因式分解练习题(完全平方公式)[1]
完全平方公式因式分解
灵活应用: 灵活应用:
(1)2006 − 6
2 2 2 2
2
(2)13 − 2 ×13 × 3 + 9 (3)11 + 39 + 66 ×13
小结
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 正确选取a,b. 注意 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中 (3)在因式分解中,通常先观察 在因式分解中, 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
注意: 注意
(1)正确选取 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清
分解因式
(1)3am + 3an + 6amn
2 2
(2) − a
2
− 4b + 4ab
2
2
(3) -8a(2a+b)-b
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 注意 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中,通常先观察 在因式分解中, 在因式分解中 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
2 就得到
a + 2ab + b = (a + b) 2 2 2 a − 2ab + b = (a − b )
a + 2ab+ b = (a+ b) 2 2 2 a − 2ab+ b = (a − b )
因式分解练习题及答案
因式分解练习题及答案在初中数学学习中,因式分解是一个重要的概念和技巧。
因式分解是将一个代数式写成若干个因式的乘积的过程,对于解决代数方程、简化复杂的代数式以及寻找多项式的零点都有重要的作用。
为了帮助大家更好地掌握因式分解的方法和技巧,以下是一些因式分解的练习题及答案。
练习题1:因式分解基础1. 将代数式完全分解:a) 4x^2 - 9b) x^2 - 6x + 9c) 2x^3 - 8x^2 + 8x - 322. 将代数式因式分解:a) x^2 - 5x + 6b) 9x^2 - 16c) x^3 + 83. 判断以下代数式是否可以进一步因式分解:a) 3x^2 - 3x + 1b) 4x^3 + 2x^2 + 4x + 2c) x^4 - 81练习题2:因式分解中的公式1. 利用差平方公式,将以下代数式因式分解:a) x^2 - 16b) 4x^2 - 9c) 16x^2 - 4y^22. 利用完全平方公式,将以下代数式因式分解:a) x^2 + 2x + 1b) x^2 - 10x + 25c) 4x^2 + 12x + 93. 利用立方差公式,将以下代数式因式分解:a) 27 - 8x^3b) 8x^3 - 27答案:练习题1:1. a) (2x + 3)(2x - 3)b) (x - 3)^2c) 2(x - 4)(x^2 + x + 4)2. a) (x - 2)(x - 3)b) (3x - 4)(3x + 4)c) (x + 2)(x^2 - 2x + 4)3. a) 不可以进一步因式分解b) 不可以进一步因式分解c) (x^2 + 9)(x - 3)(x + 3)练习题2:1. a) (x - 4)(x + 4)b) (2x - 3)(2x + 3)c) 4(x + y)(4x - y)2. a) (x + 1)^2b) (x - 5)^2c) (2x + 3)^23. a) (3 - 2x)(9 + 4x + 2x^2)b) (2x - 3)^3通过这些练习题和答案,你可以更好地掌握因式分解的方法和技巧。
用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)
4.3用乘法公式分解因式第2课时用完全平方公式分解因式基础过关全练知识点1完全平方式1.若关于x的多项式x2-4x+a(其中a是常数)是完全平方式,则a的值是()A.2B.-2C.4D.-42.【新独家原创】若关于x的多项式x2+mx+n是完全平方式,则m,n 的值可能是()A.-1,14B.12,14C.14,-14D.-14,143.下列各式中,与2x2-6x的和是完全平方式的是()A.x+9B.3C.9D.9-x2知识点2用完全平方公式分解因式4.下列可以用完全平方公式因式分解的是()A.4a2-4a-1B.4a2+2a+1C.1-4a+4a2D.2a2+4a+15.(2022浙江杭州余杭期末)下列因式分解正确的是()A.x2+y2=(x+y)2B.x2+2xy+y2=(x-y)2C.x2+x=x(x-1)D.x2-y2=(x+y)(x-y)6.(2022贵州黔东南中考)分解因式:2 022x2-4 044x+2 022=.7.