天津大学化工传递过程基础第一章概要

合集下载

天津大学版 化工原理 第一章1流体静力学

天津大学版 化工原理 第一章1流体静力学

当管水平放置时:
pA pB (0 )Rg 1
•B
h2
R 2
(b) 倒置 U 型管压差计(Up-side down manometer)
a—b为等压面,则Pa=Pb
0
•P1=Pa+ρg ( h+R) •P2=Pb+ρ0gR+ρgh
a
b
R
得 p1 p2 R 0 g
若 >>0 p1 p2 Rg
m (1-1)
V
当ΔV→0时,Δm/ΔV 的极限值称为流体
内部的某点密度。
1. 液体的密度
(1)纯液体的密度:可由实验测定或用手册查找。
(2)混合液体的密度:以1kg混合液为基准,即
1
m
a1
1
a2
2
an
n
(1-2)
2. 气体的密度
(1)纯气体的密度:当压强不太高、温度不 太低时,可按理想气体来换算:
p1
p2
B
C R
A
例题
• 例1-4 用U形压差计测量某气体流经水平管道两截面 的压力差,指示液为水,密度为1000kg/m3,读数R 为12mm。为了提高测量精度,改为双液体U管压差 计,指示液A为含40%乙醇的水溶液,密度为920 kg/m3,指示液C为煤油,密度为850 kg/m3。问读数 可以放大多少倍?此时读数为多少?
(3)向下作用的重力, gAdz
由于流体处于静止,其
垂直方向所受到的各力代数
和应等于零,简化可得:
dp
gdz
在图中的两个垂直位置2 和
1 之间对上式作定积分
p p g(z z )
p1 p2
dp
z1- gdz

化工传递(第一章)

化工传递(第一章)

※ u和d称为流体流动的特征速度和特征尺寸
当量直径

4

流道截面积 润湿周边长
当量直径
圆截面 d
矩形截面
2ab ab
环形截面 d2 - d1
※ Re<2000,总是层流;
Re>10000,一般都为湍流;
2000<Re<10000,过渡状态。若受外界条件影响,如管道直径或方向的改变、 外来的轻微振动都易促使过渡状态下的层流变为湍流
第一章 传递过程概论
第二节 流体流动导论
※ 流体:气体和液体的统称
一、静止流体的特性
(一)流体的密度(ρ)
均质流体:
※ 非均质流体: f x,y ,z
图1-1 均质水溶液
密度: M
V
方法:取一微元,设微元 质量为dM,体积为dV
图1-2 非均质溶液 ρ:点密度 dM:微元质量 dV:微元体积
欧拉平衡微分方程
p x

ห้องสมุดไป่ตู้
X
p Y
y
质量力:X = 0,Y = 0,Z = - g
p Z
z
p 0 x
p 0 y
p dp g
z dz
p
h
积分得: dp g dz
p0
0
流体静力学方程
p p0 gh
h p p0
g
流体平衡微分方程(欧拉平衡微分方程)的推导
流体平衡条件:
FB+ Fs = 0
x方向平衡条件: dFBx dFsx 0
x方向作用力:
质量力(dFBx): dFBx Xdxdydz
F 表面力(dFsx 静压力产生): d sx

化工传递过程讲义

化工传递过程讲义

《化工传递过程》讲稿【讲稿】第一章 传递过程概论(4学时)传递现象是自然界和工程技术中普遍存在的现象。

传递过程:物理量(动量、热量、质量)朝平衡转移的过程即为传递过程。

平衡状态:物系内具有强度性质的物理量如速度、温度、组分浓度等不存在梯度。

*动量、热量、质量传递三者有许多相似之处。

*传递过程的研究,常采用衡算方法。

第一节 流体流动导论流体:气体和液体的统称。

微元体:任意微小体积。

流体质点:当考察的微元体积增加至相对于分子的几何尺寸足够大,而相对于容器尺寸充分小的某一特征尺寸时,便可不计分子随机运动进出此特征体积分子数变化所导致的质量变化,此一特征体积中所有流体分子的集合称为流体质点。

可将流体视为有无数质点所组成的连续介质一、静止流体的特性(一)流体的密度流体的密度:单位体积流体所具有的质量。

对于均质流体 对于不均质流体点密度dVdM d =ρ *流体的点密度是空间的连续函数。

*流体的密度随温度和压力变化。

流体的比体积:单位流体质量的体积。

MV =υ (二)可压缩流体与不可压缩流体可压缩流体:密度随空间位置和时间变化的流体,称为可压缩流体。

(气体)不可压缩流体:密度不随空间位置和时间变化的流体,称为不可压缩流体。

(液体)(三)流体的压力流体的压力(压强,静压力):垂直作用于流体单位面积上的力。

A P p =(四)流体平衡微分方程1.质量力(重力)单位流体质量所受到的质量力用B f 表示。

在直角坐标z y x ,, 三个轴上的投影分量分别以 X ﹑Y ﹑Z 表示。

B F V M =ρ2.表面力:表面力是流体微元的表面与其临近流体作用所产生的力用Fs 表示。

在静止流体中,所受外力为重力和静压力,这两种力互相平衡,利用平衡条件可导出流体平衡微分方程。

916:16化工传递过程基础黄山学院化学系首先分析x 方向的作用力,其质量力为由静压力产生的表面力为XdxdydzdF Bx ρ=dydz dx x p p pdydz dF sx ⎪⎭⎫ ⎝⎛∂∂+-=12(五)流体静压力学方程流体静压力学方程可由流体平衡微分方程导出。

