:连接AE ,如图所示:由旋转的性质可知:AB AB =¢.在Rt △AB E ¢和Rt ADE D 中,AE AE AB AD =ìí¢=î,Rt \△Rt ADE(HL)AB E ¢@D .DAE B AE \Ð=Т,ADE AB E S S D ¢=V .30BAB Т=°Q ,1(9030)302DAE \Ð=´°-°=°.又3AB =Q ,DE AB \==132ADE S D \==,又239ABCD S ==Q 正方形,929S \=-=-阴影.故答案为:9-.24.如图是一张正方形纸片ABCD ,将其对折使AB 与DC 重合,折痕EF 分别与BC ,AD 交于点E ,F ,再将点D 对折到线段AE 上,折痕AG 交DC 于点G ,则DC GC【解答】解:如图,连接EG ,设DG D G x ¢==,2AB a =,由折叠得:BE EC a ==,2AD AD a ¢==,2CG a x \=-,由勾股定理得:AE ==,2D E a ¢\=-,在Rt EGD ¢D 和Rt EGC D 中,2222(2)2)a a x x a +-=+-,解得1)x a =-,\DC GC =..25.如图,将边长为12的正方形纸片ABCD 折叠,点A 与CD 边中点M 重合,折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与BC 交于点G ,则DE 长度为 92 ,BG 与BC 的数量关系为 .【解答】解:过A 作AH MG ^于H ,连接AG ,如图:设DE x =,则12AE ME x ==-,Rt DME D 中,162DM DC ==,222DM DE ME +=,2226(12)x x \+=-,解得92x =,92DE \=,Q 正方形纸片ABCD 折叠,点A 与CD 边中点M 重合,MAB AMG \Ð=Ð,//DC AB Q ,DMA MAB \Ð=Ð,DMA AMG \Ð=Ð,在ADM D 和AHM D 中,90,D AHM DMA AMG AM AMÐ=Ð=°ìïÐ=Ðíï=î,()ADM AHM AAS \D @D ,AD AH \=,6MH MD ==,AH AD AB \==,在Rt AHG D 和Rt ABG D 中,AH ABAG AG =ìí=î,Rt AHG Rt ABG(HL)\D @D ,HG BG \=,设BG y =,则HG y =,12CG y =-,Rt CMG D 中,162CM DC ==,6MG MH HG y =+=+,222CM CG MG +=,2226(12)(6)y y \+-=+,解得245y =,245BG \=,\2425125 BGBC==,25BG BC\=.故答案为:92,25BG BC=.26.如图,已知正方形ABCD的边长为6,以点C为直角顶点的等腰Rt CEFD绕C旋转一圈,且保持2CE=,过点C作CH DE^于H交直线BF于M,连AM,则AM的最小值为 1- .【解答】解:如图1中,作//BT CF交CM分延长线于T.//BT CFQ,T FCM\Ð=Ð,CH DE^Q,ECFD是等腰直角三角形,90CHE ECF\Ð=Ð=°,90FCM ECH\Ð+Ð=°,90ECH DECÐ+Ð=°,DEC FCM T\Ð=Ð=Ð,90DCB DHCÐ=Ð=°Q,90BCT DCH \Ð+Ð=°,90DCH CDE Ð+Ð=°,TCB CDE \Ð=Ð,CB CD =Q ,()BCT DCE AAS \D @D ,BT EC CF \==,TMB CMF Ð=ÐQ ,T MCF Ð=Ð,()TBM CFM AAS \D @D ,BM FM \=,如图2中,取BC 的中点N ,连接AN ,MN .Q 四边形ABCD 是正方形,6AB BC \==,90ABN Ð=°,3BN NC ==Q ,AN \===,BM MF =Q ,BN NC =,112MN CF \==,AM AN MN -Q …,1AM \…,AM \的最小值为1-.故答案为:1-.27.在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,AE 与BF 相交于点G .(1)如图1,求证:AE BF ^;(2)如图2,将BCF D 沿BF 折叠,得到BPF D ,延长FP 交BA 的延长线于点Q ,若4AB =,求QF 的值【解答】(1)证明:E Q ,F 分别是正方形ABCD 边BC ,CD 的中点,CF BE \=,在ABE D 和BCF D 中,AB BC ABE BCFBE CF =ìïÐ=Ðíï=îRt ABE Rt BCF(SAS)\D @D ,BAE CBF \Ð=Ð,又90BAE BEA Ð+Ð=°Q ,90CBF BEA \Ð+Ð=°,90BGE \Ð=°,AE BF \^;(2)解:Q 将BCF D 沿BF 折叠,得到BPF D ,FP FC \=,PFB BFC Ð=Ð,90FPB Ð=°,//CD AB Q ,CFB ABF \Ð=Ð,ABF PFB \Ð=Ð,QF QB \=,设QF x =,4PB BC AB ===,2CF PF ==,QB x \=,2PQ x =-,在Rt BPQ D 中,222(2)4x x \=-+,解得:5x=,QF=.即528.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当55Ð的度数;BEAÐ=°时,求HADÐ的大小;(2)设BEA aÐ=,试用含a的代数式表示DFAÐ有怎样的数量关系,并说明理由.(3)点E运动的过程中,试探究BEAÐ与FEA【解答】解:(1)Q四边形ABCD是正方形,90\Ð=Ð=°,EBA BAD\Ð=°-Ð=°-°=°,90905535EAB BAE\Ð=Ð-Ð-Ð=°-°-°=°;90453510HAD BAD EAF EAB(2)Q四边形ABCD是正方形,\Ð=Ð=Ð=°,90EBA BAD ADF\Ð=°-Ð=°-,9090EAB BAE a\Ð=Ð-Ð-Ð=°-°-°-=-°,DAF BAD EAF EAB a a9045(90)45\Ð=°-Ð=°--°=°-;9090(45)135DFA DAF a aÐ=Ð,理由如下:(3)BEA FEA=,连接AI.延长CB至I,使BI DFQ四边形ABCD是正方形,\=,90AD ABÐ=Ð=°,ADF ABC90\Ð=°,ABIQ,又BI DF=\D@D,()DAF BAI SASÐ=Ð,\=,DAF BAIAF AIEAI BAI BAE DAF BAE EAF\Ð=Ð+Ð=Ð+Ð=°=Ð,45D的公共边,D与EAFQ是EAI又AEEAI EAF SAS\D@D,()\Ð=Ð.BEA FEA=,过D作DG EF29.在正方形ABCD中,点E、F分别在边BC、AD上,DE EF^于点H,交AB边于点G.(1)如图1,求证:DE DG=;(2)如图2,将EF绕点E逆时针旋转90°得到EK,点F对应点K,连接KG,EG,若H为DG中点,EG.在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG长度相等的线段(不包括)【解答】解:(1)Q四边形ABCD是正方形,DAG DCEÐ=Ð=°,AD BC,90AD DC\=,//\Ð=Ð,DEC EDFQ,DE EF=\Ð=Ð,EFD EDF\Ð=Ð,EFD DECQ于H,DG EF^\Ð=°,GHF90AGH AFH\Ð+Ð=°,180Q,Ð+Ð=°AFH EFD180DGA EFD DEC \Ð=Ð=Ð,在DAG D 和DCE D 中:DGA DEC DAG DCEDA DC Ð=ÐìïÐ=Ðíï=î()DAG DCE AAS \D @D ,DG DE \=.(2)KE EF ^Q ,DG EF ^,//KE DG \,且DG EF KE DE ===,\四边形KEDG 是平行四边形,且DG DE =,\四边形KEDG 是菱形,GK DG KE DE \===,DG EF ^Q ,H 是DG 的中点,EG DE \=,EG DE DG GK KE EF \=====.30.如图,已知正方形ABCD 的边长是2,EAF m Ð=°,将EAF Ð绕点A 顺时针旋转,它的两边分别交BC 、CD 于点E 、F ,G 是CB 延长线上一点,且始终保持BG DF =.(1)求证:ABG ADF D @D ;(2)求证:AG AF ^;(3)当EF BE DF =+时:①求m 的值;②若F 是CD 的中点,求BE的长.【解答】解:(1)证明:在正方形ABCD 中,2AB AD BC CD ====,90BAD C D ABC ABG Ð=Ð=Ð=Ð=Ð=°.BG DF =Q ,在ABG D 和ADF D 中,AB AD ABG ADF BG DF =ìïÐ=Ðíï=î,()ABG ADF SAS \D @D ;(2)证明:ABG ADF D @D Q ,GAB FAD \Ð=Ð,GAF GAB BAF\Ð=Ð+Ð90FAD BAF BAD =Ð+Ð=Ð=°,AG AF \^;(3)①解:ABG ADF D @D ,AG AF \=,BG DF =.EF BE DF =+Q ,EF BE BG EG \=+=.AE AE =Q,。

中考数学点对点-几何折叠翻折类问题(解析版)

中考数学点对点-几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

初中数学翻折变换专题(完美版)

初中数学翻折变换专题(完美版)

2021年最新12 翻折变换(折叠问题)一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C .D .【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM =BE=8,ME =BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF =(16+x),求出FM=BF﹣BM =(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN =BF =,得出FN =BN =即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM =BE=8,ME =BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF =(16+x),∴FM=BF﹣BM =(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF =(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN =BF =,∴FN =BN =,即点F到BC 边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A .B .C .D .【分析】根据等腰直角三角形的性质得到AB =AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H =AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF =BB ′=,DE⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB =AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H =AB′,∵AB ′=AC =,∴AH=B′H=1,∴BH=3,∴BB ′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF =BB ′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF =,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A .B .C.3 D .【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E =75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH =AC=1,AH =CH =.得出HD=AD﹣AH=2﹣.求出EH=CH=1.得出DE=EH﹣HD =﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM =AB=1,BM =AM =.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH =AC=1,AH =CH =.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM =AB=1,BM =AM =.∴△ABE 的面积=AE×BM =×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A .B .C .D .【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE ===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE ===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x =,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A .B .C .D.26【分析】由勾股定理得出BD ==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM=AM =,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD ===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x =,∴NM=AM =,∴△MNB 的面积=BN×NM =×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD 折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A .B .C .D .【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC =HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x =a,即AH =a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x =a,即AH =a.∴HC=2a﹣x=2a ﹣a =a.∴sin∠ACH ==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A .B .C .D .【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F =,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE =,∴B'E=BE =,BC=AD =,C'E =,∴B'C'=,在△AB'F和△DC'F 中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F =,∴EF=C'E+C'F =,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C .D .【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H =AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE =B′H =,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD =AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H =AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H =×6=3,∴HE =B′H =,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG =AC =,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A .B .C .D .【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC =HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x =a,即AH =a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x =a,即AH =a.∴HC=2a﹣x=2a ﹣a =a.∴sin∠ACH ==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A .B .C .D .【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M =DM =,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C =×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M =DM =,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH =BD•CM,∴DH=3×,∴DH =,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D 作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8 B.4C.2+4 D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE ===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG =GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF =DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.年数学二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,复习题∴∠ACD =60°,∠CAD =60°,∴△ACD 是等边三角形,∴AC =CD ,∴AC =DE ,∵AC ∥DE ,AC =CD ,∴四边形ACDE 是菱形,∵在Rt △ABC 中,∠ACB =90°,BC =6,∠B =30°,∴AC =,∴AE =.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt △ABC 中,∠ACB =90°,AC =8,BC =4,D 为斜边AB 上的中点,E 是直角边AC 上的一点,连接DE ,将△ADE 沿DE 折叠至△A ′DE ,A ′E 交BD 于点F ,若△DEF 的面积是△ADE 面积的一半,则CE = 2 . 【分析】根据等高的两个三角形的面积比等于边长比可得AD =2DF ,A 'F =EF ,通过勾股定理可得AB 的长度,可可求AD ,DF ,BF 的长度,可得BF =DF ,可证BEDA '是平行四边形,可得BE =A 'D =2,根据勾股定理可得CE 的长度【解答】解:如图连接BE∵∠ACB =90°,AC =8,BC =4∴AB =4 ∵D 是AB 中点练习∴BD =AD =2∵折叠 ∴AD =A 'D =2,S △ADE =S △A 'DE∵S △DEF =S △ADE∴AD =2DF ,S △DEF =S △A 'DE∴DF =,A 'F =EF ∴BF =DF =,且A 'F =EF∴四边形BEDA '是平行四边形∴A 'D =BE =∴根据勾股定理得:CE =2故答案为2 【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题. 16.如图,在△ABC 中,AB =AC =5,tan A =,BC =,点D 是AB 边上一点,连接CD ,将△BCD 沿着CD 翻折得△B 1CD ,DB 1⊥AC 且交于点E ,则DE =.【分析】作BF ⊥AC 于F ,证明△B 1EC ≌△CFB (AAS ),得出B 1E =CF =1,设DE =3a ,则AD =5a ,得出BD =B 1D =3a +1,得出方程,解方程即可.【解答】解:作BF ⊥AC 于F ,如图所示:则∠AFB =∠CFB =90°,在Rt △ABF 中,tan A ==,AB =5, ∴AF =4,BF =3,sin A ==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC =,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF 中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a =,∴DE =;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.202117.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B ’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB =3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x )2,解得x=,由△CA′H ∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD =CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′年数学C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB 'C=∠B =∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC =∠B =30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题年数学关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。

中考专题翻折问题

中考专题翻折问题

翻折问题翻折问题是近几年中考中常考的一个问题,解决此类问题的关键是找出隐藏的条件翻折前后的线段相等,角相等1 将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=3,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为2A.3B.2 C.3 D.32.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线虚线与底边平行剪去一个角.打开后的形状是• .3.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是CB AD4.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是 .A 三角形B 矩形C 菱形D 梯形5 如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是…6如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别 落在AB 上的点D '、C ',折痕为EF ,若CD =3cm,EF =4cm,则D A '+C B '为………………………………………………… A .2mB .3mC .4mD .5m7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是…A .3cmB .4cmC .5cmD .6cm8 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为 A .1B .2错误!C .2错误!D .129如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分 部分是四边形ABCD,已知∠BAD=30°则重叠部分的 面积是 cm 2A .B .C .D .N M FEDCBAl321S 4S 3S 2S 110.在直线l 上依次摆放着七个正方形如图所示;已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______;11如图,一张矩形纸片ABCD 的长AD=9cm,宽AB=3cm,现将其折叠,使点D 与点B 重合,则BE=________12已知,一张矩形纸片ABCD 的边长分别为9cm 和3cm,把顶点A 和C 叠合在一起,得折痕EF如图.1猜想四边形AECF 是什么四边形,并证明你的猜想. 2求折痕EF 的长.C'FE D CB(D)A13 如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10.1当折痕的另一端F 在AB 边上时,如图1.求△EFG 的面积. 2当折痕的另一端F 在AD 边上时,如图2.证明四边形BGEF 为菱形,并求出折痕GF 的长.HA BCDEF G图2ABCDE FG H (A)(B)A BCDE F G图1历年中考题集:12008烟台红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起如图,则重叠四边形的面积为_______2.cm2.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.32007德州如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于 A .43B .33C .42D .84.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为 A .5cm B .8cm C .9cm D .10cm5.把长为8cm,宽为2cm 的矩形按虚线对折,按图中的斜线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是A .)13210(+cmB .)1310(+cmC .22cmD .18cm6将矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =60,则∠CFD = A 、20 B 、30 C 、40 D 、507 2012南京市,6,2如图,在菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在点A`、D`处,且A`D`经过点B,EF 为折痕,当D`F⊥CD 时,DFCF的值为 A.213- B.63 C.6132- D.813+B F C E DAA O D EB F CH DE GFE A`D`DCBA82012,黔东南州,8如图,矩形ABCD 边AD 沿拆痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于A 、1B 、2C 、3D 、49、2012河北省9,3分如图4,在□ABCD 中,∠A=70°,将□ABCD 折叠,使点D,C 分别落在点F,E 处,点F,E 都在AB 所在的直线上,折痕为MN,则∠AMF 等于A.70° B.40° C.30° D.20°10 2012贵州遵义,10,3分如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为A .32B .26C .25D .2311 2012湖北武汉,7,3分如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE,点A 恰好落在边BC 的点F 处.若AE =5,BF =3,则CD 的长是 A .7 B .8 C .9 D .10122012四川达州,14,3分将矩形纸片ABCD,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .13 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4, 点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点 A 的落点记为P .1当AE =5,P 落在线段CD 上时,PD = ;2当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .14如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片.1求证:四边形ADEF 是正方形;2取线段AF 的中点G ,连接EG ,如果BG CD =,试说明四边形GBCE 是等腰梯形.当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人;于是,我降临在了人间;我出生在一个官僚知识分子之家,父亲在朝中做官,精读诗书,母亲知书答礼,温柔体贴,父母给我去了一个好听的名字:李清照;ECBDAG F小时侯,受父母影响的我饱读诗书,聪明伶俐,在朝中享有“神童”的称号;小时候的我天真活泼,才思敏捷,小河畔,花丛边撒满了我的诗我的笑,无可置疑,小时侯的我快乐无虑;“兴尽晚回舟,误入藕花深处;争渡,争渡,惊起一滩鸥鹭;”青春的我如同一只小鸟,自由自在,没有约束,少女纯净的心灵常在朝阳小,流水也被自然洗礼,纤细的手指拈一束花,轻抛入水,随波荡漾,发髻上沾着晶莹的露水,双脚任水流轻抚;身影轻飘而过,留下一阵清风;可是晚年的我却生活在一片黑暗之中,家庭的衰败,社会的改变,消磨着我那柔弱的心;我几乎对生活绝望,每天在痛苦中消磨时光,一切都好象是灰暗的;“寻寻觅觅冷冷清清凄凄惨惨戚戚”这千古叠词句就是我当时心情的写照;最后,香消玉殒,我在痛苦和哀怨中凄凉的死去;在天堂里,我又见到了上帝;上帝问我过的怎么样,我摇摇头又点点头,我的一生有欢乐也有坎坷,有笑声也有泪水,有鼎盛也有衰落;我始终无法客观的评价我的一生;我原以为做一个着名的人,一生应该是被欢乐荣誉所包围,可我发现我错了;于是在下一轮回中,我选择做一个平凡的人;我来到人间,我是一个平凡的人,我既不着名也不出众,但我拥有一切的幸福:我有温馨的家,我有可亲可爱的同学和老师,我每天平凡而快乐的活着,这就够了;天儿蓝蓝风儿轻轻,暖和的春风带着春的气息吹进明亮的教室,我坐在教室的窗前,望着我拥有的一切,我甜甜的笑了;我拿起手中的笔,不禁想起曾经作诗的李清照,我虽然没有横溢的才华,但我还是拿起手中的笔,用最朴实的语言,写下了一时的感受:人生并不总是完美的,每个人都会有不如意的地方;这就需要我们静下心来阅读自己的人生,体会其中无尽的快乐和与众不同;“富不读书富不久,穷不读书终究穷;”为什么从古到今都那么看重有学识之人那是因为有学识之人可以为社会做出更大的贡献;那时因为读书能给人带来快乐;自从看了丑小鸭这篇童话之后,我变了,变得开朗起来,变得乐意同别人交往,变得自信了……因为我知道:即使现在我是只“丑小鸭”,但只要有自信,总有一天我会变成“白天鹅”的,而且会是一只世界上最美丽的“白天鹅”……我读完了这篇美丽的童话故事,深深被丑小鸭的自信和乐观所折服,并把故事讲给了外婆听,外婆也对童话带给我们的深刻道理而惊讶不已;还吵着闹着多看几本名着;于是我给外婆又买了几本名着故事,她起先自己读,读到不认识的字我就告诉她,如果这一面生字较多,我就读给她听整个一面;渐渐的,自己的语文阅读能力也提高了不少,与此同时我也发现一个人读书的乐趣远不及两个人读的乐趣大,而两个人读书的乐趣远不及全家一起读的乐趣大;于是,我便发展“业务”带动全家一起读书……现在,每每遇到好书大家也不分男女老少都一拥而上,争先恐后“抢书”,当我说起我最小应该让我的时候,却没有人搭理我;最后还把书给撕坏了,我生气地哭了,妈妈一边安慰我一边对外婆说:“孩子小,应该让着点;”外婆却不服气的说:“我这一把年纪的了,怎么没人让我呀”大家人你一言我一语,谁也不肯相让……读书让我明白了善恶美丑、悲欢离合,读一本好书,犹如同智者谈心、谈理想,教你辨别善恶,教你弘扬正义;读一本好书,如品一杯香茶,余香缭绕;读一本好书,能使人心灵得到净化;书是我的老师,把知识传递给了我;书是我的伙伴,跟我诉说心里话;书是一把钥匙,给我敞开了知识的大门;书更是一艘不会沉的船,引领我航行在人生的长河中;其实读书的真真乐趣也就在于此处,不是一个人闷头苦读书;也不是读到好处不与他人分享,独自品位;更不是一个人如痴如醉地沉浸在书的海洋中不能自拔;而是懂得与朋友,家人一起分享其中的乐趣;这才是读书真正之乐趣呢这所有的一切,不正是我从书中受到的教益吗我阅读,故我美丽;我思考,故我存在;我从内心深处真切地感到:我从读书中受到了教益;当看见有些同学宁可买玩具亦不肯买书时,我便想到培根所说的话:“世界上最庸俗的人是不读书的人,最吝啬的人是不买书的人,最可怜的人是与书无缘的人;”许许多多的作家、伟人都十分喜欢看书,例如毛泽东主席,他半边床上都是书,一读起书来便进入忘我的境界;书是我生活中的好朋友,是我人生道路上的航标,读书,读好书,是我无怨无悔的追求;。

专题06 立体几何中的翻折问题(解析版)

专题06 立体几何中的翻折问题(解析版)