【一题多变】(2022黑龙江绥化中考)分解因式: (m+n)2-6(m+n)+9=.[变式] 分解因式:19-13(a+b)+14(a+b)2= . 8.【教材变式·P108T5变式】因式分解:(1)m 2-4mn+4n 2; (2)-a+2a 2-a 3;(3)4+12(a-b)+9(a-b)2; (4)(x 2+4)2-16x 2.9.(2021浙江杭州余杭模拟)给出三个多项式:①a 2+3ab-2b 2;②b 2-3ab;③ab+6b 2.请任意选择两个多项式进行加法运算,并把结果分解因式.知识点3 简便运算10.用简便方法计算: 1012+198×101+992.能力提升全练11.下列因式分解正确的是( ) A.ab+ac+a=a(b+c)B.a 2-4b 2=(a+4b)(a-4b)C.9a 2+6a+1=3a(3a+2)D.a 2-4ab+4b 2=(a-2b)212.(2022浙江绍兴柯桥期中,7,)若x 2+2(k+1)x+4是完全平方式,则k 的值为( ) A.1 B.-3 C.-1或3 D.1或-313.把(a+b)2-4(a 2-b 2)+4(a-b)2因式分解为( )A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)214.若ab=2,b-a=3,则-a 3b+2a 2b 2-ab 3的值为 .15.因式分解:a 2-b 2-x 2+y 2-2ay+2bx= .16.【新独家原创】下列单项式:①3x;②-5x;③-154;④-1516x 2;⑤-3x 中,加上x 2-x+4后成为一个完全平方式的有 .(填序号)17.【作差法比大小】已知P=2x2+4y+13,Q=x2-y2+6x-1,试比较P,Q的大小.18.【学科素养·运算能力】(2022浙江杭州外国语学校期中,22,)配方法是一种重要的解决问题的数学方法,它不仅可以将一个看似不能分解的多项式因式分解,还能解决一些与非负数有关的问题或代数式最大值、最小值的问题.请用配方法解决以下问题.(1)试说明:无论x,y取何值,多项式x2+y2-4x+2y+6的值总为正数;(2)分解因式:a4+a2+1;(3)已知实数a,b满足-a2+5a+b-3=0,求a+b的最小值.素养探究全练19.【运算能力】我们知道(x+a)(x+b)=x2+(a+b)x+ab,若将该式从右到左使用,就可得到用“十字相乘法”因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)分解因式:x2+6x+8=(x+)(x+);(2)请用上述方法解方程:x2-3x-4=0.答案全解全析基础过关全练1.C ∵关于x 的多项式x 2-4x+a(其中a 是常数)是完全平方式,∴a=4,故选C.2.A 当m=-1,n=14时,x 2+mx+n=x 2-x+14=(x −12)2,故选A. 3.D (2x 2-6x)+(9-x 2)=2x 2-6x+9-x 2=x 2-6x+9.故选D.4.C 1-4a+4a 2=(1-2a)2,故选C.5.D x 2+y 2不能分解,故A 错误;x 2+2xy+y 2=(x+y)2,故B 错误; x 2+x=x(x+1),故C 错误;x 2-y 2=(x+y)(x-y),故D 正确.故选D.6.答案 2 022(x-1)2解析 原式=2 022(x 2-2x+1)=2 022(x-1)2.7.答案 (m+n-3)2解析 原式=(m+n)2-2·(m+n)·3+32=(m+n-3)2.[变式] 答案 (13−12a −12b)2解析 原式=[13−12(a +b)]2=(13−12a −12b)2. 8.解析 (1)原式=m 2-2·m·2n+(2n)2=(m-2n)2.(2)原式=-a(a 2-2a+1)=-a(a 2-2·a·1+12)=-a(a-1)2.(3)原式=22+2·2·3(a-b)+[3(a-b)]2=[2+3(a-b)]2=(2+3a-3b)2.(4)原式=(x 2+4)2-(4x)2=(x 2+4+4x)(x 2+4-4x)=(x 2+4x+4)(x 2-4x+4)=(x+2)2(x-2)2.9.解析答案不唯一,写出以下任意一个即可.①+②得a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).①+③得a2+3ab-2b2+ab+6b2=a2+4ab+4b2=(a+2b)2.②+③得b2-3ab+ab+6b2=7b2-2ab=b(7b-2a).10.解析1012+198×101+992=1012+2×99×101+992=(101+99)2=2002=40 000.能力提升全练11.D ab+ac+a=a(b+c+1),故A错误;a2-4b2=(a+2b)(a-2b),故B错误; 9a2+6a+1=(3a+1)2,故C错误;a2-4ab+4b2=(a-2b)2,故D正确.