化工传递过程基础(第三版)习题答案详解_部分1

化工传递过程基础(第三版)习题答案详解_部分1

搅拌良好,任何 θ 瞬时
(1) (2)
(3) (4) (5)
aA2 = aA
试求放出 1m3 水所需的时间。又若槽中装满煤油,其他条件不变,放出 1 m3 煤油所需时间有 何变化?设水的密度为 1000 kg/m3;煤油的密度为 800 kg/m3。
解:设槽面积为 A,孔面积为 A0,原盛水的高度为 z0,放水后的高度为 z1

z0=3m
z1= 3 −1
( π ×12 ) = 1.727m 4
w1 = 100kg/min, aA1 = 0.002
θ = θ 瞬时:
w2 = 60kg/min, aA2 = aA
θ = θ2 时,
aA2 = 0.01 ,求θ2 。
对组分 A 进行总质量衡算:
w2 aA 2

w1aA1
+
d(MaA dθ
)
=
0
上式展开:
w2 aA 2
− w1aA1 + M
daA dθ
对组分 A 作质量衡算:
w2 aA 2

w1aA1
+
d(MaA ) dθ
=
0
w2 aA 2
+
M
d(aA ) dθ
=
0
∫ ∫ αA daA = − w2 10 dθ
0.05 aA
M0
ln aA = − 100 ×10 = −1 0.05 1000
aA = 0.05 × e−1 = 0.0184 = 1.84%
化工传递过程基础·习题详解
(第三版)
陈涛 张国亮 主编
目录
第一章 传递过程概论 ................................................................................................1 第二章 动量传递概论与动量传递微分方程........................................................... 11 第三章 动量传递方程的若干解 ..............................................................................19 第四章 边界层流动 ..................................................................................................37 第五章 湍流 ..............................................................................................................48 第六章 热量传递概论与能量方程 ..........................................................................64 第七章 热传导 ..........................................................................................................69 第八章 对流传热 ......................................................................................................81 第九章 质量传递概论与传质微分方程.................................................................105 第十章 分子传质(扩散) .................................................................................... 113 第十一章 对流传质 ................................................................................................122 第十二章 多种传递同时进行的过程 ....................................................................133

天津大学工业化学基础课件第一章-热量衡算概要4

天津大学工业化学基础课件第一章-热量衡算概要4
0 0 T 298
温度,K
298
300
400
0
0.04
2.37
H T H 298 千卡
0 0
• (1)利用苯的H-T图 从苯的H-T图上查得 80℃、1大气压的气体苯的焓是H=131×4.1868 = 548.3 kJ/kg , 20℃液体苯的焓是H=8×4.1868 = 33.5 kJ/kg。每千克苯的焓变为: • △ H = H出─H入 = 548.3─33.5 = 514.8 kJ/kg • 100千克苯焓变 (即需热) • 514.8 ×100 =51,480 kJ/h
• 对一个稳定的连续反应过程来说,系统中能量 的积累为零。在不讨论能量转换而只计算热量 的变化时,热量衡算也就是计算在指定的条件 下此反应过程的焓变。根据热力学第一定律, 对于一个等压过程,在只做膨胀功的情况下, 其焓变等于反应所需吸收或放出的热量,也就 • 是等于外界向反应系统供给或取出的热量。 • -△H=QP
热量衡算的基本步骤
• (1)建立以单位时间为基准的物料平衡表(或平衡图)。我们已指 出,物料衡算是热量衡算的基础,物料衡算的最终结果—物料平 衡表.即可作为进行热量衡算的依据,计算时以单位时间为基准 较方便。 • 有了物料平衡表,就可以建立热量衡算式。 • (2)选定计算基准温度 这是一个比较基准,就是说输入系统的 热量和自系统输出的热量应该有同一的比较基准,这比较基准是 人为设定的,可以选0℃(273K),也可以选25℃(298K),或者 选其它温度。因为文献上查到的热力学数据大多数是298K时的数 据,故选298K为基准温度在计算时比较方便。其次,计算还要确 定基准相态。
• c. 混合物热容 • 生产上遇到混合物的机会比遇到纯物质的机会多得多, 而混合物的种类、组成又各不相同,除极少数混合物 有实验测定的热容数据外,一般都根据混合物内各物 质的热容和组成进行加和计算,即

化工传递过程基础知识(ppt 63页)

化工传递过程基础知识(ppt 63页)
3、通量为单位时间内通过与传递方向相垂直的单位面积上的动、热、质量, 各量的传递方向均与该量的浓度梯度方向相反,故普遍式中加“-”号。
第二节 湍流传递条件下传递通量的通用表达 式
一、涡流传递的通量表达式
在湍流流体中,质点的脉动、混合和旋涡运动,使动、热、质量的传
递程度大大加剧。仿照分子传递的方程式,1877年Boussinesq提出了涡流
d (ux )
dy
——在y方向上的动量浓度梯度,kg m / s m