第三篇 立体几何专题07 立体几何中的翻折问题常见考点考点一 翻折问题典例1.如图1五边形ABCDE 中,ED EA =,//AB CD ,2CD AB =,150EDC ∠=︒,将EAD 沿AD 折到PAD △的位置,得到四棱锥P ABCD -,如图2,点M 为线段PC 的中点,且BM ⊥平面PCD .(1)求证:CD ⊥平面PAD ;(2)若直线PC 与AB 所成角的正切值为12,求二面角P BD C --余弦值.【答案】(1)证明见解析;(2) 【解析】 【分析】(1)取PD 的中点N ,连结AN ,MN ,利用中位线定理可证明四边形ABMN 为平行四边形,从而//AN BM ,可得AN ⊥平面PCD ,推出AN PD ⊥,AN CD ⊥,利用PAD △为等边三角形,由边角关系可得CD AD ⊥,结合线面垂直的判定定理证明即可;(2)利用线线角的定义可得PCD ∠为直线PC 与AB 所成的角,从而得到2CD PD =,设1PD =,建立合适的空间直角坐标系,求出点的坐标和向量的坐标,利用待定系数法求出平面的法向量,由空间向量夹角公式计算即可. 【详解】(1)证明:取PD 的中点N ,连接AN ,MN 则//MN CD ,12MN CD =, 又//AB CD ,12AB CD =,所以//MN AB ,MN AB =,则四边形ABMN 为平行四边形,所以//AN BM ,又BM ⊥平面PCD ,∴AN ⊥平面PCD ,∴AN PD ⊥,AN CD ⊥. 由ED EA =即PD PA =及N 为PD 的中点,可得PAD △为等边三角形, ∴60PAD ∠=︒,又150EDC ∠=︒,∴90CDA ∠=︒,∴CD AD ⊥,又,AN AD 在平面PAD 内相交, ∴CD ⊥平面PAD .(2)//AB CD ,∴PCD ∠为直线PC 与AB 所成的角, 由(1)可得90PDC ∠=︒,∴1tan 2PD PCD CD ∠==,∴2CD PD =, 设1PD =,则2CD =,1PA AD AB ===,取AD 的中点O ,连接PO ,易知PO ⊥平面ABCD 过O 作AB 的平行线, 可建立如图所示的空间直角坐标系O xyz -,则1,0,02D ⎛⎫- ⎪⎝⎭,1,1,02B ⎛⎫⎪⎝⎭,1,2,02C ⎛⎫- ⎪⎝⎭,P ⎛⎫ ⎪ ⎪⎝⎭,∴14M ⎛⎫- ⎪ ⎪⎝⎭, 所以()1,1,0DB =,1,1,2PB ⎛⎫= ⎪ ⎪⎝⎭,34BM ⎛⎫=- ⎪ ⎪⎝⎭, 设(),,n x y z =为平面PBD的法向量,则0102x y x y z +=⎧⎪⎨+=⎪⎩, 取3x =,则(13,3,n =-为平面PBD 的一个法向量, 又平面BCD 的法向量()20,0,1n =,设二面角P BD C --为θ∴1212123cos cos ,721n n n n n n θ⋅-====-,由图可知二面角为钝角,所以二面角P BD C --余弦值为变式1-1.如图,在Rt ABC 中,AC BC ⊥,30BAC ∠=︒,BC =,3AC DC =,//DE BC ,沿DE 将点A 折至1A 处,使得1A C DC ⊥,点M 为1A B 的中点.(1)证明:1A B ⊥平面CMD . (2)求二面角B CM E --的余弦值.【答案】(1)证明见解析;(2 【解析】(1)先证明DC ⊥平面1A CB ,可得1DC A B ⊥,再利用勾股定理计算出1A C BC =,由三线合一得1CM A B ⊥,即可证明出1A B ⊥平面CMD ;(2)以C 为原点建立空间直角坐标系,写出点的坐标,得平面CMB 的法向量为()11,0,0n =,求出平面CME 的法向量,再利用向量的夹角公式计算余弦值. 【详解】(1)证明:由DC BC ⊥,1A C DC ⊥,且1AC BC C =, 可得DC ⊥平面1A CB ,又1A B ⊂平面1A CB ,因此1DC A B ⊥.由30BAC ∠=︒,BC =33AC DC ===,因此1DC =,12AD A D ==,由勾股定理可得1AC BC =. 又因为点M 为1A B 的中点,所以1CM A B ⊥, 而CD CM C ⋂=,故1A B ⊥平面CMD .(2)解:因为DE CD ⊥,1DE A D ⊥,所以DE ⊥平面1A CD ,又//BC DE ,所以BC ⊥平面1A CD .如图,以C 为原点,建立空间直角坐标系C xyz -,则M ⎛⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,()B ,则0,,22CM ⎛⎫= ⎪ ⎪⎝⎭,1,3CE ⎛⎫= ⎪ ⎪⎝⎭.易知()11,0,0n =是平面CMB 的一个法向量.设平面CME 的法向量为()2,,n x y z =,则2200n CM n CE ⎧⋅=⎪⎨⋅=⎪⎩,即00y x y =⎨⎪=⎪⎩,令y =(2n =-.12cos ,n n ==易知二面角B CM E --为锐角,故二面角B CM E --【点睛】本题考查了立体几何中的线面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理进行证明,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.变式1-2.如图,在等腰梯形ABCD 中,//AB CD ,1AB =,3CD =,45ADC∠=︒,AE 为梯形ABCD 的高,将ADE 沿AE 折到PAE △的位置,使得PB(1)求证:PE ⊥平面ABCE ;(2)求平面PBC 与平面P AE 所成二面角的余弦值. 【答案】(1)证明见解析;(2【解析】 【分析】(1)连接BE ,易知PE AE ⊥,BE 1PE =,由勾股定理证得PE BE ⊥,再由线面垂直的判定定理,得证;(2)以E 为原点建立空间直角坐标系,求得平面PBC 的法向量n ,由线面垂直的判定定理可证得EC ⊥平面PAE ,故平面PAE 的一个法向量为EC ,再由cos EC <,||||EC n n EC n ⋅>=⋅,即可得解.【详解】(1)证明:折叠前DE AE ⊥,折叠后PE AE ⊥,折叠前由已知得1DE AE AB ===,在AEB △中,BEBE =1PE =,因为PB PEB △为直角三角形,即PE BE ⊥,, 因为AE BE E =,AE ⊂平面ABCE ,BE ⊂平面ABCE , 所以PE ⊥平面ABCE .(2)由(1)知PE EC ⊥,又EA EC ⊥所以以E 为原点,建立如图所示的空间直角坐标系,()0,0,0E ,()0,2,0C , 所以平面P AE 的法向量为()0,2,0CE =-,又()0,0,1P ,()1,1,0B -,()1,1,1PB =--,()0,2,1PC =- 设平面PBC 的一个法向量为(),,n x y z =则0PBn PCn ⎧⋅=⎪⎨⋅=⎪⎩可求得平面PBC 的一个法向量为()1,1,2n =-计算得cos ,n CE <>==所以平面PBC 与平面P AE变式1-3.已知边长为2的等边ABC (图1),点D 和点E 分别是边AC 、AB 上的中点,将ADE 沿直线DE 折到ADE 的位置,使得平面A DE '⊥平面BCDE (图2),此时点O 和点P 分别是边DE 、BE 上的中点.(1)证明:CD ⊥平面A OP ';(2)求平面ACD '与平面BCDE 所成锐二面角的余弦值.【答案】(1)证明见解析;(2【解析】【分析】(1)先证明DC OP ⊥,再由平面A DE '⊥平面BCDE 证明AOCD '⊥,利用线面垂直的判定定理即可证明CD ⊥平面A OP ';(2)以O 为坐标原点,分别以OH ,OD ,OA '所在直线为x ,y ,z 轴建立空间直角坐标系,利用向量法求出平面ACD '与平面BCDE 所成锐二面角的余弦值.【详解】(1)连接BD∴点O 和点P 分别是边DE 、BE 上的中点. ∴//BD OP∴等边ABC 中,点D 是边AC 的中点 ∴DC BD ⊥∴DC OP ⊥∴等边ADE 中,点O 是边DE 的中点 ∴A O DE '⊥又∴AO '⊂平面A DE∴平面A DE '⊥平面BCDE 且平面A DE '平面BCDE DE =∴AO '⊥平面BCDE ∴AOCD '⊥ ∴A O OP O '⋂=∴CD ⊥平面A OP '(2)设BC 的中点H ,由图1得OH BC ⊥以O 为坐标原点,分别以OH ,OD ,OA '所在直线为x ,y ,z 轴建立空间直角坐标系,则A ⎛' ⎝⎭,10,,02D ⎛⎫⎪⎝⎭,C ⎫⎪⎪⎝⎭,所以10,2DA ⎛'=- ⎝⎭,31,02DC ⎛⎫= ⎪ ⎪⎝⎭设平面ACD '的法向量为(),,n x y z =.由10231022n DA y z n DC x y ⎧⋅=-+=⎪⎪⎨⎪⋅=+=⎪'⎩,取y =()1,3,1n =-; 因为平面BCDE 的法向量为()0,0,1m =设平面ACD '与平面BCDE 所成锐二面角为θcos 51m n m nθ⋅===+ 所以,平面ACD '与平面BCDE .【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.典例2.如图1,在高为6的等腰梯形ABCD 中,AB ∴CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ∴平面BCO 1O ,如图2,点P 为BC 的中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∴OB .(1)证明:OD ∴平面P AQ ;(2)若BE =2AE ,求二面角C ­BQ ­A 的余弦值.【答案】(1)证明见解析;(2【解析】(1)由OA,OB,OO1两两垂直建立空间直角坐标系,由向量坐标运算得到OD∴AQ,OD∴PQ证得OD∴平面P AQ;(2)由空间直角坐标系求得平面CBQ的法向量和平面ABQ的法向量,根据数量积的夹角公式可得答案.【详解】(1)证明:由题设知OA,OB,OO1两两垂直,∴以O为坐标原点,OA,OB,OO1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AQ的长为m,则O(0,0,0),A(6,0,0),B(0,6,0),C(0,3,6),D(3,0,6),Q(6,m,0).∴点P为BC的中点,∴P9 (0,,3)2,∴OD=(3,0,6),AQ=(0,m,0),PQ=9 (6,,3)2m--.∴OD·AQ=0,OD·PQ=0,∴OD∴AQ,OD∴PQ,即OD∴AQ,OD∴PQ,又AQ∩PQ=Q,∴OD∴平面P AQ.(2)∴BE=2AE,AQ∴OB,∴AQ=12OB=3,则Q(6,3,0),∴OB=(-6,3,0),BC=(0,-3,6).设平面CBQ 的法向量为1n =(x ,y ,z ),由11.0,.0,n QB n BC ⎧=⎪⎨=⎪⎩得630,360,x y y z -+=⎧⎨-+=⎩令z =1,则y =2,x =1,1n =(1,2,1). 易得平面ABQ 的一个法向量为2n =(0,0,1). 设二面角C ­BQ ­A 的大小为θ,由图可知,θ为锐角, 则cos θ=212||||I n n n n ⋅⋅=即二面角C ­BQ ­A 【点睛】本题考查了立体几何,建立空间直角坐标系是解题的关键,线面垂直可以通过直线的方向向量进行相应的计算,二面角的平面角可以通过法向量之间进行相应的计算,就能够得到问题的解决. 变式2-1.如图1,四边形ABCD 是正方形,四边形11ADE F 和22BCE F 是菱形,2AB =,1260DAF CBF ∠=∠=︒.分别沿AD ,BC 将四边形11ADE F 和22BCE F 折起,使1E 、2E 重合于E ,1F 、2F 重合于F ,得到如图2所示的几何体.在图2中,M 、N 分别是CD 、EF 的中点.(1)证明:MN ⊥平面ABCD ;(2)求平面DCN 与平面ABF所成锐二面角的余弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)先利用菱形与等边三角形的垂直关系得EF ⊥平面DNC ,再根据//EF AD 得AD ⊥平面DNC ,再得AD MN ⊥,又根据M 是DC 的中点得MN DC ⊥,故MN ⊥平面ABCD ;(2)根据题意,以M 为原点,MG ,MC ,MN 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系M xyz -,利用法向量求解即可. 【详解】(1)连接DF ,由图1知,四边形ADEF 为菱形,且60DEF ∠=︒, 所以DEF 为等边三角形,从而EF DN ⊥. 同理EF CN ⊥,又DN CN N =,∴EF ⊥平面DNC .∴//EF AD ,∴AD ⊥平面DNC ,又∴MN ⊂平面DNC ,∴AD MN ⊥. ∴ND NC =,M 是DC 的中点,∴MN DC ⊥.又AD ⊂平面ABCD ,DC ⊂平面ABCD ,AD DC D =,∴MN ⊥平面ABCD . (2)取AB 的中点G ,连接MG ,∴四边形ABCD 是正方形,MG DC ⊥.如图,以M 为原点,MG ,MC ,MN 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系M xyz -, 则M ()0,0,0M ,()2,1,0A -,()2,1,0B ,()2,0,0G,(F , ∴()0,2,0AB =,(AF =-,()2,0,0MG =.设平面ABF 的法向量为(),,n x y z =,由00n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩得200y x y =⎧⎪⎨-+=⎪⎩,取()2,0,1n =,∴MG ⊥平面DNC ,∴取平面DNC 的法向量()2,0,0MG =,∴22cos ,23MG n MG n MG n⋅===⋅ 设平面DCN 与平面ABF 所成锐二面角的平面角为θ,∴cos θ=,故平面DCN 与平面ABF 【点睛】本题考查线面垂直的证明,利用向量方法求解二面角问题,考查数学运算能力,是中档题.变式2-2.如图,已知四边形ABDE AD 与BE 相交于点O ,BCD △为等边三角形.现将EAD 沿AD 折起到E AD '的位置,将CBD 沿BD 折起到C BD '的位置,使得折后E D '⊥平面C BO '.(1)求证:OB ⊥平面'AE D ; (2)求二面角A OC B -'-的大小.【答案】(1)见解析;(2)3π.【解析】 【分析】(1)推导出E D OB '⊥,OB AD ⊥,由此能证明OB ⊥平面AE D '.(2)以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角A OC B -'-的大小. 【详解】(1)证明:E D '⊥平面C BO ',OB ⊂平面C BO ',∴E D OB '⊥, ∴在正方形ABDE 中,O 为AD 与BE 的交点,OB AD ∴⊥E D AD D '⋂=,OB ∴⊥平面AE D '.(2)解:AE E D '=',O 为AD 中点,E O AD ∴'⊥以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系A ,B ,(D ,E ',E D '⊥平面C BO ',∴平面C BO '的一个法向量为(3,0,n E D ='=E D '⊥平面C BO ',∴E D OC '⊥'设(,,)C x y z ',则(,)DC x y z '=+,(,)BC x y z '=1E D OC '⊥,||||6DC BC '='=,066=∴,解得x y z ⎧=⎪⎪=⎨⎪=⎪⎩或x y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩(舍).(C ∴' 设平面AOC '的法向量(,,)n x y z =则OA 3x 0OC 3x 0n n '⎧⋅==⎪⎨⋅=-=⎪⎩,取1y =,得(0,1,1)n =- 设二面角A OC B -'-为θ,则|||31cos ||||22n m n m θ⋅-===⋅⋅由图知3πθ=,∴ 二面角A OC B -'-的大小为3π.【点睛】本题考查了线面垂直的判定,考查了二面角的求法.在证明线面垂直时,关键是在平面内找到两条直线与已知直线垂直,常运用勾股定理、矩形的临边、正方形的对角线、等腰三角形三线合一、线面垂直的性质等来证明线线垂直.求二面角的大小时,建立空间直角坐标系,求出两个平面的法向量,进而可求.变式2-3.如图1,在矩形ABCD 中,AB =BC =点E 、P 分别在线段DC 、BC 上,且DE =152DP =,现将AED ∆沿AE 折到'AED ∆的位置,连结'CD ,'BD ,如图2(1)证明:'AE D P ⊥;(2)记平面'AD E 与平面'BCD 的交线为l .若二面角'B AE D --为23π,求l 与平面'D CE 所成角的正弦值.【答案】(1)证明见解析 (2 【解析】(1)建立坐标系证明AE DP ⊥,再由线面垂直的判定定理以及线面垂直的性质证明'AE D P ⊥; (2)根据公理3得到平面'AD E 与平面'BCD 的交线,再根据二面角定义得到二面角'B AE D --的平面角,建立空间直角坐标系,利用向量法求l 与平面'D CE 所成角的正弦值. 【详解】解:(1)证明:如图1,线段,DP AE 交于点O在Rt PCD ∆中,由DC AB ==152DP =,PC =以点A 为坐标原点,建立直角坐标系,则(5,2AE =,PD ⎛=- ⎝⎭即30AE PD ⋅=-= AE DP ∴⊥,从而有AE OD ⊥,AE OP ⊥,即在图2中有AE OD '⊥,AE OP ⊥,OD OP O '⋂=,,OD OP '⊂平面POD 'AE ∴⊥平面POD 'D P '⊂平面POD ',AE D P '∴⊥;(2)延长AE ,BC 交于点Q ,连接'D Q根据公理3得到直线'D Q 即为l ,再根据二面角定义得到23D OP π'∠=. 在平面'POD 内过点O 作底面垂线,O 为原点,分别以OA 、OP 、及所作为x 轴、y 轴、z 轴建立空间直角坐标则(0,D '-,(1,0,0)E -,(11,0,0)Q -,(3,4,0)C -,(11,1,D Q '=-,(2,4,0)EC =-,(1,ED '=-,设平面'D EC 的一个法向量为(,,)n x y z =,由2400n EC x y n ED x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩', 取1y =,得2,1,n ⎛= ⎝⎭. l ∴与平面D CE '所成角的正弦值为15cos ,5n D Q n D Q n D Q'⋅'=='⋅【点睛】本题主要考查了由线面垂直证线线垂直以及利用向量法证明线面角,属于较难题.巩固练习练习一 翻折问题1.如图1,在平面五边形ABCDE 中,AD ∥,24,BC AD BC AB ===90ABC ∠=,ADE 是等边三角形.现将ADE 沿AD 折起,记折后的点E 为E ',连接,E B E C ''得到四棱锥E ABCD '-,如图2.(1)证明:BC CE ⊥';(2)若平面E CD '⊥平面ABCD ,求二面角'A DE B --的余弦值. 【答案】(1)证明见解析【解析】 【分析】(1)构建CE '所在的面,通过线面垂直证明线线垂直(2)建立坐标系,通过法向量夹角的余弦值求解二面角的余弦值 (1)如上图所示,设M 为AD 中点,连接,E M CM ',因为ADE 是等边三角形,所以AD E M ⊥',因为AD∥,BC 所以BC E M ⊥',因为2AD BC =所以AM BC =且//AM BC ,所以//AB CM ,因为90,ABC =∠所以CM BC ⊥ 又,CME M M '=CM 、EM ⊂平面E MC ', BC ∴⊥平面E MC ',又因为'CE ⊂平面E MC ',所以'BC CE ⊥(2)如下图所示,过A 作AH DC ⊥于点H ,由平面E CD '⊥平面ABCD ,平面E CD '平面ABCD CD =,AH ∴⊥平面,E CD '又因为'CE ⊂平面E MC ',所以AH E C ⊥' 又'BC C E ⊥,,AH BC 相交,AH 、BC ⊂平面ABCDCE ∴'⊥平面,ABCD CE '以C 为原点建立如图所示的坐标系()()()(,,2,0,0,D A B E '-()(',BD BE =-=-,()('4,0,0,2,AD AE =-=-设平面'BDE 的法向量(),,n x y z =满足(0403,26,020n BD x n n BE x ⎧⎧⋅=-=⎪⎪⇒⇒=⎨⎨⋅=-=⎪'⎪⎩⎩ 设平面'ADE 的法向量(),,m x y z =满足()4000,1,1200x m AD m x m AE ⎧-=⎧⋅=⎪⎪⇒⇒=⎨⎨-+=⎪=⎩⎪⎩'⋅313cos ,13n m m n n m ⋅==⋅.所以二面角'A DE B --2.如图所示,在边长为12的正方形11AA A A ''中,点B ,C 在线段AA '上,且3AB =,4BC =,作11BB AA ∥,分别交11A A '、1AA '于点1B 、P ,作11CC AA ∥,分别交11A A '、1AA '于点1C 、Q ,将该正方形沿BB 1、CC 1折叠,使得1A A ''与1AA 重合,构成如图2所示的三棱柱111ABC A B C -.(1)试判断直线AQ 是否与平面11AC P 平行,并说明理由; (2)求平面APQ 与平面ABC 所成二面角的余弦值. 【答案】(1)直线AQ 是否与平面11AC P 不平行,理由见解析【解析】 【分析】(1)建立空间直角坐标系,求出平面11AC P 的法向量,看向量AQ 是否与平面11AC P 的法向量垂直,从而得到答案;(2)求出平面APQ 与平面ABC 的法向量,从而求出平面APQ 与平面ABC 所成二面角的余弦值. (1)直线AQ 是否与平面11AC P 不平行,理由如下:如图,以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则()0,0,0B ,()3,0,0A ,()0,4,0C ,()13,0,12A ,()10,4,12C ,()0,0,3P ,()0,4,7Q ,所以()3,4,7AQ =-,设平面11AC P 的法向量为(),,n x y z =,则11039093,,149040n PA x z n y z n PC ⎧⋅=+=⎧⎪⎛⎫⇒⇒=-⎨⎨ ⎪+=⎝⎭⋅=⎩⎪⎩,因为0AQ n ⋅≠,所以直线AQ 与平面11AC P 不平行;(2)设平面APQ 的法向量()1111,,x n y z =则()11103301,1,14400n PA x z n y z n PQ ⎧⋅=-=⎧⎪⇒⇒=-⎨⎨+=⋅=⎩⎪⎩ 所以,面APQ 的法向量为()11,1,1=-n ,由题意得:面ABC 的法向量为()20,0,1n =,所以1212121cos ,3n n n n n n ⋅===,设平面APQ 与平面ABC 所成二面角为α,显然α为锐角,故123cos cos ,3n n α== 所以平面APQ 与平面ABC 3.如图,四边形ABCD 是一个边长为2的菱形,且π3B ∠=,现沿着AC 将ABC 折到EAC 的位置,使得平面EAC ⊥平面ACD ,M ,N 是线段EC ,ED 上的两个动点(不含端点),且EM ENEC EDλ==.(1)证明://MN 平面EAB ;(2)求直线EC 与平面EAD 所成的角的正弦值;(3)设平面AMN 与平面EAD 所成锐二面角为θ,当cos θ=λ的值. 【答案】(1)证明见解析(3)13【解析】 【分析】(1)根据已知条件可得//MN CD 、//AB CD ,进而可得//MN AB ,再由线面平行的判定定理即可求证;(2)取AC 的中点O ,连接,EO BO ,证明,,OB OC OE 两两垂直,如图建立空间直角坐标系,求出平面EAD 的一个法向量n 以及EC 的坐标,由空间向量夹角公式即可求解;(3)由(2)知平面EAD 的法向量n ,根据AM AE EC λ=+,AN AE ED λ=+求出AM 和AN 的坐标,再求出平面AMN 的一个法向量m ,根据空间向量夹角公式计算cos cos 105,m n θ==解方程即可得λ的值. (1) 因为EM ENEC EDλ==,所以//MN CD , 因为四边形ABCD 是一个边长为2的菱形,所以//AB CD , 所以//MN AB ,因为MN ⊄平面EAB ,AB 平面EAB ,所以//MN 平面EAB . (2)因为2EA EC ==,取AC 的中点O ,连接,EO BO ,则EO AC ⊥,BO AC ⊥, 因为平面EAC ⊥平面ACD ,平面EAC 平面ACD AC =,OE ⊂面EAC , 所以EO ⊥面ABCD ,可得,,OB OC OE 两两垂直,如图:以O 为原点,分别以,,OB OC OE 所在的直线为,,x y z 轴建立空间直角坐标系,则(E ,()0,1,0C ,()0,1,0A -,()D ,所以(0,1,EC =,(AE =,()AD =-, 设平面EAD 的一个法向量(),,n x y z =,则3030AE n y z AD n x y⎧⋅=+=⎪⎨⋅=-+=⎪⎩,令1x =,可得y =1z =-,所以()1,3,1n =-, 设直线EC 与平面EAD 所成的角为α,则2sin cos ,52EC n EC nEC nα⋅====⨯⋅. 所以直线EC 与平面EAD . (3)由(2)知:平面EAD的法向量为()1,3,1n =-, 因为EM ENEC EDλ==,所以()0,,EM EC λλ==,(),0,EN ED λ==-,()0,1AM AE EM λ=+=+,()AN AE EN =+=,设平面AMN 的一个法向量()000,,=m x y z ,则()))000001030AM my z AN m x y z λλ⎧⋅=++=⎪⎨⋅=-++=⎪⎩,令0y 011z λλ+=-,01x =-,所以11m λλ+⎛⎫=- ⎪-⎝⎭, 所以cos cos ,55m n m n m nθ⋅====⋅⨯,整理可得:29610λλ-+=,解得:13λ=.4.如图,正方形11ABB A 的边长为2,11,AB A B 的中点分别为1,C C ,正方形11ABB A 沿着1CC 折起形成三棱柱111ABC A B C -,三棱柱111ABC A B C -中,AC BC ⊥,1AD AA λ→→=.(1)证明:当12λ=时,求证:1DC ⊥平面BCD ;(2)若二面角1D BC C --λ的值. 【答案】(1)证明见解析 (2)14λ= 【解析】 【分析】(1)由题知点D 是1AA 的中点,进而根据几何关系得1DC DC ⊥,再根据已知条件证明BC ⊥平面11ACC A 得1BC DC ⊥,最后结合判定定理证明即可;(2)根据题意,点C 为原点,以CA →,CB →,1CC →作为x ,z ,z 轴的正方向建立空间直角坐标系,利用坐标法求解即可. (1)证明:当12λ=时,点D 是1AA 的中点,因为1111AC AD A D AC ====,所以1DC DC ==又12CC =,所以22211DC DC CC +=,所以1DC DC ⊥,因为BC AC ⊥,1BC CC ⊥,1AC CC C =, 所以BC ⊥平面11ACC A ,1DC ⊂平面11ACC A , 所以1BC DC ⊥,且DC BC C =,所以1DC ⊥平面BCD ; (2)解:因为1CC ,CA ,CB 两两互相垂直,所以以点C 为原点,以CA →,CB →,1CC →作为x ,z ,z 轴的正方向,建立空间直角坐标系,如下图,CA ⊥平面1BCC ,所以向量()1,0,0CA →=是平面1BCC 的法向量,设AD h =()0,1,0B ,()10,0,2C =,()1,0,D h ,()10,1,2BC →=-,()1,1,BD h →=-,设平面1DBC 的法向量(),,n x y z →=,所以100BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩,即020x y hz y z -+=⎧⎨-+=⎩,令1z =,2x h =-,2y =,所以平面1DBC 的一个法向量()2,2,1n h →=-,cos ,CA nCA n CA n→→→→→→⋅==12h = 所以114AD AA →→=,即14λ=,此时二面角1D BC C--5.如图甲所示,在矩形ABCD 中,4AB =,2BC =,E 为DC 的中点,沿AE 将AED 翻折,使D 折至D 处,且二面角D AE B '--为直二面角(如图乙).(1)求证:AD BE '⊥;(2)求平面D EC '与平面ECB 所成角的正切值. 【答案】(1)答案见解析;(2 【解析】 【分析】(1)建立空间直角坐标系,求出各点的坐标,进而得到(1,1,2),(2,2,0)AD BE '=-=--,计算出数量积为0,由此即可得证; (2)求得OD '=是平面EBC 的一个法向量,求出平面CD E '的一个法向量,再利用向量的夹角公式求得所求二面角的余弦值,进而求得正切值. 【详解】(1)证明:由题意4AB =,2BC =,E 为DC 的中点,AD E '∴为等腰三角形,取AE 的中点O ,则D O AE '⊥,又因为二面角D AE B '--为直二面角,平面D AE '平面EABC AE =,所以D O '⊥平面EABC ,以O 为原点,过O 分别作,AB BC 的平行线作为,y x 轴,OD '为z 轴建立如图坐标系:则(0,0,0),(1,1,0),(1,3,0),(1,3,0),(1,1,0),O A B C E D '---,∴(1,1,2),(2,2,0)AD BE '=-=--, ∴0AD BE '⋅=,ADBE '∴⊥;(2)(0,2,0),(1,EC ED '==-,OD '=是平面EBC 的一个法向量,设平面CD E '的一个法向量为(,,)n x y z =,则·20·0n EC y n ED x y ⎧==⎪⎨=-'+=⎪⎩,则可取(2,0,1)n =-,∴3cos ,3||||OD n OD n OD n '⋅'<>==',∴tan ,2OD n '<>=,即平面CD E '与平面ECB6.如图1,Rt ABC 中,90B ∠=︒,AB =2BC =,D ,E分别是AB ,AC 的中点.把ADE 沿DE 折至PDE △的位置,P ∉平面BCED ,连接PB ,PC ,F 为线段PB 的中点,如图2.(1)求证:DF ⊥平面PBC ;(2)当三棱锥P BDE -的体积为12时,求直线BD 与PC 所成角的正切值.【答案】(1)见解析;(2【解析】 【分析】(1)根据已知容易得出DF PB ⊥,再由DE ⊥平面PBD ,DE BC ∕∕可得BC DF ⊥,从而可证DF ⊥平面PBC ;(2)根据三棱锥P BDE -的体积为12及BDE 的面积可得PD ⊥平面BDE ,以点D 为坐标原点建立空间直角坐标系,利用向量法即可求得直线BD 与PC 所成角的正切值. 【详解】(1)证明:因为D 是AB 的中点, 所以AD BD =,即PD BD =,又因F 为线段PB 的中点,所以DF PB ⊥, 因为D ,E 分别是AB ,AC 的中点, 所以DE BC ∕∕,因为90B ∠=︒,所以DE AB ⊥, 即DE PD ⊥,DE BD ⊥, 因为PD BD D ⋂=, 所以DE ⊥平面PBD ,所以BC ⊥平面PBD , 因为DF ⊂平面PBD , 所以BC DF ⊥, 又因BC PB B =, 所以DF ⊥平面PBC ;(2)解:因为AB =2BC =,D ,E 分别是AB ,AC 的中点,所以BD PD ==1DE =, 由(1)得BDE 为直角三角形,故BDES=, 设三棱锥P BDE -的高为h ,则1132P BDE BDEV Sh -=⋅==,所以h PD ,所以线段PD 即为三棱锥P BDE -的高, 所以PD ⊥平面BDE ,则,PD BD PD DE ⊥⊥, 如图,以点D 为坐标原点建立空间直角坐标系,则()0,0,0D ,)B ,(P ,)C ,故()3,0,0DB =,(3,2,PC =,所以cos ,103DB PC DB PC DB PC⋅===, 又因直线BD 与PC 所成角的范围为0,2π⎛⎤⎥⎝⎦,所以直线BD 与PC所以直线BD 与PC7.如图是矩形ABCD 和边AB 为直径的半圆组成的平面图形,将此图形沿AB 折叠,使平面ABCD 垂直于半圆所在的平面,若点E 是折后图形中半圆O 上异于,A B 的点.(1)证明:EA EC ⊥;(2)若22AB AD ==,且异面直线AE 和DC 所成的角为6π,求平面DCE 与平面AEB 所成的锐二面角的余弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)由面面垂直的性质得BC ⊥圆O ,由线面垂直的性质得BC EA ⊥,根据线面垂直的判定可得EA ⊥面EBC ,再由线面垂直的性质可证EA EC ⊥.(2)法一:以点O为坐标原点,建立如图所示的空间直角坐标系,首先求得1,0)2E ,再分别求平面DCE 和平面AEB 的法向量,利用法向量求二面角的余弦值;法二:首先作出两个平面的交线,再作出二面角的平面角,再求二面角的余弦值. 【详解】(1)∴平面ABCD 垂直于圆O 所在的平面,两平面的交线为AB ,BC ⊂平面ABCD ,BC AB ⊥,∴BC 垂直于圆O 所在的平面.又EA 在圆O 所在的平面内,∴BC EA ⊥. ∴AEB ∠是直角,∴BE EA ⊥.而BE BC B =,∴EA ⊥平面EBC . 又∴EC ⊂平面EBC ,∴EA EC ⊥. (2)法1(向量法):如图,以点O 为坐标原点,AB 所在的直线为y 轴,过点O 与BC 平行的直线为z 轴,建立空间直角坐标系O xyz -.由异面直线AE 和DC 所成的角为6π,//AB DC 知6BAE π∠=,∴3BOE π∠=,∴1,0)2E . 由题设可知(0,1,1)C ,(0,1,1)D -,∴33(,1)22DE =-,31(,1)2CE =--. 设平面DCE 的一个法向量为000(,,)p x y z =,由0DE p ⋅=,0CE p ⋅=000000302102y z y z +-=--= 得00z x =,00y =,取02x =,得0=z∴p =.又平面AEB 的一个法向量为(0,0,1)q =, ∴21cos ,7p q p q p q ⋅<>==. 故平面DCE 与平面AEB法2(几何法):如图,过点E 作直线//m DC , 则m 是平面DCE 与平面AEB 的交线. 再过点B 作BP m ⊥,P 为垂足,连接CP ,则BPC ∠是平面DCE 与平面AEB 所成锐二面角的平面角.在直角三角形AEB 中,6BAE π∠=,2AB =,所以 1.BE =在直角三角形PEB 中,,13BEP BE π∠==,所以BP =.在直角三角形PBC 中,BP PC BPC PC ==∠=.故平面DCE 与平面AEB . 8.如图1是由正方形11ACC A 和长方形11BCC B 组成的平面图形,且24AC BC ==,D 、E 分别是11A C 、BC 的中点.将其沿1CC 折起,使得二面角1A CC B --的平面角大小为60,如图2.(1)判断直线1C E 与平面ABD 的位置关系,并证明你的结论; (2)求直线BC 与平面ABD 所成角的正弦值.【答案】(1)1//C E 平面ABD ,证明见解析;(2 【解析】 【分析】(1)取AB 的中点N ,连接EN 、DN ,证明出四边形1ENDC 为平行四边形,可得出1//C E DN ,利用线面平行的判定定理可得出结论;(2)以点B 为坐标原点,BC 为x 轴,BA 为y 轴,1BB 为z 轴建立空间直角坐标系,利用空间向量法可求得直线BC 与平面ABD 所成角的正弦值.【详解】(1)1//C E 平面ABD ,理由如下:取AB 的中点N ,连接EN 、DN ,因为四边形11ACC A 为正方形,则11//AC A C 且11AC A C =, D 为11A C 的中点,所以,1//DC AC 且112DC AC =, N 、E 分别为AB 、BC 的中点,则//NE AC 且12NE AC =, 所以,1NE DC =且1//NE DC ,故四边形1ENDC 为平行四边形,从而1//C E DN .而DN ⊂平面ABD ,1C E 平面ABD ,所以1//C E 平面ABD ;(2)1CC AC ⊥,1CC BC ⊥,所以,二面角1A CC B --的平面角为ACB ∠,所以60ACB ∠=.而4AC =,2CB =,由余弦定理可得2222cos 12AB AC BC AC BC ACB =+-⋅∠=,由勾股定理可得222AB BC AC +=,从而AB BC ⊥.在图2中,1CC AC ⊥,1CC BC ⊥,AC BC C =,1CC ∴⊥平面ABC ,11//CC BB ,1BB ∴⊥平面ABC ,以点B 为原点,BC 为x 轴,BA 为y 轴,1BB 为z 轴建立如图所示的空间直角坐标系.则()0,0,0B、()0,A、()4D 、()2,0,0C .从而()BA =,()1,BD =,()2,0,0BC =. 设平面ABD 的法向量为(),,n x y z =,由00n BA n BD ⎧⋅=⎪⎨⋅=⎪⎩,得040x z ⎧=⎪⎨+=⎪⎩, 取4x =,则()4,0,1n =-,所以,cos ,17n BCn BC n BC ⋅===⋅ 所以直线BC 与平面ABD 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.。