故选D.12.D∵x2±2·x·2+22=(x±2)2,∴k+1=±2,∴k=1或-3,故选D.13.C(a+b)2-4(a2-b2)+4(a-b)2=(a+b)2-2×2(a+b)(a-b)+[2(a-b)]2=(a+b-2a+2b)2=(3b-a)2.14.答案-18解析当ab=2,b-a=3时,-a3b+2a2b2-ab3=-ab(a2-2ab+b2)=-ab(b-a)2= -2×32=-18.15.答案(a-y+b-x)(a-y-b+x)解析a2-b2-x2+y2-2ay+2bx=(a2-2ay+y2)-(b2-2bx+x2)=(a-y)2-(b-x)2=(a-y+b-x)(a-y-b+x).16.答案③④⑤解析 ①3x+x 2-x+4=x 2+2x+4,不是完全平方式;②-5x+x 2-x+4=x 2-6x+4,不是完全平方式;③-154+x 2-x+4=x 2-x+14=(x −12)2,是完全平方式; ④-1516x 2+x 2-x+4=116x 2-x+4=(14x −2)2,是完全平方式; ⑤-3x+x 2-x+4=x 2-4x+4=(x-2)2,是完全平方式.综上,满足条件的有③④⑤.故答案为③④⑤.17.解析 ∵P=2x 2+4y+13,Q=x 2-y 2+6x-1,∴P-Q=(2x 2+4y+13)-(x 2-y 2+6x-1)=2x 2+4y+13-x 2+y 2-6x+1=x 2-6x+9+y 2+4y+4+1=(x-3)2+(y+2)2+1>0,∴P>Q.18.解析 (1)x 2+y 2-4x+2y+6=x 2-4x+4+y 2+2y+1+1=(x-2)2+(y+1)2+1,∵(x-2)2≥0,(y+1)2≥0,∴(x-2)2+(y+1)2+1>0,∴无论x,y 取何值,多项式x 2+y 2-4x+2y+6的值总为正数.(2)a 4+a 2+1=a 4+2a 2+1-a 2=(a 2+1)2-a 2=(a 2+a+1)(a 2-a+1).(3)∵-a 2+5a+b-3=0,∴b=a 2-5a+3,∴a+b=a 2-4a+3=(a-2)2-1,∴当a=2时,a+b 有最小值,为-1,∴a+b的最小值为-1.素养探究全练19.解析(1)2;4或4;2.(2)因为x2-3x-4=x2+(1-4)x+1×(-4)=(x-4)·(x+1)=0,所以x-4=0或x+1=0, 所以x=4或x=-1.。
14.3.2公式法_因式分解(完全平方公式)
a 2ab b a 2ab b
2 2
2
2
完全平方式的特点: 1、必须是三项式 2、有两个“项”的平方 3、有这两“项”的2倍或-2倍
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 2 2 2A 2 AB B 2 2 3甲 2 甲乙 乙 2 2 4 2
a 2ab b a b
2 2
2
a 2ab b a b
2 2
2
这两个多项式有什么特征?
2 2 2 2 a +2ab+b 与a -2ab+b
这两个多项式是两个数的平方和加上(或 减去)这两个数的积的2倍,这恰是两个 数和或差的平方。
我们把 2 2 和 2 2 a +2ab+b a -2ab+b 这样的式子叫做完全平方式。
1. 因式分解:9x2-y2-4y-4=_____. 2 2 【解析】9x -y -4y-4
= 9x2-(y2+4y+4) = 答案: 2. 分解因式:2a2–4a+2 2 【解析】 2a – 4a+2 = 2(a 2 – 2a +1) = 2(a – 1) 2
需要我们掌握: 1:如何用符号表示完全平方公式?
(1) (2) 1 6 a 4 + 2 4 a 2 b 2 + 9 b 4 2 2 解:(1)x - 12xy+36y 2 2 = x -2· x· 6y+ ( 6y ) = ( x - 6y ) 2 ( 2 ) 16a 4 +24a 2 b 2 +9b 4
2. 因式分解.
2 2 x - 12xy+36y
因式分解中的完全平方公式
还记得前面学的完全平方公式吗?
a b2 a2 2ab b2 a b2 a2 2ab b2 2 a b a2 2ab b2
计算 2 2 x 8 x 16 (1) x 4 __________ 2 2 (2) 7 b __________ b 14b 49 1998 + 1 (3) 9992 +
=(3x-3y -2 ) 2
对应练习
a b
2
4 a b 4
=(a+b)2+2× (a+b) × 2+22
=(a+b+2)2
八年级 数学
第十五50x2+1 =(25x2)2 -2×25x2+12
=(25x2 -1)2
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
反过来得到:
整式乘法
a2+2ab+b2 =(a+b)2 a2-2ab+b2 = (a-b)2
因式分解
两个数的平方和,加上 (或减去) 这两个数 的积的两倍,等于这两数和 (或者差) 的平方.