“-”表示动量通量的方向与动量浓度梯度的方向相反,即动量朝着速度降 低的方向传递。 动量通量 = -动量扩散系数×动量浓度梯度
四、动量通量与剪应力
两层流体以ux1和 ux2向前运动,且分子运动引起分子在流层间交换。若质 量为m的流体从1层跳到2层,动量由mux1 增到 mux2 ,同时质量为m的流体 从2层下到1层,动量由mux2减少到 mux1 。从宏观上表现为1层受到2层的 推力,2层受到1层的阻力,动量交换的结果产生了剪应力。
d (cpt)
dy
——在y方向上的热量浓度梯度,
J
/ m3 m

“-”表示热量通量的方向与热量浓度梯度的方向相反,即热量朝着 温度降低的方向传递。 热量通量 = -热量扩散系数×热量浓度梯度
三、动量通量
dux d (ux ) d (ux )
dy dy
dy
式中:τ——动量通量(kg·m/s)/(m2·s);ν ——动量扩散系数,m2/s;
传递方式:由微观分子热运动所产生的传递为分子传递; 依靠宏观的流体质点的运动造成的传递,称为湍流传递。
传递过程的大小常用传递速率或通量(传递量/m2 s)描述。
第一节 分子传递条件下传递通量的通用表达式

化工传递过程 第一章 传递过程概论

化工传递过程  第一章  传递过程概论

描述分子动量传递的基本定律
粘性流体:有粘性,流体层间会产生剪切力
y


两块无限大的平行平板,中间
u-du
dy
u
u0
x
充满流体,上块静止,下块运动, 因粘性的存在,最下层流体必随板 运动,速度uo , 最上层流体也必随 板静止,速度0。
实验证明,当uo不是很大,流体处于层流范围内时, 剪应力(动量通量)与速度梯度成正比,即:
通量=-扩散系数×浓度梯度
① 各过程所传递的物理量均与其相应的强度因素的梯度 成正比,并且都沿着负梯度的方向传递;
② 各式的系数都是物性常数,它们只是状态的函数,与 传递的物理量多少和梯度的大小无关。
(5).涡流传递的类似性 涡流动量、热量与质量传递:
r d (ux )
dy
( q )e A
H
d (cpt)
dy
“-”表示热通量与温度梯度的方向相反,即热量是由 高温向低温方向传递.
导热系数k 是物质的物理性质。
固体和液体:k与压力关系不大
气体:
k与压力有关
三、费克定律(Fick’s law)
jA
DAB
dCA dy
描述 2 组元混合物体系中A存在浓度梯度时的分子扩散
jA— 组分A的质量通量,kg/ (m2 ·s), DAB— 组分A在B中的扩散系数 “-”表示质量通量的方向与浓度梯度的方向相反 DAB —与组分的种类、压力、温度、组成等因素有关。
范围:牛顿型流体:遵循牛顿粘性定律的流体,如:所
有的气体和大多数低分子量的液体。 非牛顿型流体(爬杆效应):不满足牛顿粘性定
律的流体,如:血液和高分子流体(沥青)。
二、傅立叶定律(fourie’s law)

化工传递过程基础知识

化工传递过程基础知识
化工传递过程重点探讨物理过程进行的速率及其 传递机理,动量、热量、质量传递过程的类似性。
第一章 传递过程概述
体系内部具有强度性质的物理量存在梯度时的状态称为
不平衡状态。任何处于不平衡状态的物系都有向平衡状态转 移的倾向,这些物理量朝平衡方向转移的过程称传递过程。 质量传递指物系中的组分由高浓区向低浓区扩散或通过相界 面的转移;热量传递指热量由高温区向低温区的转移;动量 传递则是在垂直于流动方向上,动量由高速区向低速区的转 移。
第二章 总动量、总热量、总质量衡算
在化工中需对系统或某一过程的总动量(对过程包含的力进行分析)、 总热量(了解过程热量和其它能量间的转化关系)、总质量(掌握过程物 料的变化)进行衡算,为研究动、热、质量传递和单元操作的基础,同时 对推导微分动、热、质量衡算也有指导作用(依据定律相同)。
前提:规定衡算范围、基准和对象。在流动过程,通常将进行总衡算 时所 限定的空间区域称为控制体,包围此空间区域的边界面称控制面。
流传r递的通 量d(表u达x式) :
dy
qe
H
d(cPt)
dy
jAe
M
dA
dy
其中:涡流扩散系数ε、εH 、εM 非流体物性参数,与流动条件有关。
二、湍流传递的动量、热量、质量通量表达式
t r
()d(ux)
dy
qt qqe(H)d(dcPyt)
jAtjAjA e(DAB M)ddAy
因此,不仅层流时的三种传递过程之间具有类似性,而且湍流时的三 种传递过程之间也具有类似性,同时层流与湍流传递过程之间均具有类似 性。故可采用类比的方法研究动、热、质量传递过程,在许多场合可用类 似的数学模型来描述动、热、质量传递过程的规律。
3、通量为单位时间内通过与传递方向相垂直的单位面积上的动、热、质量, 各量的传递方向均与该量的浓度梯度方向相反,故普遍式中加“-”号。