勾股定理——翻折专题

勾股定理——翻折专题

《勾股定理——翻折》专题班级姓名即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。

【翻折直角三角形】1.如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长。

AC2.如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

将△ABC折叠,使点B于点A 重合,折痕为DE,求CE的长。

还可以求哪些线段的长?【翻折矩形】1. 已知矩形ABCD中,AB=6,BC=8,使AB与对角线AC重合,则可求哪些线段的长度?2. 已知矩形ABCD中,AB=6,BC=8,将△ABC沿对角线AC折叠,点B落在E处,F,则可求哪些线段的长度?CE交AD于3. 一矩形纸片,AB=6,BC=10,如图在BA上取一点E,将△EBC沿EC折叠,使点B落在AD 边上的F处,则可求图中哪些线段的长度?①翻折的实质是全等,充分利用全等带来的等量关系。

②恰当的设某条线段为x,尽可能的利用x表示多条线段。

③寻求最佳的直角三角形,运用勾股定理列方程。

【提高训练】1. 如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

若将△ABC折叠,使点A与点C重合,折痕为DE,可以求哪些线段的长?2. 如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

若将△ABC折叠,使点B与点C重合,折痕为DE,可以求哪些线段的长?3.已知矩形ABCD,AB=8,BC=12,在BC边上取一点H,在AB边上取一点E,沿EH折叠使点B 落在AD边上的F处,AF=4,则可求图中哪些线段的长度?4.将矩形ABCD放在平面直角坐标系中,B点为坐标原点,C点在x轴上,AB=8,BC=12,在F处,AE相等吗?。

专题01 翻折问题(解析版)

专题01 翻折问题(解析版)