八年级 数学
第十五章 因式分解
探索 & 思考 ☞
练习2:因式分解
2
9m 6mn n
2
2
解:原式
(9m 6mn n )
2
(3m n)
2
例3
八年级 数学
把下式分解因式:
2 2
第十五章 因式分解 3、若多项式中有公
3ax 3ay 6axy 2 2 解:原式 3a( x y 2 xy)
因式分解练习题加答案_200道[1]
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
人教版2022-2023年初二上半期数学14.3.2完全平方公式法因式分解-全国
人教版2022-2023年初二上半期数学14.3.2完全平方公式法因式分解-全国选择题下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+1【答案】D【解析】直接利用完全平方公式分解因式得出答案.A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.选择题把多项式(a+b)(a+4b)﹣9ab分解因式正确的是( )A.(a﹣2b)2B.(a+2b)2C.a(a﹣3b)2D.ab(a+3)(a﹣3)【答案】A【解析】先根据多项式乘多项式的方法化简,再根据完全平方公式因式分解即可.原式=a2+5ab+4b2﹣9ab=a2﹣4ab+4b2=(a﹣2b)2.故选:A.选择题若多项式(略)能因式分解为(略),则(略)的值是().A.(略)B.(略)C.4D.(略)【答案】A【解析】将(略)展开得(略),由此得到(略),a=2m,求得(略)即可得到a的值.∵(略)=(略)=(略),∴(略),a=2m,∴(略),∴a=(略),故选:A.选择题计算:1252﹣50×125+252=()A. 100B. 150C. 10000D. 22500【答案】C【解析】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.选择题若多项式x2﹣3(m﹣2)x+36能用完全平方公式分解因式,则m 的值为()A.6或﹣2B.﹣2C.6D.﹣6或2【答案】A【解析】根据完全平方公式即可求解.∵多项式x2﹣3(m﹣2)+36能用完全平方公式分解因式,∴﹣3(m﹣2)=±12.∴m=6或﹣2,故选:A.选择题若a4+b4+a2b2=5,ab=2,则a2+b2的值是()A.﹣2B.3C.±3D.2【答案】B【解析】利用完全平方公式变形,再整体代入计算即可.解:∵(a2+b2)2=a4+b4+2a2b2,a4+b4+a2b2=5,∴(a2+b2)2=5+a2b2,∵ab=2,∴(a2+b2)2=5+22=9,∴a2+b2=3(舍负).故选:B.填空题因式分解(略)的结果是_____.【答案】(略)【解析】直接去括号再合并同类项,再利用完全平方公式分解因式即可.解:(a+b)2﹣4ab,=a2+b2+2ab﹣4ab,=a2+b2﹣2ab,=(a﹣b)2.故答案为:(a﹣b)2.填空题如果代数式x2+mx+9=(ax+b)2,那么m的值为______.【答案】±6【解析】根据完全平方公式即可求解.已知等式整理得:x2+mx+9= x2+mx+32=(ax+b)2,可得m=±2×3×1,则m=±6.故答案为:±6.填空题若代数式x2﹣8ax+1可化为(x﹣b)2,则a+b=__.【答案】±(略)【解析】利用完全平方公式求出a与b的值,即可确定出所求.由题意得:x2﹣8ax+1=(x﹣b)2=x2﹣2bx+b2,可得﹣8a=﹣2b,b2=1,解得:a(略),b=1;a(略),b=﹣1,则a+b=±(略),故答案为:±(略).解答题已知下列单项式:①4m2,②9b2a,③6a2b,④4n2,⑤-4n2,⑥-12ab,⑦-8mn,⑧a3.请在以上单项式中选取三个组成一个能够先用提公因式法,再用公式法因式分解的多项式并将这个多项式分解因式.【答案】见解析【解析】直接将其中三个组合进而利用提取公因式法以及公式法分解因式得出答案.4m2+4n2-8mn=4(m2+n2-2mn)=4(m-n)2解答题某同学碰到这么一道题“分解因式x2+2x﹣3”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上1,再减去1,这样原式化为(x2+2x+1)﹣4,…”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.请你仔细领会该同学的做法,将a2﹣2ab﹣3b2分解因式.【答案】(a+b)(a﹣3b)【解析】根据老师所说的话,可知需要利用平方差公式,故仿照x2+2x ﹣3的分解方法,应该凑个完全平方,然后再整体利用平方差公式分解,最后将括号内的同类项合并即可.解:a2﹣2ab﹣3b2=a2﹣2ab+b2﹣4b2=(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).解答题请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【答案】(1)C;(2)(x﹣2)4;(3)(x﹣1)4【解析】(1)根据完全平方公式即可求解;(2)根据完全平方公式即可求解;(3)设x2﹣2x=y,根据因式分解的方法即可求解.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.。
因式分解完全平方公式
2 2
判别下列各式是不是 完全平方式
请补上一项,使下列多项 式成为完全平方式 2 2 2xy y 1 x _______ 2 2 2 4a 9b _______ 12ab 2 2 4 xy 3 x ______ 4 y
1 2 ab b 4 a _______ 4 4 2 2 4 5 x 2 x y ______ y
学习目标
• 1.会用完全平方公式进行因式分解 • 2.提高综合运用提取公因式法与公 式法能力。
a 2ab b a b 2 2 a 2ab b a b
2 2
这两个多项式有什么特征?