化工传递过程 —第一章 传递过程概论

化工传递过程 —第一章 传递过程概论
d dθ
∫∫ u ( ρu)conαdA
A
∫∫∫ ρudV
V
+ ∫∫ u ( ρu)conαdA
A
d dθ
∫∫∫ ρudV
V
在x、y、z三方向的分量
• ∑Fx= ∫∫
A
d u x ( ρu )conαdA + dθ d u y ( ρu )conαdA + dθ d u z ( ρu )conαdA +dθ
A
①为正时,有质量的净输出; ②为负时,有质量的净输入; ③为0时,无质量输入和输出。
简单情况
∫∫ ρuconα .dA= A
∫∫ ρucon α .dA+
A1 A1 A2
∫∫ ρuconα .dA
A2
= - ∫∫ ρudA + ∫∫ ρudA = ρ2ub2A2 — ρ1ub1A 1 ρ2ub2A2 — ρ1ub1A1 +
动量、热量质量传递相似
• 形式相似:
du x τ = −µ dy
q dt = −k A dy
j A = − DAB
dρ A dy
– 各过程所传递的物理量与其相应的强度梯度成正比; – 沿负梯度(降度)的方向传递; – 各式的系数(µ、α、DAB)只是状态函数,与传递 的物理量或梯度无关(传递性质和速率的物性常 数)。
∵ H=U+pv ∴
= q-Ws*
dEt u2 ∫∫ ρuconα .( H + 2 + gz +)dA + dθ A
= q-Ws*
总动量衡算
• 动量守恒:系统的动量变化速率等于作 用在系统上,方向为净力方向的合外力 • 牛顿第二定律: F=ma=m*(u2-u1)/∆t • 动量 mu

天津大学 化工设计(化工过程设计)全套教案 - part 1

天津大学 化工设计(化工过程设计)全套教案 - part 1
第一章 化工过程设计
一、化学工业的发展历史、化学工业覆盖的范围及其在现代经济体系中的地 位 1、化学工业的发展历史 化学工业历经了古代、近代、现代三个主要发展阶段。 ①、古代化学工业:从数千年前人类阳光晒盐、地下卤水 煮盐开始,萌发了古老的化学工业。 化 学 工 业 发 展 阶 段
②、近代化学工业:从18世纪中叶,欧洲造纸、玻璃、 肥皂的大规模生产开始,表明近代化学工业的形成。
2、化工过程设计的目标及内容
美国国家顾问团在其“化学工程的新领域”著作中,简明阐述了化工 过程设计的主要目标: 确定最佳流程及最佳操作条件,达到最优投入产出比。在定量计算 的基础上,结合专家的经验,考虑安全、健康、环保的因素,确定出一 个综合的设计方案。 化工过程设计的内容: 其基本核心内容是化工工艺设计,其附带内容是针对化工工艺设计, 对它的配套部分如公用工程、外管设计等进行深入设计和完善。
③、现代化学工业:上世纪40年代开始,随着合成橡胶、 石油炼制、合成纤维工业的迅速发展,随着化工单元操作 理论的日益成熟,在科学技术和生产规模二个层面上,揭 示现代化学工业开始形成。
2、化学工业属于过程工业型制造业(流程型制造业) 离散型制造业 现代制造业 (例如汽车工业等) 过程工业型制造业(又称“流程型制造业”) (例如化学工业、冶金行业等) 流程型制造业一般是能耗大户,也是排放的大户。其节能、降耗、 减排的任务十分艰巨。 例如:一个年产值不过仅10亿元人民币的合成原料药制造企 业,它每天的耗水量可高达5000立方米。
2.1.3 计划任务书(设计计划任务书) 来源: 项目可行性报告经过论证会(评审会)通过后,上级主管部 门将下达“关于××项目可行性研究报告的批复”和“关于×× 项目的设计计划任务书”。 定义: 由上级主管部门对拟建项目的地点、规模、投资、建设期、 劳动定员等问题,下达的“规定性”文件。它和可行性研究报 告一起,共同作为项目的设计依据。

化工原理天大修订版第一章流体流动

化工原理天大修订版第一章流体流动
36
3.1 流量与流速
3.1.1 流量 (1) Vs (体积流量),m3/s (2) ws (质量流量),kg/s
ws = ρ Vs
3.1.2 流速 (1) u (平均流速),m/s
u = Vs /A
A---截面积, m2
流量与流速的关系: ws =uAρ 37
点速度local velocity 与平均速度average velocity
P/ρg + Z =constant (m or J/N)
static head
potential head
P/ρ + Zg =constant (N or J/kg)
static energy
P+
potential energy
ρg Z=constant (Pa or J/m3)
static press
当压力温度适中,按照理想气体状态方程,
pV=mRT /M → ρ=pM/RT
p— kPa T—K M—kg/kmol(摩尔质量) R—8.31 kJ /kmol·K
17
标准状态下: ρ=pMT0/22.4Tp0
质量一定时,温度、压力和体积变化关系: pV/T = p’V’/T’
液体被视为不可压缩流体,其密度只与 温度有关,即ρ= ρ(T)
15
可压缩性流体(Compressible fluid)
它的密度随温度和压强的不同而出现较 大的差别,气体是可压缩流体。
一般在压强不太高,温度不太低的情况 下,可以按理想气体处理。即 ρ=ρ(p,T)
16
2.2.1 气体密度的计算
衡算范围:内壁面、1-1′与2-2′截面间 衡算基准:1 kg流体。基准水平面:o — o′平面

《化工传递过程基础》课程教学大纲

《化工传递过程基础》课程教学大纲

《化工传递过程基础》教学大纲一、说明(一)本课程的目的、要求《化工传递过程基础》课程是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。

将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程("三传")的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。