专题01 翻折问题一、解答题1.(2020·江苏南京·统考模拟预测)如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:(1)分别以AB,AC所在直线为对称轴,画出△ABD和△ACD的对称图形,点D的对称点分别为点E,F,延长EB和FC相交于点G,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出AD的长.【答案】(1)证明见解析;(2)12.【分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x−6)2+(x−4)2=102,求出AD=x=12.【详解】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四边形AEGF是矩形,又∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:设AD=x,则AE=EG=GF=x.∵BD=6,DC=4,∴BE=6,CF=4,∴BG=x﹣6,CG=x﹣4,在Rt△BGC中,BG2+CG2=BC2,∴(x﹣6)2+(x﹣4)2=102.化简得:x2﹣10x﹣24=0解得:x1=12,x2=﹣2(舍去)所以AD=x=12.2.(2019秋·江苏盐城·九年级校考期中)在初二的数学学习中,我们已经了解了直角三角形斜边上的中线等于斜边的一半.张老师在课堂上又提出了这样的问题:如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,那么BC与AB有怎样的数量关系?(1)经过小组合作交流后,小明代表小组发言,他们发现了AB=2BC,证明方法如下:证明:如图2,把△ABC沿着AC翻折,得到△ADC∴∠ACD=∠ACB=90°,∴∠BCD=∠ACD+∠ACB=90°+90°=180°,∴点B、C、D三点共线.又∵∠DAC=∠BAC=30°,∴∠BAD=60°,(请在下面补全小明的证明过程)(2)受到小明“翻折”方法的启发,另一组代表小刚发言:如图3,在△ABC中,如果把条件“∠ACB=90°”改为“∠ACB=135°”,保持“∠BAC=30°”不变,若BC=1,求AB的长.【答案】(1)AB=2BC;补全证明过程见解析;(2)【分析】(1)根据翻折的性质可得AB=AD,BC=BD,即可证明△ABD是等边三角形,可得AB=BD,即可AB;证明BC=12(2)如图,把△ABC沿着AC翻折,得到△ADC,连接BD,根据翻折的性质可得∠DAC=∠BAC=30°,∠ACD=∠ACB=135°,AB=AD,CD=BC=1,可得∠BAD=60°,∠BCD=90°,即可证明△ABD是等边三角形,可得AB=BD,根据勾股定理可得,即可得答案.【详解】(1)∵把△ABC沿着AC翻折,得到△ADC,∴AB=AD,BC=BD,∴△ABD是等边三角形,∴AB=BD=2BC.(2)如图,把△ABC沿着AC翻折,得到△ADC,连接BD,∵∠ACB=135°,∠BAC=30°,BC=1,∴∠DAC=∠BAC=30°,∠ACD=∠ACB=135°,AB=AD,CD=BC=1,∴∠BCD=360°-135°-135°=90°,∠BAD=60°,∴△ABD是等边三角形,=∴.3.(2021秋·江苏南京·九年级统考期中)问题:如图1,在等边三角形△ABC中,点E在AB上,点D在CB的延长线上,ED=EC,回答下列问题:(1)与AE相等的线段是.(2)请证明(1)中得到的结论,证明思路如下:①小聪思路:如图2,过E作EF//BC,交AC于点F,请你完成剩下解答过程;②小明思路:如图3,把△EBD沿BE翻折得到△EBF,连接CF,请你完成剩下解答过程.【答案】(1)BD;(2)①见解析;②见解析【分析】(1)思路见(2)(2)①过E作EF//BC,证明△AEF为等边三角形,再证明△DBE≌△EFC,即可得到BD=EF=AE;②把△EBD沿BE翻折得到△EBF,连接CF,得到△EBD≌△EBF,再证明△ACE≌△BCF,即可得到AE=BF=BD;【详解】(1)BD(2)①小聪思路:过点E作EF//BC,交AC于F∵△ABC是等边三角形∴∠ABC =∠ACB =∠A =60°,AB =BC =AC∵EF //BC ∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∠FEC =∠ECB∵又∠A =60° ∴△AEF 是等边三角形∴AE =AF =EF ,∠EFC =∠DBE =120°,∴CF =BE∵ED =EC∴∠D =∠ECB∴∠D =∠FEC∴∠FCE =∠BED在△DBE 和△EFC 中,CF BE FCE BEDCE DE =ìïÐ=Ðíï=î∴△DBE ≌△EFC (SAS )∴BD =EF∴BD =AE②小明思路:∵DE =EC ∴∠ECB =∠D∵∠ABC =∠DEB +∠D ,∠ACB =∠ACE +∠ECB∴∠DEB =∠ACE∵△EBD 翻折到△EBF∴△EBD ≌△EBF ∴∠DEB =∠FEB ,DE =EF∴∠DEB =∠ACE =∠FEB∵∠CEB =∠CEF +∠FEB =∠A +∠ACE ∴∠CEF =∠A =60°∵DE =EF =CE ∴△ECF 为等边三角形∴CE =CF ,∠ECF =60°∴∠ACE +∠ECB =∠ECB +∠BCF∴∠ACE =∠BCF ,在△ACE 和△BCF 中CF BE BCF ACEAC BC =ìïÐ=Ðíï=î∴△ACE ≌△BCF (SAS )∴AE =BF =BD4.(2022·江苏南京·统考一模)阅读下面的问题及解决途径.结合阅读内容,完成下面的问题.(1)填写下面的表格.(2)将函数y =-2x 2+3x +1的图像沿y 轴翻折,所得到的图像对应的函数表达式为 .(3)将函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的图像先向左平移1个单位长度,再沿y 轴翻折,最后绕原点旋转180°,求所得到的图像对应的函数表达式.【答案】(1)1x +,y ,61y x =+(2)2323y x x -=-+(3)2(2)y ax a b x a b c=--+---【分析】(1)阅读题干材料,弄清题中材料中图形平移的规律,“左加右减”进行求解即可;(2)根据二次函数图像与几何变换,将x 换成x -,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论;(3)利用图像向左平移、关于,x y 轴翻折、绕坐标原点旋转的规律进行解答.【详解】(1)解:设平移后新的函数图像上任意点P 的坐标为(,)x y ,将点P 向右平移1个单位长度得点(1,)P x y ¢+平移后的图像对应的函数表达式为:61y x =+,故答案为:1x +,y ,61y x =+;(2)解:将二次函数2231y x x =-++的图像沿着y 轴翻折,所得到的图像对应的函数表达式是22()3()1y x x +=--×-+,即2323y x x -=-+,故答案为:2323y x x -=-+;(3)解:将2y ax bx c =++(a ,b ,c 是常数,a ≠0)的图像先向左平移1个单位长度,得2(1)(1)y a x b x c =++++,再沿y 轴翻折,得2(1)(1)y a x b x c =-++-++,即2(21)(1)y a x x b x c =-++-+,最后绕原点旋转180°,得2(21)(1)y a x x b x c -=+++++,整理得:2(2)y ax a b x a b c =--+---,故答案为:2(2)y ax a b x a b c =--+---.答:所得到的图像对应的函数表达式2(2)y ax a b x a b c =--+---.5.(2022秋·江苏无锡·九年级统考期中)在数学活动《折纸与证明》中,有这样的一段活动材料:①如图①,把正方形ABCD 对折后再展开,折痕为EF ;②如图②,将点A 翻折到EF 上点A ¢处,且使折痕过点B ;③如图③,沿A C ¢折叠,得A BC ¢V (如图④).回答下列问题:(1)判断:A BC ¢V 的形状为______________;并说明你的理由;(2)若正方形纸片的边长为2,则线段A F ¢的平方的值为______________.【答案】(1)等边三角形,理由见解析(2)3【分析】(1)由折叠的性质可知EF 垂直平分BC ,结合正方形的性质可知A C A B AB BC ¢¢===,可判断A BC ¢V 是等边三角形.(2)利用勾股定理解直角A FB ¢D 可得222A F A B FB ¢¢=-.【详解】(1)解:等边三角形.理由如下:∵如图②,把正方形纸片ABCD 对折,折痕为EF ,∴EF 垂直平分BC .∵将点A 翻折,折痕过点B ,且使点A 落在EF 的点A ¢处,∴A C A B AB BC ¢¢===.∴A BC ¢V 是等边三角形.(2)解:∵正方形纸片的边长为2,EF 垂直平分BC ,∴2A B AB ¢==,112122FB BC ==´=,90A FB ¢Ð=°,∴2222213A F A B FB ¢¢=-=-=,线段A F ¢的平方的值为3.6.(2022秋·江苏扬州·九年级统考期中)【问题背景】小明遇到这样一个问题:如图1,在Rt ABC V 中,9060A CB ,A Ð=°Ð=°,CD 平分ACB Ð,试判断BC 和AC AD 、之间的数量关系.【初步探索】小明发现,将ACD V 沿CD 翻折,使点A 落在BC 边上的E 处,展开后连接DE ,则得到一对全等的三角形,从而将问题解决(如图2)(1)写出图2中全等的三角形____________________;(2)直接写出BC 和AC AD 、之间的数量关系__________________;【类比运用】(3)如图3,在ABC V 中,2C B Ð=Ð,AD 平分32CA B ,A B ,A D Ð==,求ACD V 的周长.小明的思路:借鉴上述方法,将ACD V 沿AD 翻折,使点C 落在AB 边上的E 处,展开后连接DE ,这样可以将问题解决(如图4);请帮小明写出解答过程:【实践拓展】(4)如图5,在一块形状为四边形ABCD 的空地上,养殖场丁师傅想把这块地用栅栏围成两个小型的养殖场,即图5中的ABC V 和ACD V ,若AC 平分10m 17m 9m BAD BC CD AC AD Ð====,,,.请你帮丁师傅算一下需要买多长的栅栏.【答案】(1)A C D E C D @V V ;(2)BC AC AD =+;(3)ACD V 的周长为5;(4)需要买67m 长的栅栏【分析】(1)将ACD V 沿CD 翻折得到ECD V ,则A CD E C D @V V ,即可得答案;(2)由90,60ACB A Ð=°Ð=°,得30B Ð=°,由翻折得,E C A C E D A D ==,60CED A Ð=Ð=°,得30EDB B Ð=Ð=°,所以E D E B A D ==,于是B C E C E B A C A D =+=+;(3)将ACD V 沿AD 翻折,使点C 落在AB 边上的点E 处,展开后连接DE ,则,A C A E CD E D ==,2AED C B Ð=Ð=Ð,于是得2B E D B B Ð=Ð+Ð,则B EDB Ð=Ð,得EB ED CD ==,所以3A C C D A B +==,即可得答案;(4)将ACD V 沿AC 翻折,使点C 落在AB 边上的点E 处,连接CE ,作CF AB ^于F ,设m EF BF c ==,则()9A F x m =+,可得方程()222217910x x -+=-,解得:6x =,即可求得6m EF BF ==,()21m AB =,则()91010211767m AD BC CD AB AC ++++=++++=,可得答案.【详解】解:(1)如图2,ACD QV 沿CD 翻折得到ECDV A C D E C D \@V V ;(2)BC AC AD =+,理由:90,60ACB A Ð=°Ð=°Q ,30B \Ð=°,由翻折得,E C A C E D A D ==,60CED A Ð=Ð=°,603030E D B C E D B \Ð=Ð-Ð=°-°=°,EDB B \Ð=Ð,ED EB \=,EB AD \=,B C E C E B A C A D \=+=+;(3)如图4,将ACD V 沿AD 翻折,使点C 落在AB 边上的点E 处,展开后连接DE ,由翻折得,A C A E CD E D ==,2AED C B Ð=Ð=Ð,A E D E D B B Ð=Ð+ÐQ ,2B E D B B \Ð=Ð+Ð,B EDB \Ð=Ð,EB ED \=,CD EB \=,3A C C D A E E B A B \+=+==,325A C C D A D \++=+=,ACD V 的周长为5;(4)如下图5,将ACD V 沿AC 翻折,使点C 落在AB 边上的点E 处,连接CE ,作CF AB ^于F ,10m,17m,9m BC CD CA AD ====Q ,9m,10m AE AD CE CD \====,10m BC CE \==,CF AB ^Q ,\90,A FC B FC E F B F Ð=Ð=°=,设m EF BF c ==,则()9m AF x =+,22222A C A F B C B F C F -=-=Q ,()222217910x x \-+=-,解得:6x =,6m EF BF ==Q ,()96621m AB AE EF BF \=++=++=,()91010211767m AD BC CD AB AC \++++=++++=,\需要买67m 长的栅栏.7.(2022秋·江苏盐城·九年级校联考阶段练习)如图,在边长为1的小正方形组成的网格中有一个ABC V ,按要求回答下列问题:(1)ABC V 的面积为 ;(2)画出将ABC V 向右平移6格,再向上平移3格后的111A B C △;(3)画出ABC V 绕点B 顺时针旋转90°后的图形22A BC V ;(4)画出ABC V 沿直线EF 翻折后的图形33A B C △.【答案】(1)3(2)见解析(3)见解析(4)见解析【分析】(1)直接利用三角形面积求法得出答案;(2)利用平移的性质得出对应点位置,进而得出111A B C △;(3)直接利用旋转的性质得出对应点位置,进而得出22A BC V ;(4)直接利用翻折变换的性质得出对应点位置,进而得出33A B C △.【详解】(1)ABC V 的面积为:13232´´=;故答案为:3;(2)如图所示:111A B C △即为所求;(3)如图所示:22A BC V 即为所求;(4)如图所示:33A B C △即为所求;8.(2020·江苏无锡·统考一模)阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC 中,如果AB >AC ,那么∠ACB >∠ABC .证明如下:将AB 沿△ABC 的角平分线AD 翻折(如图2),因为AB >AC ,所以点B 落在AC 的延长线上的点B '处.于是,由∠ACB >∠B ',∠ABC =∠B ',可得∠ACB >∠ABC .(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC 中,如果∠ACB >∠ABC ,那么AB >AC .小明的思路是:沿BC 的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M 为正方形ABCD 的边CD 上一点(不含端点),连接AM 并延长,交BC 的延长线于点N .求证:AM +AN >2BD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)设BC的中垂线交BC于点E,交AB于点D,连接DC,结合中垂线的性质定理与三角形三边长的关系,即可得到结论;(2)延长DC到点E,使得CE=CN,连接AE交BC于点F.易证△ACE≌△CAN,得AE=AN.过点C作PQ⊥AC,分别交AN、AE于点P、Q,结合“三角形中,大角对大边”,得AP+AQ>2AC,QE>CQ,PC>PM,进而得QE>PM,即AM+AN>AP+AQ,然后即可得到结论.【详解】(1)设BC的中垂线交BC于点E,交AB于点D,连接DC.将∠B沿BC的中垂线DE翻折(如图3),使点B落在点C处.∵∠ACB>∠ABC,∴CD在△ABC的内部,∵DE为BC的中垂线,∴DB=DC.∵在△ADC中,AD+DC>AC,∴AD+DB>AC.即AB>AC;(2)如图4,延长DC到点E,使得CE=CN,连接AE交BC于点F.∵∠ACE=∠ACN=135°,CE=CN,AC=AC,∴△ACE≌△ACN(SAS),∴AE=AN.过点C作PQ⊥AC,分别交AN、AE于点P、Q.∵∠ACP=∠ACQ=90°,∴AP>AC,AQ>AC,∴AP+AQ>2AC.∵∠ACD>∠E,∠ACD=45°,∠QCE=135°-90°=45°,∴∠QCE>∠E,∴QE>CQ.同理可得:PC>PM.∵△ACE≌△ACN,∴∠CAN=∠CAE,又∵AC=AC,∠ACP=∠ACQ=90°,∴△ACP≌△ACQ(ASA),∴PC=CQ,∴QE>PM,∴AM+AN=AM+AE=AM+AQ+QE>AM+AQ+PM=AP+AQ.又∵AP+AQ>2AC,∴AM+AN>2AC.∵正方形ABCD中,AC=BD,∴AM+AN>2BD.9.(2022秋·江苏·九年级期末)折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图1),怎样证明∠C>∠B呢?把AC沿∠A的平分线AD翻折,因为AB>AC,所以点C落在AB上的点C′处(如图2).于是,由∠AC′D =∠C,∠AC′D>∠B,可得∠C>∠B.利用上述方法(或者思路)解决下列问题:(1)如图2,上述阅读材料中,若∠B=45°,∠C=60°,则∠C′DB=_______°.(2)如图3,△ABC中,∠ACB=90°,AD平分∠BAC,交BC于点D.若CD=2,AB=6.求△ABD的面积.(3)如图4,△ABC中,已知AD⊥BC于点D,且CD=AB+BD.若∠C=24°,求∠CAB的度数.【答案】(1)15;(2)△ABD的面积为6;(3)∠CAB=108°.【分析】(1)利用折叠的性质和三角形的外角性质,即可求出答案;(2)把AC沿角平分线AD翻折,点C落在AB上的点C'处,得DC'=CD=2,即可求出△ABD的面积;(3)把AB沿AD翻折,点B落在BC上的点B'处,则BD=DB',求得AB'=B'C,然后得到∠B'AC=∠C =24°,从而得到∠B=∠AB'B=48°,即可求出答案.【详解】解:(1)由折叠的性质,则∠AC′D=∠C=60°,∵∠B=45°,∴∠C′DB=60°-45°=15°;故答案为:15°.(2)如图,把AC沿角平分线AD翻折,点C落在AB上的点C'处,∵AD是角平分线,∠ACB=90°,∴DC'=DC=2,∠AC'D=∠ACD=90°,∵DC'是高,∴△ABD的面积为6.(3)如图,把AB沿AD翻折,点B落在BC上的点B'处,则BD=DB',∴AB'=AB=B'C,∴∠B'AC=∠C =24°∴∠B=∠AB'B=48°,∴∠CAB=108°.10.(2021春·江苏无锡·九年级江苏省锡山高级中学实验学校校考期中)问题背景如图1,矩形ABCD中,AB=AB AD<,M、N分别是AB、CD的中点,折叠矩形ABCD,使点A落在MN上的点K处,折痕为BP.(1)用直尺和圆规在图1中的AD 边上作出点P (不写作法,保留作图痕迹);(2)连接AK ,判断ABK V 的形状;(3)如图2,若点E 是直线MN 上的一个动点.连接EB ,在EB 左侧作等边三角形BEF ;连接MF ,则MF 的最小值是______;(4)如图3,若点E 是射线KM 上的一个动点将BEK △沿BE 翻折,得BET △,BT 所在直线交直线MN 于点Q ,当TQE △是直角三角形时,KE 的长为多少?请直接写出答案.【答案】(1)见详解;(2)ABK V 是等边三角形,理由见详解;(3(4)4或12【分析】(1)作∠ABK 的平分线交AD 于P ,点P 即为所求;(2)先求出∠BKM =30°;根据对称性可得∠AKB =60°,进而即可得到答案;(3)由△FBA ≌△EBK ,因为FM 、EH 分别是AB 、BK 上的中线,推出FM =EH ,根据垂线段最短可知,当HE ⊥MN 时,EH 的值最小,进而即可求解;(4)分四种情形分别画出图形,求解即可;【详解】解:(1)如图①中,点P 即为所求:(2)连接AK ,在Rt △BKM 中,∵sin ∠BKM =BM BK =12,∴∠BKM =30°.∵M 、N 分别是AB 、CD 的中点,∴MN 是矩形ABCD 的对称轴,∴∠AKM =∠BKM =30°,AK =BK ,∴∠AKB =60°,∴ABK V 是等边三角形;(3)如图②中,连接AF ,取BK 的中点H ,连接EH .∵等边三角形BEF中,∴∠FBE=∠ABK=90°-∠BKM=90°-30°=60°,又∵BF=BE,BA=BK,∴∠FBA=∠EBK,∴△FBA≌△EBK(SAS),∵FM、EH分别是AB、BK上的中线,∴FM=EH,根据垂线段最短可知,当HE⊥MN时,EH的值最小,最小值EH=12∴FMAB MKB=30°,(4)∵MB=12∴MK=6,如图,当∠TEQ=90°时,则TE∥MB,∴∠MBQ=∠T=∠MKB=30°,∴MQ=,设EK=ET=x,则QE,x+x+2=6,解得:x EK如图,当∠TQE=90°时,此时点Q与点M重合,QE=2=,∴EK=6-2=4;如图当∠TEQ=90°时,则∠BEM=45°,∴EM=BM∴EK如图:当∠TQE=90°时,此时点Q与点M重合,∵∠TEM=90°-∠T=60°,×60°=30°,∴∠KEB=12∴∠EKB=∠KEB=30°,∴ME=MK=6,∴EK=12.综上所述,满足条件的EK的值为4或12.11.(2022春·江苏扬州·九年级校联考期中)问题情境:如图,在正方形ABCD中,CE⊥DF.易证:CE=DF.(不需要写出证明过程)问题探究:在“问题情境”的基础上请研究.(1)如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段AE与MN之间的数量关系,并说明理由.(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,CQ(图中未连),判断线段EQ与CQ之间的数量关系,并说明理由.(3)在(2)的条件下延长EQ交边AD于点F.则∠AEF= °;(4)拓展提高:如图3,若该正方形ABCD边长为8,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,若AG=5,请直接写出AC′的长.【答案】(1)AE=MN,理由见解析;(2)EQ=CQ,理由见解析;(3)45;(4)2.【分析】(1)过点B作BF//MN交CD于点F,则四边形M BFN为平行四边形,得出MN =BF,BF⊥AE,由ASA证得△ABE≌△BCF,得出AE= BF,即可得出结论;(2)在图2中,连接AQ、CQ,易证△ABQ≌△CBQ,所以AQ=CQ,再根据垂直平分线的性质得到AQ=EQ,所以可得EQ=CQ(3)连接AQ,过点Q作HI// AB,分别交AD,BC于点H、I,则四边形ABIH为矩形,得出HI⊥AD,HI ⊥BC,HI = AB= AD,证△DHQ是等腰直角三角形,得HD= HQ,AH = QI,由H L证得Rt△AHQ≌Rt△QIE,得∠AQH =∠QEI,证∠AQE=90°,得△AQE是等腰直角三角形,即可得出结果;(4)延长AG交BC于E,则EG = AG= 5,得AE=10,由勾股定理得:BE,则CE= BC-BE,由折叠的性质即可得出结果.(1)(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC,AB∥CD,过点B作BF∥MN交CD于点F,如图1所示:∴四边形MBFN为平行四边形,∴MN=BF,BF⊥AE,∴∠ABF+∠BAE=90°,∵∠ABF+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,{BAE CBF AB BC ABE BCFÐ=Ð=Ð=Ð,∴△ABE≌△BCF(ASA),∴AE=BF,∴AE=MN;(2)解:在图2中,连接AQ、CQ,在△ABQ和△CBQ中,{AB CB ABQ CBQ BQ BQ=Ð=Ð=,∴△ABQ≌△CBQ,∴AQ=CQ,∵MN⊥AE于F,F为AE中点,∴AQ=EQ,∴EQ=CQ(3)解:连接AQ,过点Q作HI// AB,分别交AD.BC于点H、I,如图3所示:∵四边形ABCD是正方形,∴四边形ABIH为矩形,∴HI⊥AD,HI⊥.BC,HI= AB= AD,∵BD是正方形ABCD的对角线,∴∠BDA = 45°,∴△DHQ是等腰直角三角形,∴HD=HQ,AH=QI,∵MN是AE的垂直平分线,AQ= QE,在Rt△AHQ和Rt△QIE中,∵AQ= QE,AH= QI,∴Rt△AHQ≌Rt△QIE(HL),∴∠AQH =∠QEI,∠AQH+∠EQI = 90°,△AQ E是等腰直角三角形,∠EAQ=∠AEQ=45°,即∠AEF= 45°故答案为:∠AEF=45°;(4)解:拓展提高:由(3)延长AG交BC于E,如图4所示:则EG =AG =5,∴AE = 10,在Rt △ABE 中,BE 6==CE = BC - BE = 8-6=2,由折叠的性质得: AC '=CE =2,故答案为: AC ′=2.12.(2022·江苏盐城·校联考一模)(1)背景问题:如图①,已知矩形ABCD ,E 是边CD 上一点,将△BCE 沿BE 翻折,使得C 落在AD 上的点F 处,求证:△ABF ∽△DFE .(1)尝试应用:如图②,已知四边形ABCD 中,∠A =∠D =90°,点E 在AD 上,∠BEC =90°,2∠BCE +∠ECD =180°,过点E 作EF ⊥BC 垂足为F ,若EF =2,BC =5,求AE 的长.(2)拓展创新:如图③,已知矩形ABCD ,AB =9,BC =12,E 是边CD 上一动点,将△BCE 沿BE 翻折至△BPE ,连接AP 在上取点T ,使得PT =2AT ,连接DT ,求出DT 长度的最小值.【答案】(1)见解析;(2(3)4【分析】(1)由矩形的性质和翻折得到∠BFE =∠A =∠D =∠C =90°,由同角的余角相等可推得∠DEF =∠AFB ,证得△EDF ∽△FAB ;(2)证明△ECF ∽△BEF ,得CF =1,BF =4 ,由△ABF ∽△DFE ,2∠BCE +∠ECD =180°,构造矩形ABGD ,由BG =AD 建立方程,解方程求解即可;(3)在AB 边上取Q ,使得BO =2AQ ,连接TQ ,则ATQ APB V V ∽求得4TQ =,可得T 在以Q 为圆心4为半径的圆上,根据点圆关系求最值即可.【详解】(1)证明:如图1,在矩形ABCD 中,∠A =∠D =∠C =90°,由翻折得∠EFB =∠C =90°.∵∠DEF +∠DFE =90°,∠AFB +∠DFE =180°−90°=90°,∴∠DEF=∠AFB,∴△ABF∽△DFE.(1)尝试应用:如图2,过点B作BG⊥CD,交DC的延长线于点G,设DE=m,CD=x.∵EF⊥BC,∴∠EFC=∠BFE=90°,∵∠BEC=90°,∴∠ECF=90°−∠CEF=∠FEB,∴△ECF∽△BEF,EF CFBF EF\=\EF2=CF·BF25EF BC==,Q()225CF CF\=-解得CF=1,或4(舍去)\CF=1,BF=4\EC==EB==∵△ABF∽△DFE∴12 CD DE CE AE AB BC===设CD=x,则AE=2x∵2∠BCE+∠ECD=180°∴D、C、G共线,在矩形ABGD中则DG x AB==由BG=AD得2x=∴AE=(2)拓展创新:在AB边上取Q,使得BQ=2AQ,连接TQQ PT =2AT ,PAB TAQÐ=Ð\ATQ APBV V ∽\13TQ AQ AT PB AB AP ===143TQ PB \==\T 在以Q 为圆心4为半径的圆上,当点T 落在DQ 上,即DT =DQ−4时,DT 的值最小,9AB DC ==Q \133AQ AB ==Q 90CB =°DQ \==∴DTmin =413.(2023·江苏·九年级专题练习)如图,在矩形ABCD 中,BD 是对角线,AB =6cm ,BC =8cm 点E 从点D 出发,沿DA 方向匀速运动,速度是2cm/s ;点F 从点B 出发,沿BD 方向匀速运动,速度是1cm/s ,MN 是过点F 的直线,分别交AB 、BC 于点M 、N ,且在运动过程中始终保持MN ⊥BD .连接EM 、EN 、EF ,两点同时出发,设运动时间为t (s )(0<t <3.6),请回答下列问题:(1)求当t 为何值时,△EFD ∽△ABD ?(2)求当t 为何值时,△EFD 为等腰三角形;(3)将△EMN 沿直线MN 进行翻折,形成的四边形能否是菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)当t 的值为207时,△EFD ∽△ABD(2)当t 的值为5021或103时△EFD 为等腰三角形(3)不存在,理由见解析【分析】(1)当△EFD ∽△ABD 时,得到相似比DE DF DA DB=,解得207t =即可;(2)根据题意,等腰三角形分三种情况:EF =DE 时;EF =DF 时;DE =DF 时;作出相应图形,结合条件求解即可;(3)假设存在这样的菱形,当EM EN =时,过点E 作EQ ⊥BC 于点Q ,利用勾股定理求出两条线段长,根据相等关系列方程求解即可确定结论存在与否.【详解】(1)解:如图所示:在矩形ABCD 中,AD =BC =8cm ,∠A =∠ABC =90°,在Rt △ABD 中由勾股定理得10BD ===(cm ),由题意得:DE =2t cm ,BF =t cm ,∴()10DF BD BF t =-=-cm ,∵△EFD ∽△ABD ,∴DE DF DA DB =,∴210810t t -=,解得207t =∴当t 的值为207时,△EFD ∽△ABD ;(2)解:△EFD 为等腰三角形有三种情况:①EF =DE 时,点E 在DF 的垂直平分线上,过点E 作EG ⊥DF 于点G ,如图所示:则11022t DG DF -==cm ,在Rt △DEG 中,4cos 15DG DE Ð==,∴5DG =4DE ,∴105422t t -´=´,解得:5021t =;②EF =DF 时,点F 在DE 的垂直平分线上,过点F 作FH ⊥AD 于点H ,如图所示:则12DH DE t ==cm ,在Rt △DHF 中,4cos 15DH DF Ð==,∴5DH =4DF ,∴()5410t t =-,解得409t =,∵40 3.69>,∴不合题意舍去;③DE =DF 时,则2t =10-t ,解得:103t =;综上:当t 的值为5021或103时,△EFD 为等腰三角形;(3)解:不存在.假设△EMN 沿直线MN 翻折后点E 落在点E ¢处,由折叠得:EM E M ¢=,EN E N ¢=,当翻折后的四边形为菱形时,EM E M E N E N ¢¢¢===,∴EM =EN ,∴22EM EN =,过点E 作EQ ⊥BC 于点Q ,如图所示:则四边形EQCD 为矩形,∴EQ =CD =6cm ,CQ =DE =2t cm ,∴51382844NQ BC CQ BN t t t æö=--=--=-ç÷èø,∴222222131696852100416EN EQ NQ t t t æö=+=+-=-+ç÷èø,∵563AM AB BM t æö=-=-ç÷èøcm ,()82AE t =-cm ,∴()2222225616825210039ME AM AE t t t t æö=+=-+-=-+ç÷èø,∴22611695210052100916t t t t -+=-+,此方程无解,∴不存在这样的菱形.14.(2022秋·江苏·九年级期中)(1)【原题呈现】在课本中,安排有这样一个思考问题:“如图1,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,那么BC 和AB 有怎样的数量关系?试证明你的结论”老师在课堂中提出这样的问题,并展示了小明的部分解答小明:AB =2B C .证明:把△ABC 沿着AC 翻折,得到△AD C .∴∠ACD =∠ACB =90°,∴∠BCD =∠ACD +∠ACB =90°+90°=180°,即:点B 、C 、D 在一条直线上.(请在下面补全小华后面的证明过程)(2)【变式拓展】如图2,在△ABC 中,把(1)中条件“∠ACB =90°”改为“∠ACB =135°”,保持“∠BAC =30°”不变,则2AB = 2BC .(3)【能力迁移】我们发现,翻折可以探索图形性质,请利用翻折解决下面问题.如图3,点D 是△ABC 内一点,AD =AC ,∠BAD =∠CAD =20°,∠ADB +∠ACB =210°,探求AD 、DB 、BC 三者之间的数量关系,并说明理由.【答案】(1)见解析(2)2(3)222BD BC AD +=,理由见解析【分析】(1)根据翻折的性质得出点B 、C 、D 共线,再由等边三角形的判定和性质即可证明;(2)把∆ABC 沿着AC 翻折,得到∆ADC ,根据翻折的性质得出∆ABD 为等边三角形,由题意确定∠BCD =90°,运用勾股定理即可得出结论;(3)把△ABD延AB边翻折得到△AEB,连接ED,EC,由翻折及各角之间的关系得出△AEC为等边三角形,再由勾股定理及等量代换即可得出结论.【详解】(1)证明:把△ABC沿着AC翻折,得到△ADC.∴∠ACD=∠ACB=90°,∴∠BCD=∠ACD+∠ACB=90°+90°=180°,即:点B、C、D共线,∴AB=AD,∵∠BAC=30°,∴∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=2BC;(2)如图所示,把∆ABC沿着AC翻折,得到∆ADC,由翻折得:AD=AB,∠CAD=∠CAB=30°,BC=CD,∴∠BAD=60°,∴∆ABD为等边三角形,∴AB=BD,∵∠ACB=∠ACD=135°,∴∠BCD=90°,2222\=+=,BD BC CD BC2即22AB BC=;2(3)222+=;BD BC AD理由:把△ABD延AB边翻折得到△AEB,连接ED,EC,∵∠BAD=∠CAD=20°,∴∠EAB=20°,∴∠EAC=60°,∵∠ACB +∠ADB =210°,∠AEB =∠ADB ,∴∠ACB =∠AEB =210°,∴∠EBC =360°-210°-60°=90°,∵AD =AC ,AE =AD ,∴AE =AC ,∴△AEC 为等边三角形,∴EC =AE =AD ,在Rt △EBC 中,222BE BC EC +=,∵BC =BD ,EC =AD ,∴222BD BC AD +=.15.(2022秋·江苏盐城·九年级校联考阶段练习)问题情境:如图1,P 是O e 外的一点,直线PO 分别交O e 于点A ,B .(1)探究证明:如图2,在O e 上任取一点C (不与点A ,B 重合),连接PC ,求证:<AP PC ;(2)直接应用:如图3,在Rt ABC △中,=90ACB а,3AB AC ==,以BC 为直径的半圆O 交AB 于D ,P 是弧CD 上的一个动点,则AP 的最小值是 .(3)构造运用:如图4,在边长为2的菱形ABCD 中,=60A а,M 是AD 的中点,N 是AB 边上一动点,将AMN V 沿MN 所在的直线翻折得到A MN ¢V ,连接A B ¢,则A B ¢长度的最小值为 .(4)综合应用:如图5,平面直角坐标系中,分别以点()2,3A -,点()4,5B ,分别以1,2为半径作A e 、B e ,M ,N 分别是A e ,B e 上的动点,直接写出PM PN +的最小值为 .【答案】(1)见解析321-(4)7【分析】(1)在POC △中,根据“三角形两边之差小于第三边”可求证;(2)连接OA 交O e 于点P ,根据勾股定理求得OA ,进而求得AP ;(3)A ¢的轨迹是以M 为圆心,半径是1的圆,故连接BM ,求得BM ,进而求得A B ¢的最小值;(4)作点A 关于x 轴的对称点C ,连接CB 交x 轴于点P ,求出BC 的长,进而求得PM PN +的最小值.(1)证明:如图1,<PO OC PC -Q ,()<AP OA OC PC \+-,OA OC =Q ,<AP PC \;(2)解:如图2,连接OA ,交半O e 于点P ,13==22CO BC \,在Rt AOC V 中,OA ===∴32AP OA OP =-=,\AP 32,32;(3)解:如图3,连接BM 、BD ,交M ⊙于点1A ,∵四边形ABCD 是菱形,AB AD \=,=60BAM аQ ,ABD \V 是等边三角形,∵M 是AD 的中点,A ¢的轨迹是以M 为圆心,半径是1的圆,=90AMB \а,1112AM A M AD ===,BM \==,∴111A B BM A M =-=,A B \¢1-,1;(4)解:如图4,作点A 关于x 轴的对称点C ,连接BC ,交x 轴于点P ,交B e 于点N ,连接PA 交A e 于M ,PA PC \=,PA PB PC PB BC \+=+=,∵点()2,3A -,点()4,5B ,∴点(2,3)C --,10BC \==,∵分别以1,2为半径作A e 、B e ,=1AM \,2BN =,PM PN \+PA PB AM BN =+-- 1012=--=7,故答案是:7.16.(2022秋·江苏盐城·九年级校考阶段练习)函数图象是研究函数的重要工具,类比一次函数的学习,对函数32y x =-的图象与性质进行探究.下表是探究过程中的部分信息:x …2-1-012 (32)y x =-…4a2-14…请按要求完成下列各小题:(1)a 的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A .函数图像关于x 轴对称B .当0x =时,函数有最小值,最小值为2-C .当0x >时,y 随x 的增大而增大②直接写出不等式1324x <-<的解集为______.(4)将该函数图像在直线1y =上方的部分保持不变,下方的部分图像沿直线1y =进行翻折,得到新函数图像,若经过点()2,0-的一次函数y kx b =+图像与新函数图像W 只有1个交点时,请直接写出k 满足的条件______.【答案】(1)1(2)见解析(3)①BC ;②2<<1x --或12x <<(4)3k ³或3k <-或13k =【分析】(1)把=1x -代入32y x =-即可求出a 的值;(2)先描点再连线画出函数图像即可;(3)①根据函数图象可以看出函数图像关于y 轴对称,关于x 轴不对称,即可判断A 错误;根据函数图象可判断当0x =时,函数有最小值,最小值为2-,得出B 正确;根据函数图象可判断当0x >时,y 随x 的增大而增大,得出C 正确;②根据函数图象写出不等式的解集即可;(4)根据题意画出翻折后的图像,然后数形结合求出k 的范围即可.【详解】(1)解:把=1x -代入32y x =-得:3121y =´--=,即1a =,故答案为:1.(2)解:该函数的图象,如图所示:(3)解:①A .函数图像关于y 轴对称,故A 错误;B .当0x =时,函数有最小值,最小值为2-,故B 正确;C .当0x >时,y 随x 的增大而增大,故C 正确;故答案为:BC ;②根据函数图象可知,当2<<1x --或12x <<时,1324x <-<;故答案为:2<<1x --或12x <<;(4)解:如图所示:设点()2,4A ,()1,1B ,()0,4C ,()11D -,,()2,4E -,设AB 的解析式为11y k x b =+,把()2,4A ,()1,1B 代入得:1111241k b k b +=ìí+=î,解得:1132k b =ìí=-î,AB 的解析式为:()321y x x =->,设CD 的解析式为22y k x b =+,把()0,4C ,()11D -,代入得:22141b k b =ìí-+=î,解得:2234k b =ìí=î,CD 的解析式为:()3410y x x =+-<<,设DE 的解析式为33y k x b =+,把()11D -,,()2,4E -代入得:3333241k b k b -+=ìí-+=î,解得:3332k b =-ìí=-î,DE 的解析式为:()341y x x =--<-,根据图像可知,当直线y kx b =+经过()2,0-和点()1,1B 时,直线y kx b =+与图像W 只有一个交点,把()2,0-,()1,1B 代入得:201k b k b -+=ìí+=î,解得:13k =;∵123k k ==,∴AB CD ∥,根据图像可知,当直线y kx b =+与AB 平行时,直线y kx b =+与图像W 只有一个交点,且此时直线y kx b =+绕点()2,0-继续逆时针旋转,直到与DE 平行之前,直线y kx b =+与图像W 只有一个交点,∴当3k ³或3k <-时,直线y kx b =+与图像W 只有一个交点;综上分析可知,当3k ³或3k <-或13k =时直线y kx b =+与图像W 只有一个交点.故答案为:3k ³或3k <-或13k =.17.(2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线2=23y x x --交x 轴于A ,B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC 、BC .(1)求曲线N 所在抛物线相应的函数表达式;(2)求△ABC 外接圆的半径;(3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.【答案】(1)223y x x =-++;(2(3)Q (0)或(4,0)或(5,0)或(0)或(2,0)或(1,0).【详解】试题分析:(1)由已知抛物线可求得A 、B 坐标及顶点坐标,利用对称性可求得C 的坐标,利用待定系数法可求得曲线N 的解析式;(2)由外接圆的定义可知圆心即为线段BC 与AB 的垂直平分线的交点,即直线y =x 与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;(3)设Q (x ,0),当BC 为平行四边形的边时,则有BQ ∥PC 且BQ =PC ,从而可用x 表示出P 点的坐标,代入抛物线解析式可得到x 的方程,可求得Q 点坐标,当BC 为平行四边形的对角线时,由B 、C 的坐标可求得平行四边形的对称中心的坐标,从而可表示出P 点坐标,代入抛物线解析式可得到关于x 的方程,可求得P 点坐标.试题解析:(1)在2=23y x x --中,令y =0可得x 2﹣2x ﹣3=0,解得x =﹣1或x =3,∴A (﹣1,0),B (3,0),令x =0可得y =﹣3,又抛物线位于x 轴下方部分沿x 轴翻折后得到曲线N ,∴C (0,3),设曲线N 的解析式为2y ax bx c =++,把A 、B 、C 的坐标代入可得:09303a b c a b c c -+=ìï++=íï=î,解得:123a b c =-ìï=íï=î,∴曲线N 所在抛物线相应的函数表达式为223y x x =-++;(2)设△ABC 外接圆的圆心为M ,则点M 为线段BC 、线段AB 垂直平分线的交点,∵B (3,0),C (0,3),∴线段BC 的垂直平分线的解析式为y =x ,又线段AB 的解析式为曲线N 的对称轴,即x =1,∴M (1,1),∴MB△ABC(3)设Q (t ,0),则BQ =|t ﹣3|.①当BC 为平行四边形的边时,如图1,则有BQ ∥PC ,∴P 点纵坐标为3,即过C 点与x 轴平行的直线与曲线M 和曲线N 的交点即为点P ,x 轴上对应的即为点Q ,当点P 在曲线M 上时,在2=23y x x --中,令y =3可解得x或x =1,∴PCPC﹣1.。

一次函数中的折叠、翻折、对称问题专题(专项练习)

一次函数中的折叠、翻折、对称问题专题(专项练习)