你能将下列多项式分解因式吗?
2
2
a 2ab b a 2ab b
2 2
2
2
完全平方式的特点
:
1、必须是三项式 2、有两个“项”的平方 3、有这两“项”的2倍或-2倍
2 2 首 2首尾 尾
1x 2 xy y 是 2 2 是 2A 2 AB B 2 2是 3甲 2 甲乙 乙 2 2 是 4 2
2.(常德·中考)分解因式: x 2 6 x 9 ___________ . 【解析】原式是一个完全平方式,所以x2+6x+9= x 3 .
2
答案: x 32
完全平方式具有:
小结:
1、是一个二次三项式 2、有两个“项”平方,而且有这 两“项”的积的两倍或负两倍 3、我们可以利用完全平方公 式来进行因式分解
请同学们再自己写出 一个完全平方式,然后 分解因式
2 2 1 a b 2ab 2
下列各式能不能用完全平方公式分解因式.
2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)
第2课时 完全平方公式一.填空1.〔 〕2+=+22520y xy 〔 〕2. 2.=+⨯-227987981600800〔 --2)= .3.3=+y x ,那么222121y xy x ++= .4.0106222=++-+y x y x那么=+y x .5.假设4)3(2+-+x m x 是完全平方式,那么数m 的值是 .6.158-能被20至30之间的两个整数整除,那么这两个整数是 .二.把以下各式分解因式:7.32231212x x y xy -+8.442444)(y x y x -+9.22248)4(3ax x a -+10.2222)(4)(12)(9b a b a b a ++-+-〔11〕.2222224)(b a c b a --+〔12〕.22222)(624n m n m +-〔13〕.115105-++-m m m x x x三.利用因式分解进行计算:〔14〕.419.36.7825.03.2541⨯-⨯+⨯〔15〕.2298196202202+⨯+〔16〕.225.15315.1845.184+⨯+四.〔17〕.将多项式1362+x 加上一个单项式,使它成为一个整式的平方.五.〔18〕.212=-b a ,2=ab 求:42332444b a b a b a -+-的值.〔19〕.n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示:〔1〕a 与b 的平方和;〔2〕a 与b 的积;〔3〕ba ab +.【课外拓展】〔20〕.△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++222求证:此三角形为等边三角形.〔21〕.c b a ,,是△ABC 三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.(22).求证:不管为x,y 何值,整式5422+-xy y x 总为正值.一、填空1.2,25x x y +2.800,798,43.924.-2 5.7或-16. 26、24 二.把以下各式分解因式:7.【解】32231212x x y xy -+=232x(x y )-8.【解】442444)(y x y x -+=42244224(2)(2)x x y y x x y y ++-+=22222()()()x y x y x y ++-9.【解】22248)4(3ax x a -+=2223[(4)16]a x x +-=2223[(4)16]a x x +-=223(2)(2)a x x +-10.【解】2222)(4)(12)(9b a b a b a ++-+-=2[3()2()]a b a b -++=2(5)a b -〔11〕.【解】2222224)(b a c b a --+=22222222(2)(2)a b c ab a b c ab +-++--=222222[()][()]a b c a b c +---=()()()()a b c a b c a b c a b c +++--+-- 〔12〕.【解】22222)(624n m n m +-=222226[()4]m n m n -+-=226()()m n m n -+-〔13〕.【解】115105-++-m m m x x x=125(21)m x x x --+=125(1)m x x --三.利用因式分解进行计算:〔14〕.【解】419.36.7825.03.2541⨯-⨯+⨯ =1(25.378.6 3.9)4+-=1(25.378.6 3.9)4+-=25 〔15〕.【解】2298196202202+⨯+=2(20298)+=90000〔16〕.【解】225.15315.1845.184+⨯+=2(184.515.5)+=40000四.〔17〕.【解】12x ±五.〔18〕.【解】42332444b a b a b a -+-=2222(44)a b a ab b --+=222(2)a b a b --而212=-b a ,2=ab .所以42332444b a b a b a -+-=222(2)a b a b -- =-144⨯=-1. (19).