本课程的教学目的是了解和掌握化工过程中三传现象的机理及其数学描述。

确定边界条件从而分别求出过程的解析、数值解或转化为准数关联式,培养学生分析和解决化学工程中传递问题的能力,为在工程上进一步改善各种传递过程和设备的设计、操作及控制过程打下良好的理论基础。

具体为包括动量传递、热量传递和质量传递过程、非牛顿流体中的传递现象、粘弹性及广义牛顿流体连续性方程和运动方程及其应用、边界层方程及其应用、湍流理论评价、能量方程、对流传热的解析、温度边界层、平壁和楔形强制层流传热的数学描述、湍流传热的解析计算、自然对流的传热过程等。

(二)内容选取和实施中注意的问题本课程总学时为32学时,理论课讲解时应注意对化工过程中"三传"的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题,课后注意安排一定量的习题。

(三)教学方法本课程采用多种教学方式与教学手段相结合,以讲授为主,电化教学为辅,课堂教学的重点是强调基本理论和分析方法,如何根据具体过程建立其物理模型和数学模型,培养学生运用知识的能力。

(四)考核方式本课程为考试课,平时考勤及作业20%+期末考试成绩80%,满分100分。

二、大纲内容第一章流体流动导论1.牛顿型流体的粘度2.非牛顿型流体的类型3.圆管中的层流流动说明与要求:(1) 掌握牛顿型流体和非牛顿型流体得基本概念。

第二章动量、热量与质量传递导论1.动量、热量与质量的通量表达式2.总衡算方程3.微分衡算方程说明与要求:(1) 掌握总质量衡算方程、总能量衡算方程与总动量衡算方程(2) 单组分系统、多组分系统的微分质量衡算方程、微分能量衡算方程与微分动量衡算方程。

天津大学_化工导论_课件_第一章_化工的地位与发展史

天津大学_化工导论_课件_第一章_化工的地位与发展史
与国防有关的化工产品
1.3 化学工业发展史
世界化学工业发展史
古代的化学加工 近代化学工业的兴起 现代化学工业
中国的化学工业发展史
我国的近代化学工业 新中国的化学工业
古代的化学加工
追溯到远古及古代: 没有工业,但化学加工方法已开 始影响到人们生活。如 制陶、酿造、染色、冶炼、制 漆、造纸以及医药、火药、肥皂等。
(4)我国统计的方法,把化学工业划分为下列各种工业: 合成氨及肥料工业、硫酸工业、制碱工业、无机物工业 (包括无机盐及单质),基本有机原料工业、染料及中间 体工业、产业用炸药工业、化学农药工业、医药药品工业、 合成树脂与塑料工业、合成纤维工业、合成橡胶工业、橡 胶制品工业、涂料及颜料工业、信息记录材料工业(包括 感光材料、磁记录材料)、化学试剂工业、军用化学品工 业,以及化学矿开采业和化工机械制造业等。
化工导论
第1章 化工的地位与发展史
1.1 化工概述 1.2 化工与国民经济的关系 1.3 化工发展史
化工的含义
化学工业、化学工程和化学工艺的总称 或其单一部分都可称为化工。
“化工”的范围不断扩充,并形成新的 名词,如: 环境化工、化工自动化、化工 过程模拟、化工技术经济、化工安全等。
化工可以分别指化学工业、化学工程和 化学工艺,也可指其综合。
1749年 英国建立用铅室法生产硫酸的工厂。 1971年 吕布兰获取 以食盐为原料制得纯碱: 副产
氧化氢制盐酸、氧气、 漂白粉等, 纯碱又可经苛化 生成烧碱。 18世纪后期,炼铁用焦碳量大大增加,使煤化工产生。 1763年 在英国产生了蜂窝式煤气炉,提供了大量焦 碳。 1792年 开始用煤生产民用煤气。
化工与国防
火炸药工业是广义化学加工工业的重要组成部 分,它的生产工艺及设备与一般化学工业,特 别是燃料工业、制药工业十分相近,具有相同 的操作和过程。

化工传递过程基础(第三版)

化工传递过程基础(第三版)
(2)固体的应变与应力的作用时间无关,只要不超过弹性 极限,作用力不变时,固体的变形也就不再变化,当外力去除 后,形变也就消失;对于流体,只要有应力作用,它将连续 变形(流动),当应力去除后,它也不再能恢复到原来的形状。
1.1流体的定义和特征
液体和气体虽都属于流体,但两者之间也有所不同。液体的 分子间距和分子的有效直径相当。当对液体加压时,只要分子 间距稍有缩小,分子间的排斥力就会增大,以抵抗外压力。所 以液体的分子间距很难缩小,即液体很难被压缩。以致一定质 量的液体具有一定的体积。液体的形状取决于容器的形状,并 且由于分子间吸引力的作用,液体有力求自己表面积收缩到最 小的特性。所以,当容器的容积大于液体的体积时,液体不能 充满容器,故在重力的作用下,液体总保持一个自由表面,通 常称为水平面。
1.4 与其他课程之间的联系 • 流体力学是继《高等数学》、《大学物理》《理论
力学》之后开设,同时又成为学习许多后续专业课 程计算流体力学和从事专业研究的必备基础。
• 高等数学要求复习掌握:微分(偏导数、导数)、 积分(曲面积分、定积分、曲线积分)、多元函数 的泰勒公式、势函数、微分方程。
• 理论力学要求复习掌握:质量守恒定律、能量守恒 定律、动量定律。
• 两个相邻流体层的动量传递
平衡过程和传递过程
2.热量传递过程: • 物体各部分存在温度差,热量由高温区向
低温区传递
平衡过程和传递过程
3. 质量传递:当体系中的物质存在化学势差 异时,则发生由高化学势区向低化学势区 域的传递
• 化学势的差异可以由浓度、温度、压力或 电场力所引起。常见的是浓度差引起质量 传递过程,即混合物种某个组分由高浓度 向低浓度区扩散
平衡过程和传递过程
• 传递过程:物理量向平衡转移 • 平衡状态:强度性质的物理量不存在梯度