一次函数中的折叠、翻折、对称问题专题(专项练习)1.如图,一次函数y kx b =+的图象经过点()0,2-和()2,0,该图象记作直线l .某同学为观察k ,b 对函数图象的影响,将这个一次函数中的k 与b 交换位置后得到一个新的函数,新函数图象记作直线l '.(1) 求直线l 的解析式;(2) 若直线3x =与直线l ,l '分别相交于点A ,B ,求AB 的长;(3) 若直线x m =与直线l ,l '及x 轴有三个不同的交点,当其中两点关于第三点对称时,直接写出m 的值.2.一次函数y 3+2的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内作等边△ABC .(1)求C 点的坐标;(2)在第二象限内有一点M (m ,2),使ABMABCSS=,求M 点的坐标;(3)将△ABC 沿着直线AB 翻折,点C 落在点E 处;再将△ABE 绕点E 顺时针方向旋转15°,点B 落在点F 处,过点F 作FG ⊥y 轴于G .求△EFG 的面积.3.一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于点A (﹣8,0)和点B (0,6).点C 在线段AO 上.如图,将△CBO 沿BC 折叠后,点O 恰好落在AB 边上点D 处.(1)求一次函数的解析式; (2)求AC 的长;(3)点P 为x 轴上一点.且以A ,B ,P 为顶点的三角形是等腰三角形,请直接写出P 点坐标.4.如图,一次函数y=-23x+b 的图象与x 轴、y 轴分别交于点A 、B ,线段AB 的中点为D (3,2).将△AOB 沿直线CD 折叠,使点A 与点B 重合,直线CD 与x 轴交于点C .(1)求此一次函数的解析式; (2)求点C 的坐标;(3)在坐标平面内存在点P (除点C 外),使得以A 、D 、P 为顶点的三角形与△ACD 全等,请直接写出点P 的坐标.5.如图1.在平面直角坐标系中,一次函数323y x =-+x 轴,y 轴分别交于点A 和点C ,过点A 作AB x ⊥轴,垂足为点A ;过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AC 的长为______,ACO ∠=______度.(2)将图2中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图②,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC 与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,一次函数3124y x =+的图像分别交x ,y 轴于点A 和B ,与经过点3,02C ⎛⎫⎪⎝⎭,()0,3D -的直线交于点E .(1) 求直线CD 的函数解析式及点E 的坐标; (2) 点P 是线段DE 上的动点,连接BP .① 当BP 分BDE △面积为1:2时,请直接写出点P 的坐标;② 将BPE 沿着直线BP 折叠,点E 对应点E ',当点E '落在坐标轴上时,直接写出点P 的坐标.7.平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0)、A(a,0)、C(0,b),且a、b满足2816210-+++-=;b b a b(1) 矩形的顶点B的坐标是(,);(2) 若D是OC中点,沿AD折叠矩形OABC使O点落在E处,折痕为DA,连CE并延长交AB于F,求直线CE的解析式;(3) 在(2)的条件下,平面内是否存在一点P,使得△OFP是以OF为直角边的等腰直角三角形.若存在,请写出点P的坐标;若不存在,请说明理由.=-+交y轴于点A,交x轴于点B,点C为8.如图,在平面直角坐标系中,直线y x m线段OB的中点,作点C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1) 求点F的坐标.(用m表示)(2) 求证:OF AC⊥.9.如图,将正方形AOBC放在平面直角坐标系中,点O是坐标系原点,A点坐标为(-1,3).(1) 求出点B、C的坐标:(2) 在x轴上有一动点Q,过点Q作PQ⊥x轴,交BC于点P,连接AP,将四边形AOBP 沿AP翻折,当点O刚好落在y轴上点E处时,求点P、D的坐标.10.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1) 直接写出点A、B、C的坐标;(2) 求△ADE的面积.11.如图1,一次函数y=34x+3的图象与x轴相交于点A,与y轴相交于点B,点D是直线AB上的一个动点,CD⊥x轴于点C,点P是射线CD上的一个动点.(1)求点A,B的坐标;(2)如图2,当点D在第一象限,且AB=BD时,将ACP沿着AP翻折,当点C的对应点C'落在直线AB上时,求点P的坐标.12.如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB=6.(1) 请直接写出点C的坐标;(2) 如图②,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB上一点C′重合,求线段CF的长度;(3) 如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC 上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的的解析式;若不存在,请说明理由.13.如图,在平面直角坐标系xOy中,直线443y x=-+与x轴、y轴分别交于点A、点B ,点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1) 求AB 的长;(2) 求点C 和点D 的坐标; (3) y 轴上是否存在一点P ,使得12PABOCDS S =若存在,直接写出点P 的坐标;若不存在,请说明理由.14.如图,已知一次函数334y x =+的图像与坐标轴交于点A 、B ,点C 在线段AO 上,将△BOC 沿BC 翻折,点O 恰好落在AB 上点D 处.(1)求点A 、点B 的坐标; (2)求点C 的坐标;15.在平面直角坐标系中,一次函数443y x =-+的图象分别与x 轴、y 轴交于点A 、B ,点C 在线段OB 上,将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,直线DC 交AB 于点E .(1)求点C 的坐标;(2)若点P 在直线DC 上,点Q 是y 轴上一点(不与点B 重合),当△CPQ 和△CBE 全等时,直接写出点P 的坐标 (不包括这两个三角形重合的情况).16.已知一次函数y =-3x +3的图象分别与x 轴,y 轴交于A ,B 两点,点C (3,0). (1) 如图1,点D 与点C 关于y 轴对称,点E 在线段BC 上且到两坐标轴的距离相等,连接DE ,交y 轴于点F .求点E 的坐标;(2) △AOB 与△FOD 是否全等,请说明理由;(3) 如图2,点G 与点B 关于x 轴对称,点P 在直线GC 上,若△ABP 是等腰三角形,直接写出点P 的坐标.17.如图,在平面直角坐标系xOy 中,直线443y x =-+与x 轴、y 轴分别交于点A 、点B ,点()0,6D -在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处,直线CD 交AB 于点E .(1) 直接写出点A 、B 、C 的坐标; (2) 求ADE 的面积.18.已知:如图,一次函数334y x =-的图像分别与x 轴、y 轴相交于点A 、B ,且与经过x 轴负半轴上的点C 的一次函数y =kx +b 的图像相交于点D ,直线CD 与y 轴相交于点E ,E 与B 关于x 轴对称,OA =3OC .(1) 直线CD 的函数表达式为______;点D 的坐标______;(直接写出结果) (2) 点P 为线段DE 上的一个动点,连接BP .① 若直线BP 将△ACD 的面积分为79∶两部分,试求点P 的坐标;② 点P 是否存在某个位置,将△BPD 沿着直线BP 翻折,使得点D 恰好落在直线AB 上方的坐标轴上?若存在,求点P 的坐标;若不存在,请说明理由.19.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将ABC 沿着直线AB 翻折,使点C 落在点()0,18D 上,求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是()0,8,直线AB 上有一点P ,使得PDE △周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.20.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1) 如果点C 在x 轴上,将ABC 沿着直线AB 翻折,使点C 落在点()0,18D 上,求直线BC 的坐标三角形的面积;(2) 如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3) 在(1)(2)条件下,如果点E 的坐标是()0,8,直线AB 上有一点P ,使得PDE △周长最小,求此时△PBC 的面积.21.如图1,在平面直角坐标系中,一次函数()60y kx k =+<的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB x ⊥轴,垂足为点A ,过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AB 的长为______,用关于k 的代数式表示BC 的长______.(2)折叠图1中的ABC ∆,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2,若CD 平分BCA ∠,①求k 的值和AD 的长度.②在直线AC 上,是否存在点P ,使得APD ∆为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由.22.如图1,在平面直角坐标系中,一次函数y 33x 轴,y 轴分别交于点A .点C ,过点1作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段OC ,OA ,AC 的长分别为OC = ,OA = ,AC = ,∠ACO = 度. (2)将图1中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC 与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.23.如图①,在平面直角坐标系中,一次函数334y x =-+分别与x 轴和y 轴交于点A 、点B ,四边形OACB 为矩形.(1)如图②,点F 在BC 上,连接AF ,把ACF △沿着AF 折叠,点C 刚好与线段AB 上一点C '重合.①求点F 的坐标;②请直接写出直线FC '的解析式:______;(2)如图③,动点(),P x y 在一次函数()231.54y x x =-<<的图象上运动,点D 在线段AC 上,是否存在直角顶点为P 的等腰直角BDP △,若存在,请求出点P 的坐标;若不存在,请说明理由.24.如图,在直角坐标系中放入一个矩形纸片ABCO ,将纸片翻折后,点B 恰好落在x 轴上,记为B ',折痕为CE .直线CE 的关系式是182y x =-+,与x 轴相交于点F ,且AE =3.(1)OC = ,OF = ;(2)求点B 的坐标;(3)求矩形ABCO的面积.25.如图,Rt△ABC的顶点A(﹣6,0),B(m,0),AC交y轴正半轴于点E,将Rt△ABC 沿AC翻折得△ADC,点D恰好落在y轴上.(1)若DO平分∠ADC,求m的值;(2)若E(0,3),求C点的坐标;(3)过点E的直线MN分别交x轴,CD于M,N,且M,N分别是AB,CD的中点,求m的值.。

费马大定理——翻折专题

费马大定理——翻折专题

费马大定理——翻折专题
费马大定理是数学史上的一项重要问题,它由17世纪法国数
学家费马提出,被认为是数论中的一颗明灯。

虽然费马定理可能并
不为大众所熟知,但对于数学领域的学者来说,它具有重要的意义
和挑战。

费马定理的表述非常简洁,但却掩盖了巨大的数学难题。

费马
声称自己已经发现了一个非常优雅的证明,然而,他从未将证明公
之于众。

这就引发了无数数学家的积极求证,数百年来成为一项数
学追求的目标。

费马大定理涉及的核心问题是:对于n大于2的自然数,不存
在整数解x、y、z,满足方程x^n + y^n = z^n。

这个问题包含了许
多性质,如质数、因子分解、奇偶性等,涉及的数学理论非常广泛。

尽管费马定理的证明曾一度成为数学界的困扰,但最终在1994年被安德鲁·怀尔斯完美地解决。

他提出了一种新型的数学方法,
被称为"椭圆曲线与模运算",终于完成了费马大定理的证明。

这个
令人震惊的成果引起了广泛的关注和赞誉。

费马大定理的证明对于数学界来说具有重要的意义,它证明了
数学的力量和无限的可能性。

此外,它也启示我们面对困难和挑战
时要坚持不懈,寻求创新的解决方案。

总结来说,费马大定理是一项令人振奋的数学问题,虽然历经
千辛万苦,但终被怀尔斯证明。

它不仅标志着数学史上的一大突破,也对数学研究提出了新的挑战和启示。

初中数学专题:圆中的重要模型-圆中的翻折模型

初中数学专题:圆中的重要模型-圆中的翻折模型

圆中的重要模型-圆中的翻折模型知识储备:1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。

模型1.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°九年级校联考阶段练习)如图,ABC是O的内接三角形,将劣弧,则O的半径长为(1224是O的直径,且是O上一点,将弧,则(1)AC)劣弧BC的长是是O的直径,是O的弦,15=︒,将CE CE翻折,交为O的两条弦,,则O的半径为(统考二模)如图,O的直径是O上一点,将,则图中阴影部分的面积为(4π4π2π将O沿弦AB)85422355是O上5个点,若,此时,图中阴影部分恰好形成一个“钻戒型的O折叠,弧已知ABC是⊙九年级专题练习)如图,在O中,AB为O的直径,弦OA上的点E处(点E不与点交O于点M,连结,若AM=为弦的O与AB相切于点是O的切线;)将O中BC以下部分沿直线,若翻折后的弧过AB,并交AC23,且翻折后的弧恰好过点A,则O的半径为17.(2023·江苏无锡·九年级校联考期中)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.(1)当∠POQ=时,PQ有最大值,最大值为;(2)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积.18.(2023·江西萍乡·校考模拟预测)如图(1)AB是O的直径,且2AB=,点C是半圆AB的中点,点P 是BC上一动点,将AP沿直线AP折叠交AB于点D,连接PD,PB.(1)求证:PD PB=;(2)当点D与点O重合时,如图(2),求BP的长.专题04 圆中的重要模型-圆中的翻折模型知识储备:1、翻折变换的性质:翻折前后,对应边相等,对应角相等,对应点之间的连线被折痕垂直平分;2、圆的性质:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等;同弧或等弧所对的圆周角相等;3、等圆相交:如图,圆O和圆G为两个相等的圆,圆O和圆G相交,相交形成的弦为AB,则弦AB为整个图形的对称轴,圆心O和圆心G关于AB对称,弧ACB和弧ADB为等弧,且关于AB对称;4、弧翻折(即等圆相交):如图,以弦BC为对称轴,将弧BC翻折后交弦AB于点D,那么弧CDB所在的圆圆G与圆O是相等的圆,且两个圆关于BC对称,故圆心O、G也关于BC对称。

图形变换模型之翻折(折叠)模型(学生版)-2024年中考数学常见几何模型

图形变换模型之翻折(折叠)模型(学生版)-2024年中考数学常见几何模型

图形变换模型之翻折(折叠)模型几何变换中的翻折(折叠、对称)问题是历年中考的热点问题,试题立意新颖,变幻巧妙,主要考查学生的识图能力及灵活运用数学知识解决问题的能力。

涉及翻折问题,以矩形对称最常见,变化形式多样。

无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。

本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。

【知识储备】翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。

以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。

解决翻折题型的策略:1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。

模型1.矩形中的翻折模型【模型解读】1(2023·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处.若OA=8,OB= 10,则点D的坐标是.2(2023春·江苏泰州·八年级统考期中)如图,在矩形ABCD中,AB=3,BC=8,E是BC的中点,将△ABE 沿直线AE翻折,点落B在点F处,连结CF,则CF的长为()A.6B.325C.35 D.2543(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E, F,连接BM.(1)求证:∠AMB=∠BMP;(2)若DP=1,求MD的长.4(2023春·江苏宿迁·八年级统考期末)如图,在矩形ABCD中,AB=6,BC=8.点O为矩形ABCD的对称中心,点E为边AB上的动点,连接EO并延长交CD于点F.将四边形AEFD沿着EF翻折,得到四边形A EFD ,边A E交边BC于点G,连接OG、OC,则△OGC的面积的最小值为()A.18-3B.92+37 C.12-372D.6+3725(2023春·辽宁抚顺·八年级校联考期中)如图,矩形纸片ABCD中,AB=6,BC=10,点E、G分别在BC、AB上,将△DCE、△BEG分别沿DE、EG翻折,翻折后点C与点F重合,点B与点P重合.当A、P、F、E 四点在同一直线上时,线段GP长为()A.832 B.83C.53D.5326(2023·江苏盐城·统考中考真题)综合与实践【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B ,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B 与点D重合时,四边形BEDF是哪种特殊的四边形?答:.【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A ,B ,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A B 与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B D,EF之间满足的等量关系,并说明理由.模型2.正方形中的翻折模型【模型解读】7(2023·河南洛阳·统考二模)如图,正方形ABCD的边长为4,点F为CD边的中点,点P是AD边上不与端点重合的一动点,连接BP.将△ABP沿BP翻折,点A的对应点为点E,则线段EF长的最小值为()A.27B.25-4C.34D.37-28(2023·广西玉林·统考模拟预测)如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是()A.1+324B.32+4 C.62+8 D.3229(2023·广东九年级课时练习)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②∠AGB +∠AED=135°③GF=3;④AG⎳CF;其中正确的有(填序号).10(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B 处,如果四边形ABFE与四边形EFCD的面积比为3∶5,那么线段FC的长为.11(2023·江苏·统考中考真题)综合与实践定义:将宽与长的比值为22n+1-12n(n为正整数)的矩形称为n阶奇妙矩形.(1)概念理解:当n=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(AD)与长CD的比值是.(2)操作验证:用正方形纸片ABCD进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为EF,连接CE;第二步:折叠纸片使CD落在CE上,点D的对应点为点H,展开,折痕为CG;第三步:过点G折叠纸片,使得点A、B分别落在边AD、BC上,展开,折痕为GK.试说明:矩形GDCK是1阶奇妙矩形. (3)方法迁移:用正方形纸片ABCD折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个n阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E为正方形ABCD边AB上(不与端点重合)任意一点,连接CE,继续(2)中操作的第二步、第三步,四边形AGHE的周长与矩形GDCK的周长比值总是定值.请写出这个定值,并说明理由.模型3.菱形中的翻折模型【模型解读】12(2023·四川成都·模拟预测)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.13(2023·安徽·统考一模)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C,则A'C长度的最小值是( ).A.7B.7-1C.3D.214(2023·山东枣庄·九年级校考阶段练习)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.72B.12C.74D.2315(2023春·湖北十堰·八年级校联考期中)如图,在菱形纸片ABCD中,∠ABC=60°,E是CD边的中点,将菱形纸片沿过点A的直线折叠,使点B落在直线AE上的点G处,折痕为AF,FG与CD交于点H,有如下结论:①∠CFH=30°;②DE=33AE;③CH=GH;④S△ABF:S四边形AFCD=3:5,上述结论中,所有正确结论的序号是()A.①②④B.①②③C.①③④D.①②③④16(2023·浙江·九年级期末)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B 两点重合,MN是折痕.若B M=1,则CN的长为.17(2023秋·重庆·九年级专题练习)如图,在菱形ABCD中,BC=4,∠B=120°,点E是AD的中点,点F是AB上一点,以EF为对称轴将△EAF折叠得到△EGF,以CE为对称轴将△CDE折叠得到△CHE,使得点H落到EG上,连接AG.下列结论错误的是()A.∠CEF=90°B.CE∥AGC.FG=1.6D.CFAB =145模型4.三角形中的翻折模型【模型解读】18(2023·内江九年级期中)如图,在Rt△ABC的纸片中,∠C=90°,AC=7,AB=25.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB ,AB 与边BC交于点E.若△DEB 为直角三角形,则BD的长是.19(2023年四川省成都市数学中考真题)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=.20(2023·湖北襄阳·统考中考真题)如图,在△ABC中,AB=AC,点D是AC的中点,将BCD沿BD折叠得到△BED,连接AE.若DE⊥AB于点F,BC=10,则AF的长为.21(2023·湖北武汉·统考中考真题)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.模型5.圆中的翻折模型(弧翻折必出等腰)如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°22(2022秋·浙江宁波·九年级校考期末)如图,⊙O 是△ABC 的外接圆,AB =BC =4,把弧AB 沿弦AB 向下折叠交BC 于点D ,若点D 为BC 中点,则AC 长为()A.1B.2C.22D.623(2023·广东广州·统考一模)如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则∠ACD 的度数等于( ).A.40°B.50°C.80°D.100°24(2023·浙江宁波·校考一模)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则这条劣弧的弧长为.25(2022春·湖北荆州·九年级专题练习)如图,AB 为⊙O 的直径,将BC沿BC 翻折,翻折后的弧交AB 于D .若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()A.256π-2B.253π-2 C.8 D.1026(2023·河南商丘·统考二模)如图,在扇形OBA 中,∠AOB =120°,点C ,D 分别是AB 和OA 上的点,且CD ∥OB ,将扇形沿CD 翻折,翻折后的A C 恰好经过点O .若OA =2,则图中阴影部分的面积是.27(2023·吉林长春·统考模拟预测)如图,在⊙O 中,点C 在优弧AB 上,将BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是()①AC =CD ;②AD =BD ;③AC +BD =BC ;④CD 平分∠ACBA.1B.2C.3D.428(2021·湖北武汉·统考中考真题)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE =DE ,设∠ABC =α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°29(2022·江苏扬州·统考一模)如图,将⊙O 沿弦AB 折叠,使折叠后的弧恰好经过圆心O ,点P 是优弧AMB 上的一个动点(与A 、B 两点不重合),若⊙O 的半径是2cm ,则△APB 面积的最大值是cm 2课后专项训练1(2023·浙江·一模)如图,在矩形ABCD中,AB=2,AD=3,点E为DC的中点,点F在BC上,连接AF,将△ABF沿AF翻折,使点B的对应点恰为点E,则AF的长为()A.5B.233C.433D.1032(2023年湖北省黄石市中考数学真题)如图,有一张矩形纸片ABCD.先对折矩形ABCD,使AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM ﹐同时得到线段BN,MN.观察所得的线段,若AE=1,则MN=()A.32B.1 C.233D.23(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形ABCD的边AD=5,OA:OD=1:4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1位置,点E的坐标是()A.1,2B.-1,2C.5-1,2D.1-5,2 4(2023·福建莆田·九年级校考期末)如图,在⊙O 中,点C 在优弧AB上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =45,则AC 的长是()A.5π2B.25π4C.10π3D.4π5(2022·浙江宁波·统考一模)如图,AB 是半径为4的⊙O 的弦,且AB =6,将AB 沿着弦AB 折叠,点C 是折叠后的AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接EO .则EO 的最小值为.6(2023·辽宁盘锦·统考中考真题)如图,四边形ABCD 是矩形,AB =6,BC =6.点E 为边BC 的中点,点F 为边AD 上一点,将四边形ABEF 沿EF 折叠,点A 的对应点为点A ,点B 的对应点为点B ,过点B 作B H ⊥BC 于点H ,若B H =22,则FD 的长是.7(2023·山东济南·统考中考真题)如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若∠ABC =30°,AP =2,则PE 的长等于.8(2023·山东淄博·统考一模)如图所示,有一块直角三角形纸片,∠C =90°,AC =4cm ,BC =3cm ,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则DE的长是.9(2023秋·四川雅安·八年级统考期末)在Rt△ACB中,∠ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=6,BE=2,则DE的长是.10(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A EBC的周长为.11(2023·新疆·统考中考真题)如图,在▱ABCD中,AB=6,BC=8,∠ABC=120°,点E是AD上一动点,将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,DE的长为.12(2023春·浙江宁波·八年级统考期末)如图,在矩形ABCD中,AB=7cm,BC=8cm,现将矩形沿EF 折叠,点C翻折后交AB于点G,点D的对应点为点H,当BG=4cm时,线段GI的长为cm.13(2023春·安徽安庆·九年级校联考阶段练习)如图,长方形ABCD 沿着对角线BD 翻折,点C 落在点C 处,BC 与AD 相交于点E ,若AB =3,AE =1,则BC 的长为.14(2023春·湖北武汉·八年级校考阶段练习)如图(1),在等腰直角三角形纸片ABC 中,∠B =90°,AB =2,点D ,E 分别为AB ,BC 上的动点,将纸片沿DE 翻折,点B 的对应点B 恰好落在边AC 上,如图(2),再将纸片沿B E 翻折,点C 的对应点为C ,如图(3).当△DB E ,△B C E 的重合部分(即阴影部分)为直角三角形时,CE 的长为.15(2022·浙江嘉兴·统考中考真题)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知∠AOB =120°,OA =6,则EF 的度数为;折痕CD 的长为.16(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB 上的一点,将AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)17(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD 沿直线EF 折叠,使点B 的对应点M 落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,折痕分别与边AB ,CD 交于点E ,F ,连接BM .(1)求证:∠AMB =∠BMP ;(2)若DP =1,求MD 的长.18(2023·宁夏·统考中考真题)综合与实践问题背景:数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现:如图1,在△ABC 中,∠A =36°,AB =AC .(1)操作发现:将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE =°,设AC =1,BC =x ,那么AE =(用含x 的式子表示);(2)进一步探究发现:底BC 腰AC =5-12,这个比值被称为黄金比.在(1)的条件下试证明:底BC 腰AC=5-12;拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.如图2,在菱形ABCD 中,∠BAD =72°,AB =1.求这个菱形较长对角线的长.19(2023秋·山西·九年级专题练习)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD 中,E 为AB 边上一点,F 为AD 边上一点,连接CE 、CF ,分别将△BCE 和△CDF 沿CE 、CF 翻折,点D 、B 的对应点分别为点G 、H ,且C 、H 、G 三点共线.(1)如图1,若F 为AD 边的中点,AB =BC =6,点G 与点H 重合,则∠ECF = °,BE = ;(2)如图2,若F 为AD 的中点,CG 平分∠ECF ,AB =2+1,BC =2,求∠ECF 的度数及BE 的长;(3)AB =5,AD =3,若F 为AD 的三等分点,请直接写出BE 的长.20(2022·广西南宁·统考三模)综合实践:在数学综合实践课上,第一小组同学展示了如下的操作及问题:如图1,同学们先画出半径为10cm 的⊙O 1,将圆形纸片沿着弦AB 折叠,使对折后劣弧AB 恰好过圆心O 1,同学们用尺子度量折痕AB 的长约为18cm ,并且同学们用学过的知识验证度量的结果是正确的.验证如下:如图1,过点O 1作O 1F ⊥AB 于点F ,并延长O 1F 交虚线劣弧AB 于点E ,∴AB =2AF ,由折叠知,EF =O 1F =12O 1E =12×10=5(cm ),连接O 1A ,在Rt △O 1FA 中,O 1A =10,根据勾股定理得,AF =O 1A 2-O 1F 2=102-52=53(cm ),∴AB =2AF =103≈10×1.732≈17.732(cm ),通过计算:17.732≈18,同学们用尺子度量折痕AB 的长约为18cm 是正确的.请同学们进一步研究以下问题:(1)如图2,⊙O 2的半径为10cm ,AB 为⊙O 2的弦,O 2C ⊥AB ,垂足为点C ,劣弧AB 沿弦AB 折叠后经过O 2C 的中点P ,求弦AB 的长(结果保留根号);(2)如图3,在⊙O 3中劣弧AB 沿弦AB 折叠后与直径CB 相交于点Q ,若CQ =8cm ,BQ =12cm ,求弦AB 的长(结果保留根号).。

图形的翻折专题课教案

图形的翻折专题课教案

【教学设计】 初三数学复习——图形的翻折立达中学 庄士忠一、教学目标:1、回顾翻折的种类,理解翻折的实质及直观意义;选择解答的方法.2、根据要求画出翻折后的图形,直到翻折后图形形状大小不变,选择合适的解答策略;3、由简入难,层层推进,提高动手和想象能力,探究中得出结论,掌握“理、归、拓”能力.二、教学重点与难点:教学重点:理解图形翻折的意义及性质,会画翻折后的图形. 提高动手能力和想象能力. 教学难点:利用图形翻折后的性质解决综合问题.三、教学方法和手段:主要采用讨论式和启发式教学方法,利用多媒体辅助教学.四、专题概述:翻折即轴对称,翻折的对象一般是三角形、长方形和正方形等基本图形,问题一般是求角度、线段长度、点的位置、图形面积和线段关系等.1、重视“折”关注“叠”;2、本质:轴对称(全等性、轴对称性).2、关键:根据翻折实现等量转化; 4、基本方法:构造方程(勾股法、面积法和相似法).五、教学过程一) 复习引入如图一,小明将三角形纸片ABC 沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到⊿AEF (如图②).小明认为是⊿AEF 等腰三角形,你同意吗?请说明理由翻折后图形的性质:1、翻折后得到的图形与原图形全等,并且对应角、对应线段相等2、折痕所在的直线即为翻折前后两个图形的对称轴3、翻折后,图形对应点的连线段被对称轴垂直且平分.意图:从只管入手,为本节课推进奠定基础。