【解】〔1〕因为n b a m b a =-=+22)(,)(,所以22222,2a ab b m a ab b n ++=-+=.即22.a b m n +=+所以a 与b 的平方和为m n +.〔2〕由〔1〕可知:1()4ab m n =- 所以a 与b 的积为1()4m n - 〔3〕由〔1〕〔2〕可知,22.a b m n +=+1()4ab m n =- 所以b a a b +=22a b ab +=1()4m n m n +- 44m n m n+=- 【课外拓展】〔20〕.证明:因为ca bc ab c b a ++=++222,所以222222222a b c ab bc ca ++=++. 即222()()()0a b b c c a -+-+-=.所以0,0,0a b b c c a -=-=-=所以a=b=c.此三角形为等边三角形.〔21〕.【解】△ABC 是等边三角形.理由是:∵0)(22222=+-++c a b c b a∴2222220a b c ba bc ++--=∴22()()0a b b c -+-=所以0,0,a b b c -=-=所以a=b=c.∴△ABC 是等边三角形.〔22〕.证明:5422+-xy y x =2(2)110xy -+≥>.即不管为x,y 何值,整式5422+-xy y x 总为正值.《一元二次方程的应用》 综合练习【知能点分类训练】知能点1 面积问题1.有一个三角形的面积为25cm 2,其中一边比这一边上的高的3倍多5cm ,那么这一边的长是________,高是_________.2.要用一条铁丝围成一个面积为120cm 2的长方形,并使长比宽多2cm ,那么长方形的长是______cm .3.有一间长为18m ,宽为7.5m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的12,四周未铺地毯处的宽度相同,那么所留宽度为_______m . 4.在一块长16m ,宽12m 的矩形空地上,要建造四个花园,•中间用互相垂直且宽度相同的两条甬路隔开,并使花园所占面积为空地面积的,求甬路宽.知能点2 增长〔降低〕率问题5.某工厂用两年时间把产量提高了44%,求每年的平均增长率.•设每年的平均增长率为x ,列方程为_______,增长率为_________.6.某粮食大户2005年产粮30万kg ,方案在2007年产粮到达36.3万kg ,假设每年粮食增长的百分数相同,求平均每年增长的百分数.7.某厂一月分的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x ,那么可列方程为〔 〕.A .95=15〔1+x 〕2B .15〔1+x 〕3=95C .15〔1+x 〕+15〔1+x 〕2=95D .15+15〔1+x 〕+15〔1+x 〕2=958.某种商品经过两次降价,由每件100元降低了19元,•那么平均每次降价的百分率为〔 〕.A .9%B .9.5%C .8.5%D .10%9.某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.假设2007年到期后可取人民币〔本息和〕1069元,•问银行一年定期存款的年利率是多少.〔假定不交利息税〕【综合应用提高】10.用24cm 长的铁丝:〔1〕能不能折成一个面积为48cm 2的矩形?〔2〕•能不能折成面积是32cm 2的矩形?假设能,求出边长;假设不能,请说明理由.11.如果一个正方体的长增加3cm,宽减少4cm,高增加2cm,•所得的长方体的体积比原正方体的体积增加251cm3,求原正方体的边长.12.某厂方案在两年后总产值要翻两番,那么,•这两年产值的平均增长率应为多少?【开放探索创新】13.某农户种植花生,原种植的花生亩产量为200kg,出油率为50%.现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,•其中花生出油率的增长率是亩产量的增长率的,求新品种花生亩产量的增长率.【中考真题实战】14.〔陕西中考〕在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如下图,如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,•那么x满足的方程为〔〕.A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=015.〔遵义中考〕某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•那么该商店卖出这种商品的盈亏情况是〔〕.A.不亏不赚 B.亏4元 C.赚6元 D.亏24元16.〔大连中考〕某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.17.〔新疆中考〕在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,图a、图b分别是小明和小颖的设计方案.〔1〕你认为小明的结果对吗?请说明理由.〔2〕请你帮助小颖求出图中的x〔精确到0.1m〕.