传递过程基础总结

传递过程基础总结

cp k
Pr 同时存在动量、热量传递 。

DAB

DAB
k c p DAB
Sc 同时存在动量、质量传递 。 Le 同时存在热量、质量传递 。

DAB

若三个数均等于 1,则表示同时进行的两种传递过程可以类比。 3、传递过程、分子传递和涡流传递概念。 传递过程——质量、能量、动量等具有强度性质的物理量可由高强度向低强
化工传递过程基础总结
化研 1205 班
宁鹏
4、势函数的定义式、势函数存在的判据。 ①定义:对于不可压缩流体的平面二维流动,若存在速度势 ( x, y ) ,且满足
u x u y x y
,则 ( x, y ) 称为势函数。
②存在的判据:理想流体做无旋运动,或有势运动时,势函数存在判断旋度 u u x y 。 为 0 的方法:二维 y x
因为 y 0时,u x umax ,所以 umax
y 2 从而得出: u x umax 1 y 0
1 p 2 y0 2 x
第 4 页 共 28 页
化工传递过程基础总结
化研 1205 班
宁鹏
若在 x 方向取单位宽度的流通截面 A 2 y0 1 ,则通过该界面的体积流率 Vs 为: Vs u x dy 2 u x dy
1、什么是欧拉研究方法? 在流场内某一固定位置, 找一固定体积的流体微元,但该微元的质量可随时 间改变, 观察者分析该流体微元的流动状态,并由此获得整个流场流体运动的规 律。 特点:流体微元的位置和体积不随时间变化,而质量随时间变化。 2、什么是拉格朗日研究方法? 在流场内选择一固定质量的流体微元,观察者追随流体微元一起运动,并研 究其运动规律,据此获得整个流场内流体的运动规律。 特点:流体微元的质量不随时间变化,而而位置和体积随时间改变。 3、随体导数、全导数、偏导数的定义式和物理意义。 以流体密度ρ为例: 定义式: 偏导数: 全导数:

天津大学化工原理上册知识点

天津大学化工原理上册知识点

Q' D'; QD
H ' ( D')2 ; HD
N ' ( D ')3 ND
(3)离心泵的串、并联
①泵的并联 两台离心泵并联且各自的吸入管路相同,在一定的压头下的总流量等于两单
台泵流量相加,管路特性曲线越平坦,泵的并联工作愈有利。
H H1 H2
Q Q1 Q2
Q1 和 H1 满足泵 1 的特性曲线方程, Q2 和 H2 满足泵 2 的特性曲线方程。
膜状冷凝和滴状冷凝: 冷凝传热中,不凝性气体的除去有利于提高对流传热系数。 2、液体沸腾
关小出口阀门,阻力变大,管路特性曲线变陡,工作点由 M→M1,Q 减小, H 增大。开大出口阀门,阻力变小,管路特性曲线变平坦,工作点由 M→M2,Q 增大,H 减小。 2、泵的特性曲线调节流量 (1)改变转速:若离心泵的转速变化不大(≤20%),则有比例定律:
Q ' n ' ; H ' (n ')2 ; N ' (n ')3
的饱和蒸汽压的某一最小允许值,以防气蚀现象的发生。
NPSH p1 u12 pv g 2g g
泵的允许安装高度
Hg
p0 pv g
NPSH
H f 01
NPSH 随流量的增大而增大,在确定安装高度时应取最大流量下的 NPSH 。 五、离心泵的工作点和流量调节
泵的特性曲线与管路特性曲线的交点,即为离心泵的工作点。 1、管路特性曲线调节流量
gz u2 p E 称为流体的机械能 2
单位重量流体的能量衡算方程:
z u 2 p He Hf 2g g
z :位压头(位头); u2 :动压头(速度头) ; p :静压头(压力头)

天津大学化工传递过程基础第一章

天津大学化工传递过程基础第一章
1. 分子动量通量 对牛顿粘性定律作量纲分析,设密度为常数:
μ d ( ρu ) d ( ρu ) τ== -ν ρ dy dy
一、分子传递的通用表达式
量纲分析