二 )例题讲解1、操作尝试:如图,已知矩形ABCD ,将△BCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F.根据图形,先画出翻折后的图形?你能发现图中有哪些因翻折而产生的相等角和线段吗?(1)、若∠ADE=20°,求∠EBD 的度数.(2)、若AB=4,BC=8,求AF 的长度.(3)、在(2)的条件下,联接AE ,试说明四边形AEDB 是等腰梯形.GA2、考题呈现:例题1、已知矩形ABCD 的一条边AB=8,将矩形ABCD 折叠,使得顶点D 落在CB 边上的P 点处。

中考数学翻折专题

中考数学翻折专题

《翻折专题习题集》1.(2019南充)如图,正方形MNCB在宽为2的矩形纸片一端,对折正方形MNCB得到折痕AE,再翻折纸片,使AB与AD重合,以下结论错误的是()A.AB2=10+2B.=C.BC2=CD•EH D.sin∠AHD=2.(2019乐山)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A.B.1C.D.3.(2019河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.4.(2019泰安)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.5.(2019重庆B卷)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+26.(2019攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AC,现在有如下4个结论:①∠EAC=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中正确结论的个数是()A.1B.2C.3D.47.(2019兰州)如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.﹣1D.﹣18.(2019黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.9.(2019邵阳)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED 等于()A.120°B.108°C.72°D.36°10.(2019随州)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(﹣1)a;⑤BG•DE+AF•GE=a2.其中正确的是.(写出所有正确判断的序号)11.(2019长春)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC相交于点G,则△GCF的周长为.12.(2019海南)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.2113.(2019包头)如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.14.(2019深圳)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF =.15.(2019通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.16.(2019铜仁)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF ∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.517.(2019桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.18.(2019内江)如图,在菱形ABCD中,simB=,点E,F分别在边AD、BC上,将四边形AEFB沿EF翻折,使AB的对应线段MN经过顶点C,当MN⊥BC时,的值是.19..(2019宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为.20.(2019龙东)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC 边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE 是直角三角形时,则CD的长为.21.(2019咸宁)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).22.(2019大连)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4C.3D.223.(2019天水)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为.24.(2019甘肃省)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.25..(2019江西省)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.26.(2019青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.27.(2019潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.28.(2019资阳)如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.29.(2019天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.30.(2019杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.31.(2019衢州)如图,在平面直角坐标系中,O为坐标原点,▱ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y=(k≠0)图象经过点C,且S△BEF=1,则k的值为.32.(2019重庆A卷)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.33.(2019葫芦岛)如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.34.(2019淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.35.(2019连云港)如图,在矩形ABCD中,22AD AB=.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①CMP∆是直角三角形;②点C、E、G不在同一条直线上;③6PC MP=;④2BP AB=;⑤点F是CMP∆外接圆的圆心,其中正确的个数为()36.(2019衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.37.(2019岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF 上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)38.(2019连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求AEF∠的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN∆沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P S'的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B C''恰好经过点A,C N'交AD于点F.分别过点A、F作AG MN⊥,FH MN⊥,垂足分别为G、H.若52AG=,请直接写出FH的长.39.(2019盐城)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B'处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:OBC OED∆≅∆;(2)若8OB为y,求y关于x的关系式.AB=,设BC为x,240.(2019扬州)如图,已知等边ABC∆的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把ABC∆沿直线1折叠,点B的对应点是点B'.(1)如图1,当4PB=时,若点B'恰好在AC边上,则AB'的长度为;(2)如图2,当5PB=时,若直线1//AC,则BB'的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,ACB∆'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当6PB=时,在直线1变化过程中,求ACB∆'面积的最大值.折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.43.(2019郴州)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.中考大神。

部编数学七年级上册专题13与角相关的旋转(翻折)问题专项讲练(解析版)含答案

部编数学七年级上册专题13与角相关的旋转(翻折)问题专项讲练(解析版)含答案

专题13 与角相关的旋转(翻折)问题专项讲练与角有关的旋转(翻折)问题属于人教版七年级上期必考压轴题型,是尖子生必须要攻克的一块重要内容,对考生的综合素养要求较高。

绝大部分学生对角度旋转问题信心不足,原因就是很多角度旋转问题需要自己画出图形,与分类讨论思想、数形结合思想等结合得很紧密,思考性强,难度大。

本专题重点研究与角有关的旋转问题(求值问题;定值问题;探究问题;分类讨论问题)和与角有关的翻折问题。

【与角相关的旋转问题】【解题技巧】1、角度旋转问题解题步骤:①找——根据题意找到目标角度;②表——表示出目标角度:1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;3)角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角③列——根据题意列方程求解。

注:①注意题中是否确定旋转方向,未确定时要分顺时针与逆时针分类讨论;②注意旋转角度取值范围。

常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。

三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。

总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。

抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏了起来。

【重要题型】题型1:求值问题例1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).【答案】(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ =50°,故答案为:50°;②解:∵∠AOB =60°,∠BOC =α=80°,∴∠AOC =140°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =70°,∵∠COD =40°,∠BOC =α=80°,且OQ 平分∠BOD ,同理可求∠DOQ =60°,∴∠COQ =∠DOQ -∠DOC =20°,∴∠POQ =∠POC -∠COQ =70°-20°=50°;③解:补全图形如图3所示,∵∠AOB =60°,∠BOC =α=130°,∴∠AOC =360°-60°-130°=170°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =85°,∵∠COD =40°,∠BOC =α=130°,且OQ 平分∠BOD ,同理可求∠DOQ =85°,∴∠COQ =∠DOQ -∠DOC =85°-40°=45°,∴∠POQ =∠POC +∠COQ =85°+45°=130°;(2)当∠AOB =m °,∠COD =n °时,如图2,∴∠AOC = m °+ a °,∵OP 平分∠AOC ,∴∠POC =12(m °+ a °),同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)- n °=12(-n °+ a °),∴∠POQ =∠POC -∠COQ =12(m °+ a °)-12(-n °+ a °) =12m °+12n °,当∠AOB =m °,∠COD =n °时,如图3,∵∠AOB =m °,∠BOC =α,∴∠AOC =360°-m °-a °,∵OP 平分∠AOC ,∴∠POC =12∠AOC =180°12-(m °+ a °),∵∠COD =n °,∠BOC =α,且OQ 平分∠BOD ,同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)-n °=12(-n °+ a °),∴∠POQ =∠POC +∠COQ =180°12-(m °+ a °)+12(-n °+ a °) =180°-12m °-12n °,综上所述,若∠AOB =m °,∠COD =n °,则∠POQ =12m °+12n °或180°-12m °-12n °.故答案为:12m °+12n °或180°-12m °-12n °.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.变式1.(2022•高新区期末)已知∠AOB =90°,∠COD =60°,按如图1所示摆放,将OA 、OC 边重合在直线MN 上,OB 、OD 边在直线MN 的两侧:(1)保持∠AOB 不动,将∠COD 绕点O 旋转至如图2所示的位置,则①∠AOC +∠BOD = ;②∠BOC ﹣∠AOD = .(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.【解题思路】(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC=∠AOB﹣∠AOC、∠AOD=∠COD﹣∠AOC,将原式拆分、转化为∠AOB﹣∠COD计算可得;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.【解答过程】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC 绕点O 逆时针旋转n °,则OD 也绕点O 逆时针旋转n °,①0<n °≤150°时,如图4,射线OE 、OF 在射线OB 同侧,在直线MN 同侧,∵∠BOF =12[90°﹣(n ﹣60°)]=12(150﹣n )°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE ﹣∠BOF =15°;②150°<n °≤180°时,如图5,射线OE 、OF 在射线OB 异侧,在直线MN 同侧,∵∠BOF =12(n−150)°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE +∠BOF =15°;③180°<n °≤330°时,如图6,射线OE 、OF 在射线OB 异侧,在直线MN 异侧,∵∠DOF =12(n−150)°,∠COE =12(360−n)°,∴∠EOF =∠DOF +∠COD +∠COE =165°;④330°<n °≤360°时,如图7,射线OE 、OF 在射线OB 同侧,在直线MN 异侧,∵∠DOF =12[360﹣(n ﹣150)]°=12(510﹣n )°,∠COE =12(360−n)°,∴∠EOF =∠DOF ﹣∠COD ﹣∠COE =15°;综上,∠EOF =15°或165°.变式2.(2022•浙江七年级期中)如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30M Ð=°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180°.)(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转.如图2,经过t 秒后,AON Ð=______度(用含t 的式子表示),若OM 恰好平分BOC Ð,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC Ð=______度(用含t 的式子表示)若OC 平分MON Ð,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM Ð?(直接写结果)【答案】(1)3t ,5;(2)306t +,5;(3)经过703秒OC 平分BOM Ð【解析】(1)3AON t Ð=,∵30AOC Ð=°,∴150BOC Ð=°∵OM 平分BOC Ð,90MON Ð=°,∴75COM Ð=°,∴15CON Ð=°∴301515AON AOC CON Ð=Ð-Ð=-=°°°,解得:1535t =¸=°°秒(2)()306AOC t Ð=+度∵90MON Ð=°,OC 平分MON Ð,∴45CON COM Ð=Ð=°∴45AOC AON CON Ð-Ð=Ð=°,∴306345t t +-=解得:5t =秒(3)如图:∵90AON BOM Ð+Ð=°,BOC COMÐ=Ð由题可设AON Ð为3t ,AOC Ð为()306t +°,∴()19032COM BOC t Ð=Ð=-°∵180BOC AOC Ð+Ð=°,()()130********t t ++-=,解得:703t =秒答:经过703秒OC 平分BOM Ð.题型2:定值问题(角度不变问题)例2.(2022·江苏南京·七年级期末)如图,两条直线AB ,CD 相交于点O ,且∠AOC =∠AOD ,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15°/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12°/s ,运动时间为t 秒(0<t <12,本题出现的角均小于平角)(1)图中一定有 个直角;当t=2时,∠MON的度数为 ,∠BON的度数为 ;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMONÐ+ÐÐ是定值时,求t的取值范围,并求出这个定值.变式1.(2022•渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC= °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O 逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.【解题思路】(1)根据角平分线的定义结合图形根据已知条件求角的大小;(2)①分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t 表示出角的度数,列出等量关系式求出t ;②分类讨论顺时针、逆时针转两种情况,当C ′在B 下方时,当C ′在B 上方时,根据角平分线的定义用t 表示出角的度数,求在某个时间段使得|∠BOP ﹣∠MON ′|的值不变,求出这个定值及其对应的t 的取值范围.【解答过程】解:(1)∵OM 为∠AOB 的角平分线、∠AOB =40°,∴∠MOB =20°.∵∠MON =70°,∴∠BON =∠MON ﹣∠MOB =50°.∵ON 为∠BOD 的角平分线,∴∠BON =∠DON =50°.∴∠CON =∠COD ﹣∠DON =10°∴∠BOC =∠DON ﹣∠CON =40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C ′在B 上方时,根据题意可知,∠BOC ′=40°﹣4t ,∠BOD ′=∠BOD ﹣4t =100°﹣4t .∠BON ′=12∠BOD ′=12(100°−4t)=50°﹣2t ,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,即40°﹣4t =12(50°﹣2t ),解得:t =5(s ).当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.顺时针旋转时:如图②,同理当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.当C ′在B 上方时,即OC ′与OB 重合,由题意可求OC ′与OB 重合用的时间=∠AOC ÷4+∠AOB ÷6=(∠AOB +∠BOC )÷4+∠AOB ÷6=803(s ).∴OC ′与OB 重合之后,∠BOC ′=6(t −803)(s ).∴∠BOD ′=∠BOC ′+60°=6(t −803)+60°=6t ﹣100°.∴∠BON ′=12∠BOD′=12(6t ﹣100°)=3t ﹣50°,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,∴6(t −803)=12(3t ﹣50°),解得:t =30(s )综上所述t 的值为5或30.②逆时针旋转时:当C ′在B 上方时,如图③根据①可知,∠BOC ′=40°﹣4t ,∠BOD ′=100°﹣4t ,∠BON ′=50°﹣2t .∴∠AOD ′=∠AOB +∠BOD ′=140°﹣4t ,∴∠AOP =12∠AOD′=12∠(140°−4t)=70°﹣2t ,∴∠BOP =∠AOP ﹣∠AOB =30°﹣2t ,∵∠MON ′=∠MOB +∠BON ′=70°﹣2t ,∴|∠BOP ﹣∠MON ′|=|30°﹣2t ﹣70°+2t |=40°,此段时间0≤t ≤10s ;如图④当C ′在B 下方时,设经过OB 后运动时间为t 2,同理可知,∠BOC ′=4t 2,∠BOD ′=60°﹣4t 2,∴∠MON′=12∠BON′=30−2t 2,∴∠AOD ′=∠AOB +∠BOD ′=100°﹣4t 2,∴∠AOP =12∠AOD′=50°−2t 2,∴∠BOP =∠AOP ﹣∠AOB =10°﹣2t 2,∵∠MON ′=∠MOB +∠BON ′=50°﹣2t 2,∴|∠BOP﹣∠MON′|=|10°﹣2t2﹣50°+2t2|=40°.此时:10<t≤20;顺时针旋转时:当C′在B下方时,如图⑤,设经过OB后运动时间为t1,同理可知:∠BOC′=40°﹣6t1,∠BOD′=20°+6t1,∴∠BON′=12∠BOD′=10°+3t1,∴∠AOD′=60°+6t1,∠AOP=30°+3t1,∴∠BOP=∠AOP﹣∠AOB=3t1﹣10°,∵∠MON′=∠MOB+∠BON′=30°﹣3t1,∴|∠BOP﹣∠MON′|=|3t1﹣10°﹣30°﹣3t1|=40°,此时:20<t≤803;当C′在B上方时,如图⑥,设经过OB后运动时间为t3,同理可知:,∠BOC′=60°+6t3,∠BOD′=100°+6t3,∴∠BON′=12∠BON′=50°+3t3,∴∠AOD′=140°+6t3,∴∠AOP=70°+3t3,∴∠BOP=∠AOP﹣∠AOB=30°+3t3,∵∠MON′=∠MOB+∠BON′=70°+3t3,∴|∠BOP﹣∠MON′|=|30°+3t3﹣70°﹣3t3|=40°,此时:803<t≤50.综上所述:存在且定值为40°,0≤t≤50.变式2.(2022•碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON 平分 (平分或不平分)∠AOC.(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 10或40 .(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解题思路】(1)设ON的反向延长线为OD,由角平分线的性质和对顶角的性质可求得∠BON=∠AOD=∠COD=30°;(2)由直线ON恰好平分锐角∠AOC可知旋转60°或240°时直线ON平分∠AOC,根据旋转速度可求得需要的时间;(3)由∠MON=90°,∠AOC=60°,可知∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,最后求得两角的差,从而可做出判断.【解答过程】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∠BOC=120°,∠BOC=60°,∴∠MOC=∠MOB=12又∠MOD=∠MON=90°,∴∠COD=90°﹣∠MOC=30°,∵∠AOC=180°﹣∠BOC=60°,∠AOC,∴OD平分∠AOC,∴∠COD=12即直线ON平分∠AOC,故答案为:平分;(2)∵∠BOC=120°,∴∠AOC=60°.∴∠BON=∠COD=30°.即旋转60°或240°时直线ON平分∠AOC.由题意得,6t=60或240.解得:t=10或40,故答案为:10或40;(3)∠AOM﹣∠NOC的差不变.∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON.∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.∴∠AOM与∠NOC的差不变,这个差值是30°.题型3:探究类问题(判断角的数量之间的关系)例3.(2022·四川·成都市七年级期末)如图所示:点P是直线AB上一点,∠CPD是直角,PE平分∠BPC.(1)如图1,若∠APC=40°,求∠DPE的度数;(2)如图1,若∠APC=a,直接写出∠DPE的度数(用含a的代数式表示);(3)保持题目条件不变,将图1中的∠CPD按顺时针方向旋转至图2所示的位置,探究∠APC和∠DPE的度数之间的关系,写出你的结论,并说明理由.变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB等于多少;若∠ACB=130°,则∠DCE等于多少;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.【答案】(1)∠ACB=155°;∠DCE=50°;(2)∠ACB+∠DCE=180°,理由见解析;(3)∠DAB+∠CAE=120°,理由见解析;(4)∠AOD+∠BOC=α+β,理由见解析.【分析】(1)先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;(2)根据∠ACB=∠ACE+∠DCE+∠DCE求出即可;(3)根据∠DAB=∠DAE+∠CAE+∠CAB求出即可;(4)根据∠AOD=∠AOC+∠COB+∠BOD求出即可.【详解】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.【点睛】本题考查了角的运算,理解角的和差运算是解题的关键.变式2.(2022•喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB 的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.【解题思路】(1)根据对顶角求出∠BON ,代入∠BOM =∠MON ﹣∠BON 求出即可;(2)求出∠BOC =120°,根据角平分线定义请求出∠COM =∠BOM =60°,代入∠CON =∠MON +∠COM 求出即可;(3)用∠AOM 和∠CON 表示出∠AON ,然后列出方程整理即可得解.【解答过程】解:(1)如图2,∵∠AOC =60°,∴∠BON =∠AOC =60°,∵∠MON =90°,∴∠BOM =∠MON ﹣∠BON =30°,故答案为:30°;(2)∵∠AOC =60°,∴∠BOC =180°﹣∠AOC =120°,∵OM 平分∠BOC ,∴∠COM =∠BOM =60°,∵∠MON =90°,∴∠CON =∠MON +∠COM =90°+60°=150°;(3)∠AOM ﹣∠NOC =30°,理由是:∵∠MON =90°,∠AOC =60°,∴∠AON =90°﹣∠AOM ,∠AON =60°﹣∠NOC ,∴90°﹣∠AOM =60°﹣∠NOC ,∴∠AOM ﹣∠NOC =30°,故∠AOM 与∠NOC 之间的数量关系为:∠AOM ﹣∠NOC =30°.题型4:分类讨论问题例4.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板OAB 和直角三角板OCD )如图1所示放置,两个顶点重合于点O ,OC 与OB 重合,且60AOB Ð=°,30A Ð=°,45OCD ODC Ð=Ð=°,90COD ABO Ð=Ð=°.将三角板OCD 绕着点O 逆时针旋转一周,旋转过程中,OE 平分BOC Ð,OF 平分AOD Ð,(AOD Ð和BOC Ð均是指小于180°的角)探究EOF Ð的度数.(1)当三角板OCD 绕点O 旋转至如图2的位置时,OB 与OD 重合,AOC Ð=______°,EOF Ð=______°.(2)三角板OCD 绕点O 旋转过程中,EOF Ð的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当COD Ð的度数为a ()0180a °<<°时,其他条件不变,在旋转过程中,请直接写出EOF Ð的度数.(用含a 的式子来表示)【答案】(1)150;75 (2)有,105° (3)1302EOF a =°+或11502a °-【分析】(1)利用两个角的和的定义,角的平分线的定义计算即可; (2)利用分类思想, 确定不同方式计算即可;(3)利用特殊与一般的思想,分类将问题抽象即可.【详解】(1)如图,由OB 与OD 重合,∵60AOB Ð=°,90COD BOC Ð=Ð=°,∴6090150AOC AOB BOC Ð=Ð+Ð=°+°=°.又∵OE 平分BOC Ð,OF 平分AOD Ð,∴1452BOE BOC Ð=Ð=°,1302DOF AOD Ð=Ð=°,∴453075EOF BOE EOF Ð=Ð+Ð=°+°=°.故答案为:150°;75°;(2)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°()13602COD AOD =°-Ð-Ð+30°()1360902AOC =°-°-Ð+30°()12702AOD =°-Ð+30°11652AOD =°-Ð.∴EOF BOE AOF AOB Ð=Ð+Ð-Ð,∴111656010522EOF AOD AOD Ð=Ð+°-Ð-°=°.(3)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()1111++2222AOF AOD COD AOC AOC a Ð=Ð=ÐÐ=Ð,∴EOF AOF AOB BOE Ð=Ð+Ð-Ð=11+22AOC a Ð+60°-1-302AOC а=1302a °+;如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()()1111136036018022222AOF AOD COD AOC AOC AOC a a Ð=Ð=°-Ð-Ð=°--Ð=°--Ð∴EOF BOE AOF AOB Ð=Ð+Ð-Ð111130180601502222AOC AOC a a =Ð+°+°--Ð-°=°-.综上所述,1302EOF a Ð=°+或11502a °-.【点睛】本题考查了两个角的和,角的平分线,周角的定义,灵活运用分类思想,角的平分线定义,角的和,差定义计算是解题的关键.变式1.(2022•广东七年级期末)如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB a Ð=,BOC b Ð=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40a =°,70b =°时,COM Ð=______,CON Ð=______,MON Ð=______;②MON Ð=______(用含有a 或b 的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有a 或b 的代数式表示)(3)如图(4),当40a =°,70b =°时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?【答案】(1)135,55,20,2°°°a ;(2)12a ,11802a °-;(3)48分钟时,∠MON 的度数是40°【解析】(1)①Q OM 平分∠BOC ,ON 平分∠AOC ,当40a =°,70b =°时,COM Ð=113522BOC Ð=b =°,CON Ð=()111()55222AOC AOB BOC Ð=Ð+Ð=a +b =°,MON Ð=()11120222CON COM a b b a Ð-=+-==°②MON Ð()111222CON COM =Ð-=a +b -b =a ,故答案为:135,55,20,2°°°a (2)①Q OM 平分∠POB ,ON 平分∠POA ,\()12MON POB POA Ð=Ð+Ð 1122AOB =Ð=a ②Q OM 平分∠QOB ,ON 平分∠QOA ,\()12MON BOQ QOA Ð=Ð+Ð()1136018022AOB =°-Ð=°-a 故答案为:12a ,11802a °-(3)根据题意POQ BOC Ð=Ð=bQ OM 平分∠POQ ,113522POM POQ \Ð=Ð=b =°如图,当OP 在AOB Ð的外部时,Q MON 的度数是40°MON PON POM Ð=Ð+Q 5PON \Ð=°Q ON 平分∠POA ,210POA PON \Ð=Ð=°,120POC \Ð=°,则OP 旋转了360120240°-°=°240548\¸=分,即48分钟时,∠MON 的度数是40°如图,OP 在AOB Ð的内部时,MON POM PON Ð=Ð-ÐQ 即4035PON °=°-Ð5PON \Ð=-°此情况不存在,综上所述,48分钟时,∠MON 的度数是40°变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若12COD AOB Ð=Ð,则COD Ð是ACB Ð的内半角.(1)如图1,已知80AOB °Ð=,25AOC °Ð=,COD Ð是AOB Ð的内半角,则BOD Ð=________;(2)如图2,已知68AOB °Ð=,将AOB Ð绕点O 按顺时针方向旋转一个角度()060a a °<<得COD Ð,当旋转的角度a 为何值时,COB Ð是AOD Ð的内半角;(3)已知30AOB °Ð=,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.如图2,∵BOC Ð是AOD Ð的内半角,AOC BOD a Ð=Ð=,如图4,∵AOD Ð是BOC Ð的内半角,360AOC BOD a Ð=Ð=-,【折叠(翻折)问题】【解题技巧】折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设x 列方程。

初中数学专题复习(翻折变换问题)

初中数学专题复习(翻折变换问题)