〔3〕你还有其他的设计方案吗?请在以下图中画出你的设计草图,并加以说明.18.〔兰州中考〕某地2004年外贸收入为2.5亿元,2006年外贸收入到到达4亿元.•假设平均每年的增长率为x,那么可以列出方程为〔〕.A.2.5〔1+x〕2=4 B.〔2.5+x%〕2=4C.2.5〔1+x〕〔1+2x〕2=4 D.2.5〔1+x%〕2=4参考答案1.15cm 103cm2.12 点拨:根据题意,可设长为xcm,宽为〔x-2〕cm,可列方程为〔x-2〕x=120.3.1.5 点拨:根据题意,设所留宽度为x,可列方程〔18-2x〕〔7.5-2x〕=12×18×7.5.4.设甬路宽为xm,根据题意可列方程为〔16-x〕〔12-x〕=×16×12,解得x1=2,x2=26〔不符合题意,舍去〕.5.〔1+x〕2=〔1+44%〕 20%6.设平均每年增长的百分数为x,根据题意得30〔1+x〕2=36.3,解得x1=0.1,x2=-2.1〔不符合题意,舍去〕.故平均每年的增长率为10%.7.D 点拨:一个季度的总产值包括一月,二月,三月的产值.8.D 点拨:降低19元,所以现价为81元,可列方程为100〔1-x〕2=81.9.设银行一年定期存款的年利率是x元,根据题意,列方程为[2000〔1+x〕-1000]〔1+x〕=1069,整理得2x2+3x-0.069=0,x1≈0.0225,x2≈-1.5225〔不符合题意,舍去〕.10.〔1〕设矩形的长为xcm,那么宽为〔12-x〕cm,根据题意可得x〔12-x〕=48,整理得x2-12x+48=0,∵b2-4ac=144-4×48<0,∴原方程无解,故用24cm长的铁丝不能折成面积为48cm2的矩形.〔2〕根据题意,可列方程为x〔12-x〕=32,整理得x2-12x+32=0,解得x1=4,x2=8.当x=4时,12-x=8;当x=8时,12-x=4,所以长为8cm时,宽为4cm.用长为24cm 的铁丝能折成面积为32cm2的矩形,边长为4cm和8cm.11.设原正方体的边长为xcm,那么现在长方体的长为〔x+3〕cm,宽为〔x-4〕cm,高为〔x+2〕cm,根据题意列方程得:〔x+3〕〔x-4〕〔x+2〕-x3=251,整理得x2-14x-275=0,∴x1=25,x2=-11〔不符合题意,舍去〕.12.这两年产值的平均增长率为x,根据题意可得〔1+x〕2=4,解得x1=1,x2=-3〔不符合题意,舍去〕故这两年生产总值的平均增长率为100%.13.设新品种花生亩产量的增长率为x,那么花生出油率的增长率为12x.根据题意列方程得200〔1+x〕×50%〔1+12x〕=132,整理得25x2+75x-16=0,解得x1=0.2,x2=-3.2〔舍去〕.故新品种花生亩产量的增长率为20%.14.B15.B 点拨:提高和降低的百分率相同,而基点不同,所得的结果是不同的,设进价为a,那么a〔1+20%〕〔1-20%〕=96,∴a=100.16.设平均每年增长的百分率为x,根据题意,得1000〔1+x〕2=1210,1+x=±1.1,解得x1=0.1=10%,x2=-2.1〔不符合题意,舍去〕.所以x=10%.点拨:此题解题关键是理解和熟记增长率公式.17.〔1〕小明的结果不对,设小路的宽为xm,那么得方程〔16-2x〕〔12-2x〕=12×16×12,解得x1=2,x2=12.而荒地的宽为12m,假设小路宽为12m,不符合实际情况,故x2=12m不符合题意,•应舍去.〔2〕由题意得4×221961612,42xxππ=⨯⨯=,∴x≈5.5m.〔3〕方案不唯一,如图,说明略.18.A。
《用完全平方公式因式分解》专项练习
《用完全平方公式因式分解》专项练习要点感知1完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.适合用完全平方公式因式分解的多项式的特点:①必须是__________;②两个平方项的符号__________;③第三项是两平方项的__________.预习练习1-1下列式子中,完全平方式有__________.(填序号)①x2+4x+4;②1+16a2;③x2+2x-1;④x2+xy+y2;⑤m2+n2+2mn.1-2因式分解:x2+6x+9=__________.要点感知2因式分解的一般步骤:首先__________,然后再用__________进行因式分解.在因式分解时,必须进行到每一个因式都不能分解为止.预习练习2-1因式分解:3a2+6a+3=__________.2-2因式分解:x2y-4xy+4y.知识点1 用完全平方公式因式分解1.下列各式能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+92.因式分解(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)23.因式分解:(1) x2+2x+1=__________;(2) x2-4(x-1)=__________.4.利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.5.因式分解:(1)-x2+4xy-4y2;(2)4a4-12a2y+9y2;(3)(a+b)2-14(a+b)+49.