N kg m/s kg m/s 动量 [ 2][ ][ 2 ] 2 m m m s 面积 × 时间
2
3

kg m/s 动量 u [kg/m m/s] [ 3 ] m 体积
二、系统与控制体
系统 —包含确定不变物质(流体质点)的集合, 系统以外的一切称为环境。 u 特点:系统与环境之间无质量交 u 换,但在界面上有力的作用及能 量的交换。系统的边界随着环境 流体一起运动,因此其体积、位 置和形状是随时间变化的。 系统
在传递过程中,系统指由确定流体质点所组成 的流体元。
对于任一过程或物理现象,进行动量、热量与质量 传递研究,都离不开自然界普遍适用的守恒定律: 动量守恒定律—牛顿第二定律、热量守恒定律— 热力学第一定律以及质量守恒定律。 对所选过程或物理现象,划定一个确定的衡算范 围,将动量、热量与质量守恒定律应用于该范围, 进行物理量的衡算。
一、守恒定律与衡算方法
对流体流动体系的衡算 Q
w2
w1 W
(a)
(b )
(c)
一、守恒定律与衡算方法
(1)宏观水平上描述
以图所示的虚线作衡算范围进行总衡算:
质量衡算 能量衡算 输入的质量流率-输出的质量流率 =累积的质量流率 输入的热量速率-流出的热量速率+ 加入的热速率-系统对外作功速率= 累积的热速率
一、守恒定律与衡算方法
一、分子传递的通用表达式
量纲分析
q A
[
J m s
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、分子传递的通用表达式
量纲分析
q A
[
J m s
2
]
热量 面积× 时间
ρ c t p
kg J J 热量 [ 3 ].[ ].[K] [ 3 ] m kg K m 体积
3 2 J m kg.K m .[ ].[ ][ ] J s m.s.K kg
kg m m v [ m s kg ] [ s ]
3 2
一、分子传递的通用表达式
动量传递机理: 层流—分子动量传递 两层流体速度不同,具有不同的动量浓度。在 动量梯度的作用下,动量将自发地由高动量区向 低动量区转移。 微观上,速度较高的流层中的分子以随机运动 方式进入速度较慢的流层中;低速流层中亦有等 量随机运动的分子进入高速流层,实现动量交换。
体积固定
三、拉格朗日观点和欧拉观点
拉格朗日观点
着眼于流场中的运动着的流体质点(系统), 跟踪观察每一个流体质点的运动轨迹及其速度、 压力等量随时间的变化。然后综合所有流体质 点的运动,得到整个流场的运动规律。
质点(质量固定)
三、拉格朗日观点和欧拉观点
原则上讲,两种方法所得结果一致,都可采用。
四、几个常用算子
dux dy


-单位面积上的剪切力称为剪应力; -比例系数,称为流体的粘度;
du x -速度梯度。 dy
二、扩散传递与对流传递
傅立叶定律
描述分子导热的基本定律 q dt = -k A dy
t1> t2 > t3
热流方向
q/A -导热通量;
dt -温度梯度。 dy
k
-介质的导热系数;