初中数学专题复习(翻折变换问题)1.(2020•衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DA'E=∠A=90°,∠ADE=∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=AD=,由第二次折叠知,CD=DE=,∴AB=.故选:A.2.(2020•西宁)如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM=BN,AD=3AM,E为BC边上一动点,连接DE,将△DCE沿DE所在直线折叠得到△DC′E,当C′点恰好落在线段MN上时,CE的长为()A.或2B.C.或2D.解:设CE=x,则C′E=x,∵矩形ABCD中,AB=5,∴CD=AB=5,AD=BC=6,AD∥BC,∵点M,N分别在AD,BC上,且3AM=AD,BN=AM,∴DM=CN=4,∴四边形CDMN为平行四边形,∵∠NCD=90°,∴四边形MNCD是矩形,∴∠DMN=∠MNC=90°,MN=CD=5由折叠知,C′D=CD=5,∴MC′===3,∴C′N=5﹣3=2,∵EN=CN﹣CE=4﹣x,∴C′E2﹣NE2=C′E2,∴x2﹣(4﹣x)2=22,解得,x=,即CE=.故选:B.3.(2020•黔南州)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E 与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=30°,∴∠DEG=180°﹣30°=150°,由折叠可得,∠α=∠DEG=×150°=75°,故选:D.4.(2020•呼和浩特)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),=8,使点B和点C落在AD边上同一点P处,A点的对称点为A'、D点的对称点为D',若∠FPG=90°,S△A′EPS△D′PH=2,则矩形ABCD的长为()A.6+10B.6+5C.3+10D.3+5解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为8,△D′PH的面积为2,又∵,∠A′PF=∠D′PG=90°,∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,∴∠A′PE=∠D′HP,∴△A′EP∽△D′PH,∴A′P2:D′H2=8:2,∴A′P:D′H=2:1,∵A′P=x,∴D′H=x,∵S△D′PH=D′P•D′H,即,∴x=(负根舍弃),∴AB=CD=,D′H=DH=,D′P=A′P=CD=,A′E=2D′P=,∴PE=,PH=,∴AD==,即矩形ABCD的长为,故选:D.5.(2020•内江)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD 上的点M处,点C落在BD上的点N处,连接EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.6.(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.7.(2020•滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A 落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=DF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB=AM=2=CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5×=,∴OD=CD﹣OC=2﹣=.故选:B.8.(2020•重庆)如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.9.(2020•重庆)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC 的距离为()A.B.C.D.解:∵DG=GE,=S△AEG=2,∴S△ADG∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,=S△ADE=4,∠BFD=90°,∴S△ABD∴•(AF+DF)•BF=4,∴•(3+DF)•2=4,∴DF=1,∴DB===,设点F到BD的距离为h,则有•BD•h=•BF•DF,∴h=,故选:B.10.(2020•济南)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan∠B'AC′=.解:连接AF,设CE=x,则C′E=CE=x,BE=B′E=10﹣x,∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=∠D=90°,∴AE2=AB2+BE2=82+(10﹣x)2=164﹣20x+x2,EF2=CE2+CF2=x2+32=x2+9,由折叠知,∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴AF2=AE2+EF2=164﹣20x+x2+x2+9=2x2﹣20x+173,∵AF2=AD2+DF2=102+(8﹣3)2=125,∴2x2﹣20x+173=125,解得,x=4或6,当x=6时,EC=EC′=6,BE=B′E=10﹣6=4,EC′>B′E,不合题意,应舍去,∴CE=C′E=4,∴B′C′=B′E﹣C′E=(10﹣4)﹣4=2,∵∠B′=∠B=90°,AB′=AB=8,∴tan∠B'AC′=.故答案为:.另一解法:由折叠知,∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴∠AEB+∠CEF=90°,∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,∴∠BAE+∠AEB=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF,∴,设BE=x,则BE=B'E=x,C'E=CE=10﹣x,∴,解得,x=4或6,∴BE=B'E=4,CE=C'E=6,或BE=B'E=6,CE=C'E=4,∵B'E>C'E,∴BE=B'E=6,CE=C'E=4,∴B'C'=B'E﹣C'E=6﹣4=2,由折叠知,AB'=AB=8,∠B'=∠B=90°,∴tan∠B'AC′=.解法三:设BE=a,EC=b,则a+b=10.由于△AB'E~△EC'F,所以AB':EC'=EB':C'F,即8:a=b:3,ab=24.B'C'=a﹣b,因为(a﹣b)2=(a+b)2﹣4ab=100﹣96=4.所以B'C′=2.所以tan∠B'AC′=.故答案为.11.(2020•淄博)如图,矩形纸片ABCD,AB=6cm,BC=8cm,E为边CD上一点.将△BCE沿BE所在的直线折叠,点C恰好落在AD边上的点F处,过点F作FM⊥BE,垂足为点M,取AF的中点N,连接MN,则MN=5cm.解:连接AC,MC.由翻折的性质可知,BE垂直平分线段CF,∵FM⊥BE,∴F.M,C共线,FM=MC,∵AN=FN,∴MN=AC,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC===10(cm),∴MN=AC=5(cm),故答案为5.12.(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=4.解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=AH=(5﹣a)cm,又∠A=∠B=90°,∴△AHE≌△BEF(SAS),同理可得△AHE≌△BEF≌△DGH≌CFG,由折叠的性质可知,图中的八个小三角形全等.∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.13.(2020•牡丹江)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点A'处,连接A'B,交AC于点F.若A'E⊥AE,cos A=,则=.解:∵∠C=90°,cos A=,∴,设AC=4x,AB=5x,则BC=3x,∵AE⊥AE′,∴∠AEA′=90°,A′E∥BC,由于折叠,∴∠A′EB=∠AEB=(360﹣90)÷2=135°,∵∠A′EF=∠C=90°,∠EFA′=∠BFC,∴△A′EF∽△BCF,∴∠BEC=45°,即△BCE为等腰直角三角形,∴EC=3x,∴AE=AC﹣EC=x=A′E,∴,故答案为:.14.(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.解法二:证明△ABP和△DAE相似,==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.15.(2020•无锡)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形PADE的面积为S.(1)若DE=,求S的值;(2)设DE=x,求S关于x的函数表达式.解:(1)∵在矩形ABCD中,∠D=90°,AD=1,DE=,∴AE==,∴tan∠AED==,∴∠AED=60°,∵AB∥CD,∴∠BAE=60°,∵四边形ABCE关于直线AE的对称图形为四边形ANME,∴∠AEC=∠AEM,∵∠PEC=∠DEM,∴∠AEP=∠AED=60°,∴△APE为等边三角形,∴S=(+)×1=;(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AED=∠PAE,∴AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,在Rt△PEF中,(a﹣x)2+1=a2,解得:a=,∴S==.。

2023年高考数学-----翻折问题规律方法与典型例题讲解

2023年高考数学-----翻折问题规律方法与典型例题讲解

2023年高考数学-----翻折问题规律方法与典型例题讲解【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例1.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 【答案】C【解析】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角 此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCD V S PM ==⨯ ,故D 正确 故选:C例2.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得AB CE ^,则x 的取值范围是( )A .0x <B .0x <C .01x <≤D .0x <【答案】A【解析】如图示,设1A 处为ABD △沿BD 翻折后的位置,以D 为坐标原点,DA,DC 分别为x,y 轴,过点D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则1(1,0,0),(1,,0),(,0,,0),(,,0)22x A B x C x E ,设1(,,)A a b c , 由于1||1A D = ,故2221a b c ++= ,而111(1,,),(,,),(,,0)22x BA a b x c DA a b c CE =−−==− , 由于AB AD ⊥ ,故11BA DA ⊥,则211(1)()0BA DA a a b b x c ⋅=−+−+=,即1bx a =− ;又由在翻折过程中存在某个位置,便得AB CE ^,不妨假设1BA CE ⊥, 则11(1)()022x BA CE a b x ⋅=−−−=,即210x bx a −+−= , 即212(1)x bx a a =+−=− ,当将ABD △翻折到如图A BD '位置时,A BD '位于平面ABCD 内,不妨假设此时BA CE '⊥ ,设垂足为G,作A F '⊥ AD 的延长线,垂足为F ,此时在x 轴负半轴上方向上,DF 的长最大,a 取最小值, 由于90BA D '∠=,故EG A D '∥ ,所以BEG BDA BDA '∠=∠=∠ ,而BEG AED ∠=∠,故AED BDA EDA ∠=∠=∠,又AE AD = ,故AED △ 为正三角形,则60,60EDA BDA FDA ''∠=∴∠=∠=,而1A D '= ,故12DF = ,则12a ≥− ,故22(1)3x a =−≤,0x > ,则x ≤,故x 的取值范围是 ,故选:A例3.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D −−为直二面角,得到图2所示的四棱锥B AECD −,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD −中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交D .三棱锥B ADC −的体积为定值【答案】B【解析】A. 假设B 、E 、C 、F 四点共面,则直线EC 与BF 共面,若EC 与BF 平行,又EC 与AD 平行,则AD 与BF 平行,这与AD 与BF 相交矛盾;若EC 与BF 相交,设交点为Q ,则Q 即在平面BAD 内,又在平面AECD 内,则点Q 在交线AD 上,这与EC 与AD 平行矛盾,所以假设不成立,所以B 、E 、C 、F 不共面,故错误;B.如图所示:在AD 上取点G ,使得AG =EC ,当DF DG FB AG=时,//FG AB ,又FG ⊄平面BAE ,AB ⊂平面BAE ,所以//FG 平面BAE ,同理//CG 平面BAE ,又FG CG G =,所以平面//CFG 平面BAE ,则CF ∥平面BAE ,故存在点F ,使得CF ∥平面BAE ,故正确;C.设侧面BEC 与侧面BAD 的交线为l ,因为//EC AD ,且EC ⊄面BAD ,AD ⊂面BAD ,所以//EC 面BAD ,则//EC l ,所以AD //l ,故错误;D.因为二面角B AE D −−为直二面角,当点E 移动时,点B 到AE 的距离即三棱锥−B ADC 的高变化,而ADC S △是定值,故三棱锥−B ADC 的体积不是定值,故错误;故选:B例4.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【答案】A【解析】由题意可知,不妨设2AB BC CD ===,则1,AD CD ==如图所示,取点E ,F 分别为AB ,BC 的中点,连结AF ,DE ,设G 为DE 与AF 的交点,DE 与AC 的交于点H .所以1,AD CD ''=1BD '<<D ¢在平面ABC 上的投影在DE 上.当点D ¢的投影为点G 时,则BD CD ''=;当点D ¢的投影在DG 上时,则BD CD ''>; 当点D ¢的投影在GE 上时,则BD CD ''<;当点D ¢投影为点E 时,则AD BD ''=. 故要使AD BD CD '''<<,则点D ¢的投影在点G ,E 两点之间,此时投影点到AB ,BC ,CD 的距离为AB CA BC d d d <<所以二面角D AB C '﹣﹣最大,其次为二面角D AC B '﹣﹣,而二面角D BC A '﹣﹣最小,故αγβ>>;设三棱锥D ABC '−的高为h. 则123sin ,sin ,sin h h h D A D B D Cθθθ==='''. 因为AD BD CD '''<<,所以123sin sin sin θθθ>>.因为123,,0,2πθθθ⎡⎤∈⎢⎥⎣⎦,所以123θθθ>> 故选:A.。

初中数学《翻折专题》经典题型50例

初中数学《翻折专题》经典题型50例

翻折练习1一.选择题(共37小题)1.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.A.1B.2C.3D.4【分析】先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF===2,(故④正确);综上所述,结论正确的有①③④共3个.故选:C.【点评】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于③判断出BF最小和最大时的两种情况.2.如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A.B.C.D.【分析】利用平行线的性质以及折叠的性质,即可得到∠A1+∠A1DB=90°,即AB⊥CE,再根据勾股定理可得AB==3,最后利用面积法得出AB×CE=BC×AC,可得CE==,进而依据A1C =AC=4,即可得到A1E=.【解答】解:∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,,∴AB==3,∵AB×CE=BC×AC,∴CE==,又∵A1C=AC=4,∴A1E=4﹣=,故选:B.【点评】本题主要考查了折叠问题以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是得到CE⊥AB以及面积法的运用.3.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1B.C.D.【分析】先根据勾股定理计算出AB=2,根据含30度的直角三角形三边的关系得到∠BAC=30°,在根据折叠的性质得BE=BA=2,∠BED=∠BAD=30°,DA=DE,由于AD⊥ED得BC∥DE,所以∠CBF=∠BED=30°,在Rt△BCF中可计算出CF=,BF=2CF=,则EF=2﹣,在Rt△DEF中计算出FD=1﹣,ED=﹣1,然后利用S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE计算即可.【解答】解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选:A.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.4.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S,求得面积比较即可.△FEC【解答】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.理由:∵S△GCE=GC•CE=×3×4=6∵GF=3,EF=2,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×6=≠3.故④不正确.∴正确的个数有3个.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.5.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP 并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1B.2C.3D.4【分析】①根据三角形内角和为180°易证∠P AB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由矩形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.【解答】解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠P AB=∠APE,∵∠P AB+∠PBA+∠APB=180°,即∠P AB+∠PBA+∠APE+∠BPE=2(∠P AB+∠PBA)=180°,∴∠P AB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是矩形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠F AD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选:B.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.6.如图,在△ABC中,AB=AC,BC=24,tan C=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为()A.13B.C.D.12【分析】利用三线合一得到G为BC的中点,求出GC的长,过点A作AG⊥BC于点G,在直角三角形AGC中,利用锐角三角函数定义求出AG的长,再由E为AC中点,求出EC的长,进而求出FC的长,利用勾股定理求出EF的长,在直角三角形DEF中,利用勾股定理求出x的值,即可确定出BD的长.【解答】解:过点A作AG⊥BC于点G,∵AB=AC,BC=24,tan C=2,∴=2,GC=BG=12,∴AG=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,∴EF=AG=12,∴=2,∴FC=6,设BD=x,则DE=x,∴DF=24﹣x﹣6=18﹣x,∴x2=(18﹣x)2+122,解得:x=13,则BD=13.故选:A.【点评】此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.7.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG 的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.8.如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A.B.C.2D.3【分析】作辅助线,根据点B的坐标,求出OB和正方形的边长,由正方形的对角线互相垂直平分得:DQ是梯形CMNA的中位线,则CM+AN=2DQ=7,证明△CMO≌△ONA,则ON=CM,所以ON+AN=7,设AN=x,则ON=7﹣x,根据勾股定理列方程求出x的值,并取舍,再根据正方形的边长求出OP的长.【解答】解:当点A′恰好落在直线PE上,如图所示,连接OB、AC,交于点D,过点D、A作x轴的垂线,垂足分别为Q、N,设CB′交x轴于M,则CM∥QD∥AN,∵四边形OABC是正方形,∴OD=BD,OB⊥AC,∵O(0,0),B(1,7),∴D(,),即DQ=由勾股定理得:OB===5,∵△ABO是等腰直角三角形,∴AB=AO=5,∵DQ是梯形CMNA的中位线,∴CM+AN=2DQ=7,∵∠COA=90°,∴∠COM+∠AON=90°,∵∠CMO=90°,∴∠COM+∠MCO=90°,∴∠AON=∠MCO,∵四边形OABC是正方形,∴OA=OC,∵∠CMO=∠ONA=90°,∴△CMO≌△ONA,∴ON=CM,∴ON+AN=7,设AN=x,则ON=7﹣x,在Rt△AON中,由勾股定理得:x2+(7﹣x)2=52,解得:x=3或4,当x=4时,CM=3,此时点B在第二象限,不符合题意,∴x=3,∴OM=3,∵A′B′=PM=5,∴OP=a=2,故选:C.【点评】本题是翻折变换问题,考查了翻折的性质和正方形及坐标与图形的性质,首先明确翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;利用三角形全等和梯形中位线的性质,得出直角三角形两直角边的和为7,设未知数,根据勾股定理列方程得出结论.9.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF =∠CAF;③S四边形ADFE=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是()A.1B.2C.3D.4【分析】根据对折的性质可得AE=EF,∠DAF=∠DF A,∠EAF=∠AFE,∠BAC=∠DFE,据此和已知条件判断图中的相等关系.【解答】解:①由题意得AE=EF,BF=FC,但并不能说明AE=EC,∴不能说明EF是△ABC的中位线,故①错;②题中没有说AB=AC,那么中线AF也就不可能是顶角的平分线,故②错;③易知A,F关于D,E对称.那么四边形ADFE是对角线互相垂直的四边形,那么面积等于对角线积的一半,故③对;④∠BDF=∠BAF+∠DF A,∠FEC=∠EAF+∠AFE,∴∠BDF+∠FEC=∠BAC+∠DFE=2∠BAC,故④对.正确的有两个,故选B.【点评】翻折前后对应线段相等,对应角相等.10.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN 的面积与△CMN的面积比为1:4,则的值为()A.2B.4C.D.【分析】首先过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,继而求得答案.【解答】解:过点N作NG⊥BC于G,∵四边形ABCD是矩形,∴四边形CDNG是矩形,AD∥BC,∴CD=NG,CG=DN,∠ANM=∠CMN,由折叠的性质可得:AM=CM,∠AMN=∠CMN,∴∠ANM=∠AMN,∴AM=AN,∴四边形AMCN是平行四边形,∵AM=CM,∴四边形AMCN是菱形,∵△CDN的面积与△CMN的面积比为1:4,∴DN:CM=1:4,设DN=x,则AN=AM=CM=CN=4x,AD=BC=5x,CG=x,∴BM=x,GM=3x,在Rt△CGN中,NG==x,在Rt△MNG中,MN==2x,∴=2.故选:D.【点评】此题考查了折叠的性质、矩形的判定与性质、菱形的判定与性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合与方程思想的应用.11.如图,将边长为3的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为()A.B.C.D.【分析】利用翻折变换的性质结合勾股定理表示出CH的长,得出△EDM∽△MCH,进而求出MC的长,依据△GPH≌△BCM,可得GH=BM,再利用勾股定理得出BM,即可得到GH的长.【解答】解:设CM=x,设HC=y,则BH=HM=3﹣y,故y2+x2=(3﹣y)2,整理得:y=﹣x2+,即CH=﹣x2+,∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,由题意可得:ED=1.5,DM=3﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=1,x2=3(不合题意),∴CM=1,如图,连接BM,过点G作GP⊥BC,垂足为P,则BM⊥GH,∴∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==.故选:A.【点评】此题主要考查了翻折变换的性质以及正方形的性质、相似三角形的判定与性质和勾股定理的综合运用,作辅助线构造全等三角形,正确应用相似三角形的判定与性质是解题关键.12.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B 落在C边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,若AD=6,CD=10,则=()A.B.C.D.【分析】利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC中,x2=22+(6﹣x)2,可得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,可得y=3,由此即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=4,在Rt△ADER中,DE===8,∴EC=10﹣8=2,设BF=EF=x,在Rt△EFC中有:x2=22+(6﹣x)2,∴x=,设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,∴y=3,∴EH=5,∴==,故选:A.【点评】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.13.矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.延长B′E交AB的延长线于M,折痕AE上有点P,下列五个结论中正确的有()个①∠M=∠DAB′;②PB=PB′;;④MB′=CD;⑤若B′P⊥CD,则EB′=B′P.A.2B.3C.4D.5【分析】根据∠M=∠CB'E,而∠CB'E+∠DB'A=∠DAB'+∠DB'A=90°可判断①;利用折叠的性质可判断出△B'AP≌△BAP,继而可判断出②;设AE=x,表示出EB'=EB=,在Rt△CEB'中利用勾股定理可求出AE的长度,继而可判断出③;利用反证法判断④,最后看得出的结果能证明出来;根据B′P⊥CD,判断出B'P∥BC,从而有∠B'PE=∠BEP=∠B'EP,从而可判断出⑤.综合起来即可得出最终的答案.【解答】解:连接AB',①由题意得∠M=∠CB'E,而∠CB'E+∠DB'A=∠DAB'+∠DB'A=90°,∴∠M=∠CB'E=∠DAB',故可得①正确;②根据折叠的性质可得AB'=AB,AP=AP,∠B'AP=∠BAP,从而利用SAS可判定△B'AP≌△BAP,∴PB=PB',故可得②正确;③在Rt△ADB'可得,B'D==3,从而可得CB'=5﹣3=2,设AE=x,则EB'=EB=,在Rt△CEB'中,CE2+CB'2=EB'2,即(4﹣)2+4=x2﹣25,解得:x=,即AE=.故可得③正确;④假如MB′=CD,则可得MB'=AB=AB',∴∠M=∠BAB',由①得∠M=∠DAB′,故有∠BAB'=∠DAB',而本题不能判定∠BAB'=∠DAB',即假设不成立.故可得④错误.⑤若B′P⊥CD,则B'P∥BC,∴∠B'PE=∠BEP=∠B'EP,∴EB'=B'P,故可得⑤正确.综上可得①②③⑤正确,共四个.故选:C.【点评】本题考查了翻折变换,解答过程中涉及了平行四边形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.14.如图,已知△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为()A.B.C.3﹣D.【分析】首先过点D作DE⊥AB′于点E,过点C作CF⊥AB,由△ABC中,∠CAB=∠B=30°,AB=2,利用等腰三角形的性质,即可求得AC的长,又由折叠的性质,易得∠CDB′=90°,∠B′=30°,B′C=AB′﹣AC=2﹣2,继而求得CD与B′D的长,然后求得高DE的长,继而求得答案.【解答】解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AC=BC,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C•cos∠B′=(2﹣2)×=3﹣,∴DE===,∴S阴影=AC•DE=×2×=.故选:A.【点评】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.15.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=()A.B.C.D.【分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.【解答】解:连接EG,∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵=,∴GB=4a,∴BC=CG+BG=a+4a=5a,在矩形ABCD中,AD=BC=5a,∴AF=5a,AG=AF+FG=5a+a=6a,在Rt△ABG中,AB===2a,∴==.故选:C.【点评】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.16.如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()A.15B.20C.25D.30【分析】根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF,则阴影部分的周长即为矩形的周长.【解答】解:根据折叠的性质,得A1E=AE,A1D1=AD,D1F=DF.则阴影部分的周长=矩形的周长=2(10+5)=30.故选:D.【点评】此题主要考查了翻折变换,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.17.如图,矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,EC=2cm,AD上有一点P,P A=6cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使P和E重合,折痕交PF于Q,则线段PQ的长是()cm.A.4B.4.5C.4D.4【分析】首先过点Q作QH⊥CD于H,连接EQ,由矩形ABCD与PF⊥AD,易证得四边形PQHD是矩形,即可求得DH=PQ,DH=PD,又由折叠的性质,可得QE=PQ,然后设PQ=xcm,在Rt△EQH中,利用勾股定理即可得方程,解此方程即可求得答案.【解答】解:过点Q作QH⊥CD于H,连接EQ,∴∠DHQ=90°,∵四边形ABCD是矩形,∴∠D=90°,CD=AB=5cm,∴DE=CD﹣EC=5﹣2=3(cm),∵PF⊥AD,∴∠FPD=90°,∴四边形PQHD是矩形,∴QH=PD=AB﹣P A=10﹣6=4(cm),DH=PQ,∵将纸片折叠,使P和E重合,折痕交PF于Q,∴PQ=EQ,设PQ=xcm,则QE=DH=xcm,∴EH=DH﹣DE=x﹣3(cm),在Rt△EQH中,QE2=QH2+EH2,即x2=42+(x﹣3)2,解得:x=4.∴PQ=4cm.故选:D.【点评】此题考查了折叠性质、矩形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握辅助线的作法,注意掌握折叠前后图形的对应关系,注意数形结合与方程思想的应用.18.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E为AC、BC上两个动点,若将∠C沿DE折叠,使点C的对应点C′落在AB上,且△ADC′恰好为直角三角形,则此时CD的长为()A.B.C.或D.或【分析】依据△ADC′恰好为直角三角形,分两种情况进行讨论:当∠ADC'=90°时,当∠DC'A=90°时,分别依据相似三角形的对应边成比例,列方程求解,即可得到CD的长.【解答】解:①如图,当∠ADC'=90°时,∠ADC'=∠C,∴DC'∥CB,∴△ADC'∽△ACB,又∵AC=3,BC=4,∴=,设CD=C'D=x,则AD=3﹣x,∴=,解得x=,经检验:x=是所列方程的解,∴CD=;②如图,当∠DC'A=90°时,∠DCB=90°,由折叠可得,∠C=∠DC'E=90°,∴C'B与CE重合,由∠C=∠AC'D=90°,∠A=∠A,可得△ADC'∽△ABC,Rt△ABC中,AB=5,∴==,设CD=C'D=x,则AD=3﹣x,∴=,解得x=,∴CD=;综上所述,CD的长为或.故选:C.【点评】本题主要考查了折叠问题,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.19.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G 在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.【分析】由折叠可得,E,G分别为AD,CD的中点,设CD=2a,AD=2b,根据Rt△BCG中,CG2+BC2=BG2,可得即a2+(2b)2=(3a)2,进而得出的值.【解答】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.【点评】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.20.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为()A.6B.5C.4D.3【分析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9﹣x,在Rt△DBN中利用勾股定理列方程求解即可.【解答】解:设AN=x,由翻折的性质可知DN=AN=x,则BN=9﹣x.∵D是BC的中点,∴BD==3.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9﹣x)2+33,解得:x=5.AN=5.故选:B.【点评】本题主要考查的是翻折的性质、勾股定理的应用,由翻折的性质得到DN=AN=x,BN=9﹣x,从而列出关于x的方程是解题的关键.21.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.【分析】设BD与AF交于点M.设AB=a,AD=a,根据矩形的性质可得△ABE、△CDE都是等边三角形,利用折叠的性质得到BM垂直平分AF,BF=AB=a,DF=DA=a.解直角△BGM,求出BM,再表示DM,由△ADM∽△GBM,求出a=2,再证明CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.建立平面直角坐标系,得出B(3,2),B′(3,﹣2),E(0,),利用待定系数法求出直线B′E的解析式,得到H(1,0),然后利用两点间的距离公式求出BH=4,进而求出==.【解答】解:如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠F AC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称﹣最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH、CF的长是解题的关键.22.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.2B.C.D.【分析】在直角三角形DMN中,利用勾股定理求得MN的长,则EN﹣MN=EM.设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解方程即可得到EM的长.【解答】解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.故选:D.【点评】本题考查折叠问题,应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.解决问题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.23.如图,折叠菱形纸片ABCD,使得AD的对应边A1D1过点C,EF为折痕,若∠B=60°,当A1E⊥AB时,的值等于()A.B.C.D.【分析】先延长AB,D1A1交于点G,根据三角形三角形外角性质以及等腰三角形的判定,即可得到BC=BG=BA,设BE=1,AE=x=A1E,则AB=1+x=BC=BG,A1G=2x,在Rt△A1GE中,依据勾股定理可得A1E2+GE2=A1G2,进而得出方程x2+(x+2)2=(2x)2,据此可得AE=1+,即可得出的值.【解答】解:如图所示,延长AB,D1A1交于点G,∵A1E⊥AB,∠EA1C=∠A=120°,∴∠G=120°﹣90°=30°,又∵∠ABC=60°,∴∠BCG=60°﹣30°=30°,∴∠G=∠BCG=30°,∴BC=BG=BA,设BE=1,AE=x=A1E,则AB=1+x=BC=BG,A1G=2x,∴GE=1+x+1=x+2,∵Rt△A1GE中,A1E2+GE2=A1G2,∴x2+(x+2)2=(2x)2,解得x=1+,(负值已舍去)∴AE=1+,∴==,故选:D.【点评】本题主要考查了折叠问题,等腰三角形的判定,解一元二次方程以及勾股定理的运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理列方程求解.解题时注意方程思想的运用.24.如图,菱形ABCD中,点E,F分别在边AB,BC上.将菱形沿EF折叠,点B恰好落在边AD上的点G处.若∠B=45°,AE=,BE=2,则tan∠EFG的值是()A.B.C.2D.【分析】过E作PH⊥BC于P,交DA延长线于H,作GM⊥BC于M,则PH⊥AH,GM=PH,GH=PM,由折叠的性质得:GE=AE=2,GF=BF,∠EFG=∠EFB,由平行线的性质得出HAE=∠B=45°,得出△BPE 和△AEH是等腰直角三角形,得出BP=EP=BE=2,AH=EH=AE=1,GM=HP=3,在Rt△GEH中,由勾股定理求出GH=,得出PM=GH=,设PF=x,则FM=﹣x,GF=BF=x+2,在Rt△GFM中,由勾股定理得出方程,解方程求出PF=2﹣4,再由三角函数定义即可得出结果.【解答】解:过E作PH⊥BC于P,交DA延长线于H,作GM⊥BC于M,如图所示:则PH⊥AH,GM=PH,GH=PM,由折叠的性质得:GE=AE=2,GF=BF,∠EFG=∠EFB,∵四边形ABCD是菱形,∴AD∥BC,∴∠HAE=∠B=45°,∴△BPE和△AEH是等腰直角三角形,∴BP=EP=BE=2,AH=EH=AE=1,∴GM=HP=2+1=3,在Rt△GEH中,由勾股定理得:12+GH2=(2)2,解得:GH=±(负值舍去),∴GH=,∴PM=GH=,设PF=x,则FM=﹣x,GF=BF=x+2,在Rt△GFM中,由勾股定理得:32+(﹣x)2=(x+2)2,解得:x=2﹣4,∴PF=2﹣4,∴tan∠EFG=tan∠EFB===;故选:B.【点评】本题考查了翻折变换的性质、菱形的性质.等腰直角三角形的判定与性质、勾股定理、三角函数等知识;熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.25.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN过点G.若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.D.2【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:延长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:A.【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.26.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A 恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的序号是()A.①②③④⑤B.①②③④C.①③④⑤D.①④⑤【分析】①根据折叠的性质我们能得出∠ADG=∠ODG,也就求出了∠ADG的度数,那么在三角形AGD中用三角形的内角和即可求出∠AGD的度数;②由tan∠AED=,AE=EF<BE,即可求得tan∠AED=>2,即可得②错误;③由AG=FG>OG,△AGD与△OGD同高,根据同高三角形面积的比等于对应底的比,即可求得即可求得S△AGD>S△OGD;④我们根据折叠的性质就能得出AE=EF,AG=GF,只要再证出AE=AG就能得出AEFG是菱形,可用角的度数进行求解,①中应经求出了∠AGD的度数,那么就能求出∠AGE的度数,在直角三角形AED中,有了∠ADE 的度数,就能求出∠AED的度数,这样得出AE=AG后就能证出AEFG是菱形了.⑤我们可通过相似三角形DEF和DOG得出EF和OG的比例关系,然后再在直角三角形BEF中求出BE和EF的关系,进而求出BE和OG的关系.【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F 重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴①正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴②错误.∵AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,∴③错误.根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,。