一、分子传递的通用表达式
量纲分析结果
q/A -热量通量
d(ρc p t) dy
-热量浓度梯度
-热量扩散系数
热量通量=-热量扩散系数×热量浓度梯度
一、分子传递的通用表达式
3. 分子质量通量
费克定律的量纲分析:
j A = -DAB
dρA dy
一、分子传递的通用表达式
量纲分析结果
jA -质量通量
二、系统与控制体
系统 —包含确定不变物质(流体质点)的集合, 系统以外的一切称为环境。 u 特点:系统与环境之间无质量交 u 换,但在界面上有力的作用及能 量的交换。系统的边界随着环境 流体一起运动,因此其体积、位 置和形状是随时间变化的。 系统
在传递过程中,系统指由确定流体质点所组成 的流体元。
一、守恒定律与衡算方法
(3)分子水平上描述 根据分子结构、分子间的相互作用,作分子水平 上的考察,对于动量、热量与质量传递的理解是有 帮助的。如各种传递系数(黏度、扩散性、导热性 等)可以应用流体的分子运动理论求解。
一、守恒定律与衡算方法
总衡算的方法在其他课程已学过。本课程主要 讨论微分衡算的方法,通过建立描述各种过程的
d A j M dy
e A
涡流传递通量=-涡流扩散系数×涡流浓度梯度 涡流传递>>分子传递
第一章 传递过程概论
1.1 传递过程的分类 1.2 动量、热量与质量传递的类似性 1.3 传递过程的研究方法
一、守恒定律与衡算方法 二、系统与控制体
三、拉格朗日观点和欧拉观点 四、几个常用算子
一、守恒定律与衡算方法
点乘所得结果称为散度。 例:求矢量场
A = 4 xi - 2xyj + z k
2
A= ?
四、几个常用算子
③ 叉积所得结果称为旋度
i j k u / x / y / z ux uy uz
速度旋度
u y u x u x u z u z u y =( )i ( )j ( )k y z z x x y
ux t 动量的对流传递速率: ρux ux A 热量的对流传递速率: ρcptuxA A
kg m s / s
1
J/s
第一章 传递过程概论
1.1 传递过程的分类 1.2 动量、热量与质量传递的类似性
一、分子传递的通用表达式 二、分子传递的类似性
三、涡流传递的类似性
一、分子传递的通用表达式
一、平衡过程与速率过程
传递过程的速率可以用通式表示如下:
推动力 速率 = 阻力
本课程主要讨论动量、热量与质量传递过程的速 率。
二、扩散传递与对流传递
分子传递—由分子的随机热运动引起 扩散传递 传 递 涡流传递—由微团的脉动引起(湍流) 对流传递—由流体的宏观运动引起
二、扩散传递与对流传递
1.分子传递的基本定律 牛顿粘性定律 描述分子动量传递的基本定律
(2)微观水平上描述
微观衡算(微分衡算)—在研究对象内部选择 一个有代表性的微分点,将守恒定律应用于该点。 通过衡算,得出一组描述动量、热量与质量变化的 微分方程,成为变化方程(Equation of change)。 然后通过积分,获得系统内部的速度、温度及浓度 的变化规律。这些变化规律对于传递速率的求解必 不可少。
第一章 传递过程概论
传递现象普遍存在于自然界和工程领域, 三种传递过程有许多共同规律。 本章介绍与课程有关的基本概念。
第一章 传递过程概论
1.1 传递过程的分类
一、平衡过程与速率过程 二、扩散传递与对流传递
一、平衡过程与速率过程
大量的物理、化学现象中,同时存在着正反两个 方向的变化,如: 固体的溶解和析出,升华与凝华、可逆化学反应 当过程变化达到极限,就构成平衡状态。如化学 平衡、相平衡等。此时,正反两个方向变化的速率 相等,净速率为零。 不平衡时,两个方向上的速率不等,就会发生某 种物理量的转移,使物系趋于平衡。
所谓算子是一种数学符号缩写的算符。本课程中 常用的算子有:
(1)哈密尔顿算子▽;
(2)拉普拉斯算子Δ;
D (3)随体导数算子 D
四、几个常用算子 1、▽ 算子 (Hamilton Operators)
哈密尔顿算子在直角坐标下的展开式(下同):
i j k x y z
哈密尔顿算子是一个矢性、微分算子,它具有 矢量和微分双重性质。 在本课程中,有关哈密尔顿算子的运算有下面 三种形式:
对流体流动体系的衡算 Q
w2
w1 W
(a)
(b )
(c)
一、守恒定律与衡算方法
(1)宏观水平上描述
以图所示的虚线作衡算范围进行总衡算:
质量衡算 能量衡算 输入的质量流率-输出的质量流率 =累积的质量流率 输入的热量速率-流出的热量速率+ 加入的热速率-系统对外作功速率= 累积的热速率
一、守恒定律与衡算方法
动量衡算 输入的动量速率-流出的动量速率+ 作用在体系上的合外力=累积的动 量速率
一、守恒定律与衡算方法
总衡算的局限性:
总衡算只能考察系统的流入、流出以及内部的 平均变化情况,系统内部物理量如温度、压力、 密度、速度等的变化规律无法得知。
总衡算的方法在化工设计计算中常用—物料衡 算与热量衡算等。
一、守恒定律与衡算方法
二、扩散传递与对流传递
涡流动量、热量与质量传递可表示为: d ( ux ) r dy d ( c pt ) q e ( ) H
A dy
d A j M dy
e A
涡流传递>>分子传递
二、扩散传递与对流传递
3.对流传递的概念
由于流体作宏观运动引起的动量、热量与质量 的迁移过程,该过程仅发生在流体运动时:
三、拉格朗日观点和欧拉观点
根据研究所选定的衡算范围是控制体还是系统, 有两种相应的研究方法: 欧拉观点(Euler viewpoint) 拉格朗日观点(Lagrange viewpoint)
三、拉格朗日观点和欧拉观点
欧拉观点 着眼于流场中的空间点,以流场中的固定空 间点(控制体)为考察对象,研究流体质点通 过空间固定点时的运动参数随时间的变化规律。 然后综合所有空间点的运动参数随时间的变化, 得到整个流场的运动规律。
t1 t2 t3
二、扩散传递与对流传递
费克定律
描述 2 组元混合物体系中A存在浓度梯度时的 分子扩散: dρ
j A = -DAB
A
dy
jA -组分A的扩散质量通量; DAB -组分A在组分B中的扩散系数;
dρA /dy -组分A的质量浓度梯度。
二、扩散传递与对流传递
2.涡流传递 以上分子动量、热量与质量传递的类似性,仅发 生在作层流流动的流体内部(动量传递),或固体 中(热量或质量传递)。 当流体作湍流运动时,除分子传递之外,还有涡 流传递—由于流体质点脉动引起的传递。
物理过程的速率:
1. 动量传递过程—物体的质量与速度的乘积被定 义为动量,速度可认为是单位质量物体的动量。因此, 同一物体,速率不同,其动量也不同。 在流体中,若两个相邻的流体层的速度不同,则将 发生由高速层向低速层的动量传递。 u2
动量传递方向
u1
一、平衡过程与速率过程
2. 热量传递过程—当物系中各部分之间的温度存 在差异时,则发生由高温区向低温区的热量传递。
dρ A dy -质量浓度梯度
DAB
-质量扩散系数
质量通量=-质量扩散系数×质量浓度梯度
二、分子传递的类似性
动量通量=-动量扩散系数×动量浓度梯度 热量通量=-热量扩散系数×热量浓度梯度 质量通量=-质量扩散系数×质量浓度梯度
通量=-扩散系数×浓度梯度
, , DAB 的量纲相同,扩散系数m2/s
对于任一过程或物理现象,进行动量、热量与质量 传递研究,都离不开自然界普遍适用的守恒定律: 动量守恒定律—牛顿第二定律、热量守恒定律— 热力学第一定律以及质量守恒定律。 对所选过程或物理现象,划定一个确定的衡算范 围,将动量、热量与质量守恒定律应用于该范围, 进行物理量的衡算。
相关文档
最新文档