立体几何中翻折问题(微专题)(解析版)

立体几何中翻折问题(微专题)(解析版)

立体几何中翻折问题(微专题)一、题型选讲题型一、展开问题1(2022·广东佛山·高三期末)长方体ABCD-A1B1C1D1中,AB=1,AD=AA1=2,E为棱AA1上的动点,平面BED1交棱CC1于F,则四边形BED1F的周长的最小值为()A.43B.213C.2(2+5)D.2+42【答案】B【分析】将几何体展开,利用两点之间直线段最短即可求得截面最短周长.【详解】解:将长方体展开,如图所示:当点E为BD1与AA1的交点,F为BD1与CC1的交点时,截面四边形BED1F的周长最小,最小值为2BD1=222+(1+2)2=213.故选:B.1.(2022·湖北武昌·高三期末)已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为22的菱形,B,C分别为AE,FD的中点,BD=22,则在该四面体中()A.BE⊥CDB.BE与平面DCE所成角的余弦值为21015D.四面体ABCD的外接球表面积为9πC.四面体ABCD的内切球半径为10530【答案】ACD【分析】几何体内各相关线段的计算即可.【解析】由题意得,展开图拼成的几何体如下图所示,AB=CD=2,AD=BD=BC=AC=22,取AB中点M,CD中点N,MN中点O,连MN、OA,过O作OH⊥CM于H,则OH是内切球的半径,OA是外接球的半径.所以AM=CN=12AB=22,CM=AN=AC2-CN2=222-222=302MN=CM2-CN2=3022-22 2=7对于A:AN⊥CD,BN⊥CD,AN∩BN=N,故CD⊥平面ABN,而BE⊂平面ABN,所以BE⊥CD,故A正确;对于B:由于CD⊂平面ACD,故平面ABN⊥平面ACD,故∠BAN是BE与平面DCE所成角,故cos∠BAN=AMAN=22×230=1515,故B错误;对于C:OH=CNCM12MN=22×230×12×7=10530,故C正确;对于D:OA2=AM2+12MN2=22 2+72 2=94所以外接球的表面积为9π,故D正确.故选:ACD2.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P-ABC的平面展开图中,AC=1,AB=AD= 3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.【答案】-14【解析】∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ⋅AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ⋅BC=1+4-62×1×2=-14.故答案为:-14.题型二、折叠问题2(2022·河北唐山·高三期末)如图,四边形ABCD 是边长为2的正方形,E 为AB 的中点,将△AED 沿DE 所在的直线翻折,使A 与A 重合,得到四棱锥A -BCDE ,则在翻折的过程中()A.DE ⊥AAB.存在某个位置,使得A E ⊥CDC.存在某个位置,使得A B ∥DED.存在某个位置,使四棱锥A -BCDE 的体积为1【答案】AB 【分析】过A 作A O ⊥DE ,垂足为O ,证得DE ⊥平面A AO ,可判定A 正确;取DC 的中点G ,连接EG ,A G ,当A 在平面ABCD 上的投影在FG 上时,可判定B 正确;连接A B ,由直线A B 与DE 是异面直线,可判定C错误;求得A O=25,结合体积公式求可判定D错误.【详解】对于A中,如图所示,过A 作A O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A O=O,所以DE⊥平面A AO,又因为A A⊂平面A AO,所以DE⊥AA ,所以A正确;对于B中,取DC的中点G,连接EG,A G,当A 在平面ABCD上的投影在FG上时,此时DC⊥平面A EG,从而得到A E⊥CD,所以B正确;对于C中,连接A B,因为E⊂平面A BE,D⊄平面A BE,所以直线A B与DE是异面直线,所以不存在某个位置,使得A B∥DE,所以C错误;对于D中,由V A -BCDE=13×12×(1+2)×2×h=1,解得h=1,由A 作A O⊥DE,可得A O=A E⋅A DDE=1×25=25,即此时四棱锥的高h∈0,25 5,此时25<1,所以不存在某个位置,使四棱锥A -BCDE的体积为1,所以D错误.故选:AB.1.(2022·江苏宿迁·高三期末)如图,一张长、宽分别为2,1的矩形纸,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,则()A.在该多面体中,BD=2B.该多面体是三棱锥C.在该多面体中,平面BAD⊥平面BCDD.该多面体的体积为112【答案】BCD利用图形翻折,结合勾股定理,确定该多面体是以A ,B ,C ,D 为顶点的三棱锥,利用线面垂直,判定面面垂直,以及棱锥的体积公式即可得出结论.【解析】由于长、宽分别为2,1,A ,B ,C ,D 分别是其四条边的中点,现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,且P 为BD 的中点,从而得到一个多面体ABCD ,所以该多面体是以A ,B ,C ,D 为顶点的三棱锥,故B 正确;AB =BC =CD =DA =32,AC =BD =1,AP =CP =22,故A 不正确;由于22 2+22 2=1,所以AP ⊥CP ,BP ⊥CP ,可得BD ⊥平面ACP ,则三棱锥A -BCD 的体积为13×BD ×S △ACP =13×1×12×22×22=112,故D 正确;因为AP ⊥BP ,AP ⊥CP ,所以AP ⊥平面BCD ,又AP ⊂平面BAD ,可得平面BAD ⊥平面BCD ,故C 正确.故选:BCD2.(2022·江苏海安·高三期末)如图,ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .现将△BCD 沿BD 折起,成为二面角A -BD -C 是90°的加热零件,则AC 间的距离是dm ;为了安全,把该零件放进一个球形防护罩,则球形防护罩的表面积的最小值是dm 2.(所有器件厚度忽略不计)【答案】4设E 为BD 的中点,由题可得AE ⊥平面BCD ,进而可求AC ,再结合条件可得△DAB 的中心为棱锥C -ABD 的外接球的球心,即求.【解析】∵ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .∴△DAB 为等边三角形,BC =23dm ,DC =2dm ,设E 为BD 的中点,连接AE ,CE ,则AE ⊥BD ,又二面角A -BD -C 是90°,∴AE ⊥平面BCD ,CE ⊂平面BCD ,∴AE ⊥CE ,又CE =2dm ,AE =23dm ,∴AC =AE 2+CE 2=4dm ,设△DAB 的中心为O ,则OE ⊥平面BCD ,又E 为BD 的中点,△BCD 为直角三角形,∴OB =OC =OD =OA ,即O 为三棱锥C -ABD 的外接球的球心,又OA =23×23=433dm ,故球形防护罩的表面积的最小值为4π⋅OA 2=64π3dm 2.故答案为:4,64π3.3.(2022·河北保定·高三期末)如图,DE 是边长为4的等边三角形ABC 的中位线,将△ADE 沿DE 折起,使得点A 与P 重合,平面PDE ⊥平面BCDE ,则四棱雉P -BCDE 外接球的表面积是.【答案】52π3求出四边形BCDE 外接圆的圆半径,再设四棱锥P -BCDE 外接球的球心为O ,由R 2=OO 2+O B 2求出半径,代入球的表面积公式即可.【解析】如图,分别取BC ,DE 的中点O ,F ,连接PF ,O F .因为△ABC 是边长为4的等边三角形,所以PF =O F =3,所以O B =O C =O D =O E =2,则四边形BCDE 外接圆的圆心为O ,半径r =2.设四棱锥P -BCDE 外接球的球心为O ,连接OO ,过点O 作OH ⊥PF ,垂足为H .易证四边形HFO O 是矩形,则HF =OO ,OH =O F =3.设四棱锥P -BCDE 外接球的半径为R ,则R 2=OO 2+O B 2=OH 2+PH 2=O F 2+PF -OO 2,即R 2=OO 2+22=3 2+3-OO 2,解得R 2=133,故四棱锥P -BCDE 外接球的表面积是4πR 2=52π3.故答案为:52π3题型三、折叠的综合性问题3(2022·江苏扬州·高三期末)在边长为6的正三角形ABC 中M ,N 分别为边AB ,AC 上的点,且满足AM AB =ANAC=λ,把△AMN 沿着MN 翻折至A ′MN 位置,则下列说法中正确的有()A.在翻折过程中,在边A ′N 上存在点P ,满足CP ∥平面A ′BMB.若12<λ<1,则在翻折过程中的某个位置,满足平面A ′BC ⊥平面BCNMC.若λ=12且二面角A ′-MN -B 的大小为120°,则四棱锥A ′-BCNM 的外接球的表面积为61πD.在翻折过程中,四棱锥A ′-BCNM 体积的最大值为63【答案】BCD 【分析】通过直线相交来判断A 选项的正确性;通过面面垂直的判定定理判断B 选项的正确性;通过求四棱锥A -BCNM 外接球的表面积来判断C 选项的正确性;利用导数来求得四棱锥A -BCNM 体积的最大值.【详解】对于选项A,过P作PQ⎳MN⎳BC,交AM于Q,则无论点P在A′N上什么位置,都存在CP与BQ相交,折叠后为梯形BCQP,则CP不与平面A′BM平行,故选项A错误;对于选项B,设D,E分别是BC,MN的中点,若12<λ<1,则AE>DE,所以存在某一位置使得A′D⊥DE,又因为MN⊥A′E,MN⊥DE,且A′E∩DE=E,所以MN⊥平面A′DE,所以MN⊥A′D,DE∩MN=E,所以A′D⊥平面BCNM,所以A′BC⊥平面BCNM,故选项B正确;对于选项C,设D,E分别是BC,MN的中点,若λ=12且二面角A′-MN-B的大小为120°,则△AMN为正三角形,∠BMN=120°,∠C=60°,则BCNM四点共圆,圆心可设为点G,其半径设为r,DB=DC=DM=DN=3,所以点G即为点D,所以r=3,二面角A′-MN-B的平面角即为∠A′ED=120°,过点A′作A′H⊥DE,垂足为点H,EH=334,DH=934,A′H=94,DH2=24316,设外接球球心为O,由OD2+32=R294-OD2+24316=R2,解得R2=614,所以外接球的表面积为S=4πR2=61π,故选项C正确;对于选项D,设D,E分别是BC,MN的中点,设h是四棱锥A -BCNM的高.S△AMN=12×6λ×6λ×32=93λ2,S△ABC=12×6×6×32=93,所以S四边形BCNM=93(1-λ2),则V A′-BCNM=13×93(1-λ2)×h≤33(1-λ2)×A′E=33(1-λ2)×33λ=27(-λ3+λ),λ∈(0,1),可设f(λ)=27(-λ3+λ),λ∈(0,1),则f λ =27(-3λ2+1),令f λ =0,解得λ=33,则函数f(λ)在0,33上单调递增,在33,1上单调递减,所以f(λ)max=f33=63,则四棱锥A′-BCN体积的最大值为63,故选项D正确.故选:BCD1.(2021·山东滨州市·高三二模)已知正方形ABCD的边长为2,将△ACD沿AC翻折到△ACD 的位置,得到四面体D -ABC,在翻折过程中,点D 始终位于△ACD所在平面的同一侧,且BD 的最小值为2,则下列结论正确的是()A.四面体D -ABC的外接球的表面积为8πB.四面体D -ABC体积的最大值为63C.点D的运动轨迹的长度为22π3D.边AD旋转所形成的曲面的面积为22π3【答案】ACD【解析】对ABCD各选项逐一分析即可求解.【详解】解:对A:∵∠ABC=90o,∠AD C=90o,∴AC中点即为四面体D -ABC的外接球的球心,AC为球的直径,∴R=2,∴SD -ABC =4πR2=4π22=8π,故选项A正确;对B:当平面AD C⏊平面ABC时,四面体D -ABC体积的最大,此时高为2,∴V D -ABCmax=13×12×2×2×2=223,故选项B错误;对C :设方形ABCD 对角线AC 与BD 交于O ,由题意,翻折后当BD 的最小值为2时,△OD B 为边长为2的等边三角形,此时∠D OB =π3,所以点D 的运动轨迹是以O 为圆心2为半径的圆心角为2π3的圆弧,所以点D 的运动轨迹的长度为2π3×2=22π3,故选项C 正确;对D :结合C 的分析知,边AD 旋转所形成的曲面的面积为以A 为顶点,底面圆为以O 为圆心OD =2为半径的圆锥的侧面积的13,即所求曲面的面积为13πrl =13π×2×2=22π3,故选项D 正确.故选:ACD .2.【2022·广东省深圳市宝安区第一次调研10月】如图甲是由正方形ABCD ,等边△ABE 和等边△BCF 组成的一个平面图形,其中AB =6,将其沿AB ,BC ,AC 折起得三棱锥P -ABC ,如图乙.(1)求证:平面PAC ⊥平面ABC ;(2)过棱AC 作平面ACM 交棱PB 于点M ,且三棱锥P -ACM 和B -ACM 的体积比为1:2,求直线AM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)427.【分析】(1)取AC 的中点为O ,连接BO ,PO ,证明PO ⊥AC ,PO ⊥OB ,即证PO ⊥平面ABC ,即证得面面垂直;(2)建立如图空间直角坐标系,写出对应点的坐标和向量AM 的坐标,再计算平面PBC 法向量n,利用所求角的正弦为cos AM ,n即得结果.【解析】(1)证明:如图,取AC 的中点为O ,连接BO ,PO .∵PA =PC ,∴PO ⊥AC .∵PA =PC =6,∠APC =90°,∴PO =12AC =32,同理BO =32.又PB =6,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵AC ∩OB =O ,AC ,OB ⊂平面ABC ,11∴PO ⊥平面ABC .又PO ⊂平面PAC ,∴平面PAC ⊥平面ABC ;(2)解:如图建立空间直角坐标系,根据边长关系可知,A 32,0,0 ,C -32,0,0 ,B 0,32,0 ,P 0,0,32 ,∴CB =32,32,0 ,CP =32,0,32.∵三棱锥P -ACM 和B -ACM 的体积比为1:2,∴PM :BM =1:2,∴M 0,2,22 ,∴AM =-32,2,22 .设平面PBC 的法向量为n =x ,y ,z ,则32x +32y =032x +32z =0 ,令x =1,得n =1,-1,-1 .设直线AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =-6227⋅3 =427.∴直线AM 与平面PBC 所成角的正弦值为427.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翻折专题
1.(本小题10分)(Ⅰ)如图1,在平面直角坐标系中,将矩形纸片的顶点与原点O重合,边放在轴的正半轴上,边放在y轴的正半轴上,
.将纸片折叠,使点落在边上的点处,过点作⊥于点,折痕所在直线与直线相交于点P,连结OP.求证:四边形
是菱形;
(Ⅱ)设点P坐标是,点P的轨迹称为折叠曲线,求与的函数关系式(用含
的代数式表示);
(Ⅲ)将矩形纸片如图2放置,,,将纸片折叠,当点与点
重合时,折痕与的延长线交于点.试问在这条折叠曲线上是否存在点,使得△K CF 的面积是△KOC面积的,若存在,写出点的坐标;若不存在,请说明理由.
答案(Ⅰ)由题意知OM=ME,∠OMN=∠EMN,
∵OM∥EP,∴∠OMN=∠MPE.∴∠EMN=∠MPE.∴ME= EP.∴OM= EP.∴四边形OMEP是平行四边形.
又∵ME= EP, ∴四边形OMEP是菱形.
(Ⅱ)∵四边形OMEP是菱形, ∴OP=PE∴,∵EQ=OA=m,PQ=y,
∴PE=m-y. ∴.
∵∴
∴.
(Ⅲ)假设折叠曲线上存在点K满足条件.
当.作KG⊥DC于G, KH⊥OC于H.设K(x,y),则
.当. ∴F(12,-5) ∴ CF=
5.
∵, ∴=×,∴. 7’
∴K().∵点K在上, ∴=.化简得:
解得:
当时,.∴存在点K(,).
2.如图,将一个正方形纸片AOCD,放置在平面直角坐标系中,点A(0,4),点O(0,0),点D在第一象限.点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点O落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接OP,O H.设P点的横坐标为m.
(Ⅰ)若∠APO=60°,求∠OPG的大小;
(Ⅱ)当点P在边AD上移动时,△PDH的周长l是否发生变化?若变化,用含m的式子表示l;若不变化,求出周长l;
(Ⅲ)设四边形EFGP的面积为S,当S取得最小值时,求点P的坐标(直接写出结果即可).
答案详解【解答】解:(1)∵正方形纸片折叠,使点O落在点P处,点C落在点G处,∴∠POC=∠OPG,
∵四边形AOCD是正方形,∴AD∥OC∴∠APO=∠POC∴∠APO=∠OPG,
∵∠APO=60°,∴∠OPG=60°,
(2)△PDH的周长不发生变化,理由:如图,过B作OQ⊥PG,垂足为Q.
∴∠DAO=90°,∴∠DAO=∠PQO=90°,由(1)知,∠APO=∠OPG,∵OP=OP,
∴△AOP≌△QOP,∴AP=QP,AO=QO,∵AO=OC,∴OC=OQ,∵∠OCD=∠OQH=90°,OH=OH,∴Rt△OCH≌Rt△OQH,∴CH=QH,∴△PDH的周长l=PD+DH+PH=PD+DH+P Q+QH
=PD+PQ+DH+QH=PD+AP+DH+CH=AD+CD=8,
∴△PDH的周长不发生变化,周长为定值8;
(3)如图2,过点F作FM⊥OA,
由折叠知,△EON与△EPN关于直线EF对称,∴△EON≌△EPN,∴ON=PN,EP=EO,E N⊥PO,∵∠A=∠ENO,∠AON=∠AOP,∴△EON∽△POA,∴①,
设AP=x,∵点A(0,4),∴OA=4,∴OP==,
∴ON=OP=,将OP,ON代入①式得,OE=PE=(16+x2),
∵∠EFM+∠OEN=90°,∠AOP+∠OEN=90°,∴∠EFM=∠AOP,
在Rt△EFM和Rt△POA中,,
∴Rt△EFM≌Rt△POA(ASA),∴EM=AP=x.∴FG=CF=OM=OE﹣EM=(16+x2)﹣x =x2﹣x+2,
=S梯形OCFE=(FG+OE)×BC=【x2﹣x+2+(16+x2)】×4=(x﹣2)2+∴S
梯形EFGP
6,
∴当x=2时,S
最小,最小值是6,∴AP=2,∴P(2,4).
梯形EFGP
3..已知点,点为直线上的动点,设。

(1)如图1,若点且,,求与之间的函数关系式。

(2)在(1)的条件下,是否有最大值?若有,请求出最大值;若没有,请说明理由。

(3)如图2,当点的坐标为时,在轴上另取两点,,且。

线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标。

答案详解
解:(1)如图1所示,过点作轴于点。

因为,所以
,。

因为,
所以,,所以,又因为,所以,所以,即,故()。

(2)因为二次函数对称轴为:,所以根据二次函数图象的性质,时有
最大值,此时。

(3)如图2所示,过点作轴,令,连接,作点关于轴对称的点,当、、三点共线时,最小,又因为、为定值,所以此时四边形的周
长最小,因为,,设直线的解析式为:,所以将,代入,可得:
,解得:,所以,因为点为直线与轴交点,所以点坐标为。

4.如图①,在矩形ABCD中, , ,将矩形折叠,使B落在边(含端点)上,落点记为E,这时折痕与边BC或者边(含端点)交于点F,然后展开铺平,则以B、E、F
为顶点的称为矩形ABCD的“折痕三角形”
(Ⅰ)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕”是一个三角形;
(Ⅱ)如图②,当“折痕”的顶点E位于AD的中点时,求出点F的坐标;
(Ⅲ)如图③,在矩形ABCD中,该矩形是否存在面积最大的“折痕”?若存在,请求出此最大面积,并求出此时点E的坐标;若不存在,请说明理由.
答案
解:(I)由折叠的定义可以知道,为矩形ABCD的“折痕三角形”时,, 是等腰三角形. 因此,本题正确答案是:等腰;
如图②所示, 折痕垂直平分BE,,
点A在BE的垂直平分线上,即折痕经过点A, 四边形ABEF为正方
形, ,
点F的坐标为;
矩形ABCD存在面积最大的折痕
,
(1)当F在BC上时,如图②所示, ,即当F与C重合时,面积最大为4;
(2)当F在CD上时,如图③所示,
过F作交AB于点H,交BE于K, •
,
••
,
,
即当F为CD的中点时,的面积最大为4; 下面求面积最大时,点E的坐标,
(1)当F与点C重合时,如图④所示,由折叠可以知道:,
在中,,
, 点E的坐标;
(2)当F在DC中点时,点E与点A重合,如图⑤所示,此时,
综上所述,折痕的最大面积为4时,点E的坐标为或
5.如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点0出发沿线段OC(不包括端点O、C)以每秒2个单位长度的速度,匀速向点C
运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P、Q同时出发,同时停止,设运动时间为t秒,当t=2时,PQ= 2 5 .
(1)求点D的坐标,并直接写出t的取值范围;
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△A EF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.
(3)在(2)的条件下,t为何值时,PQ∥AF?
答案
解:(1)t=2时,OP=2×2=4,CQ=2×1=2,
又∵A(0,4),∴OA=4,∴点D的坐标为(8,4),点P运动到点C的时间为:8÷2=4秒,点Q运动到点D的时间为:4÷1=4秒,∵点P、Q同时出发,同时停止,∴0<t<4;(2)△AEF的面积S不变,为32.
∴QF=2DQ=2(4-t),
= 12QF(AD+CE),= 12×2(4-t)×(8+ 8t4-t),=32-8t+8t,=32是定值,∴△AEF的面积S不变,为32;
(3)由翻折的性质AF=AQ,
故答案为:(1)0<t<4;(2)△AEF的面积S不变,为32;(3)6-2 5.
6.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中,,P为AB 边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q 点
(Ⅰ)若点P的坐标为,求点M的坐标;
(Ⅱ)若点P的坐标为
(1)求点M的坐标(用含t的式子表示)(直接写出答案)
(2)求点Q的坐标(用含t的式子表示)(直接写出答案)
(Ⅲ)当点P在边AB上移动时,的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.
答案详解解:(Ⅰ)过M作轴于点E,如图1,
根据题意可以知道M为OP中点,为OA中点,,
,点坐标为;
(Ⅱ)(1)同(Ⅰ),当时,可得;
(2)设直线OP的解析式为,把代入可求得,直线OP解析式为
,又,可设直线MQ解析式为,且过点, 把M点坐标代入可得,计算得出,
直线l解析式为,又直线AC解析式为,
联立直线l和直线AC的解析式可得,计算得出
,点坐标为;
(Ⅲ)不变化,.理由如下:由(Ⅱ)(2)可以知道Q点坐标为,
,又,,
,是以OP为斜边的等腰直角三角形,
,即不变化.。

相关文档
最新文档