知识点2 综合运用提公因式法和公式法因式分解6.把x2y-2y2x+y3因式分解正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)27.把a3-2a2+a因式分解的结果是( )A.a2(a-2)+aB.a(a2-2a)C.a(a+1)(a-1)D.a(a-1)28.将多项式m2n-2mn+n因式分解的结果是__________.9.把下列各式因式分解:(1)2a3-4a2b+2ab2;(2)5x m+1-10x m+5x m-1;(3)(2x-5)2+6(2x-5)+9;(4)16x4-8x2y2+y4;(5)(a2+ab+b2)2-9a2b2.10.下列多项式能因式分解的是( )A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y211.(2013·西双版纳)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)212.下列各式:①x2-2xy-y2;②x2-xy+2y2;③x2+2xy+y2;④x2-2xy+y2,其中能用公式法因式分解的有( )A.1个B.2个C.3个D.4个13.因式分解:4a3-12a2+9a=__________.14.多项式ax2-a与多项式x2-2x+1的公因式是__________.15.因式分解:16-8(x-y)+(x-y)2=__________.16.若m=2n+1,则m2-4mn+4n2的值是__________.17.把下列各式因式分解:(1)16-8xy+x2y2;(2)9(a-b)2+12(a2-b2)+4(a+b)2;(3)(2a+b)2-8ab; (4)3a(x2+4)2-48ax2.18.利用因式分解计算:(1)12×3.72-3.7×2.7+12×2.72;(2)1982-396×202+2022.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n因式分解.21.当a,b为何值时,多项式4a2+b2+4a-6b-8有最小值,并求出这个最小值.参考答案要点感知1三项式相同底数的积的2倍预习练习1-1①⑤1-2(x+3)2要点感知2 提取公因式公式法预习练习2-13(a+1)22-2 原式=y(x2-4x+4)=y(x-2)2.1.D2.D3.(1)(x+1)2(2)(x-2)24.a2+2ab+b2=(a+b)25.(1)原式=-(x2-4xy+4y2)=-(x-2y)2.(2)原式=(2a2-3y)2.(3)原式=(a+b-7)2.6.C7.D8.n(m-1)29.(1)原式=2a(a2-2ab+b2)=2a(a-b)2.(2)原式=5x m-1(x2-2x+1)=5x m-1(x-1)2.(3)原式=[(2x-5)+3]2=(2x-2)2=4(x-1)2.(4)原式=(4x2-y2)2=(2x+y)2(2x-y)2.(5)原式=(a2+ab+b2+3ab)(a2+ab+b2-3ab)=(a2+4ab+b2)(a-b)2.10.C 11.B 12.B 13.a(2a-3)214.x-1 15.(x-y-4)216.1 17.(1)原式=(4-xy)2.(2)原式=[3(a-b)+2(a+b)]2=(5a-b)2.(3)原式=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.(4)原式=3a[(x2+4)2-16x2]=3a(x+2)2(x-2)2.18.(1)原式=12×(3.7-2.7)2=12.(2)原式=(198-202)2=16.19.(x2+2xy)+x2=2x2+2xy=2x(x+y);或(y2+2xy)+x2=(x+y)2;或(x2+2xy)-(y2+2xy)=x2-y2=(x+y)(x-y);或(y2+2xy)-(x2+2xy)=y2-x2=(y+x)(y-x).20.由题意可得|m+4|+(n-1)2=0,所以40,10.mn+=-=⎧⎨⎩解得4,1.mn=-=⎧⎨⎩所以,原式=x2+4y2+4xy-1=(x+2y)2-1=(x+2y+1)(x+2y-1).21.4a2+b2+4a-6b-8=(4a2+4a+1)+(b2-6b+9)-18=(2a+1)2+(b-3)2-18,当2a+1=0,b-3=0时,原多项式有最小值.这时a=-12,b=3,这个最小值是-18.。
完全平方公式1
= 3 (a+b)2(a-b)2
练习3: 把下列各式因式分解
1. x4-2x2y3+y6 解:原式 = (x2-y3)2
2. 3x3-12x2y+12xy2 解:原式 = 3x(x2-4xy+4y2)
= 3x(x-2y)2 3. 4ax2+20axy+25ay2 解:原式 = a(4x2+20xy+25y2)
5. a2b2+12ab+36 = (ab)2 +2 . ab. 6 +62 =(ab+6)2
例2 把下列各式分解因式
1. (x+y)2+10(x+y)+25 解:原式 = (x+y)2 +2.(x+y).5+52
= (x+y+5)2 2. 4(a+m)2-28(a+m)+49
解:原式 = [2(a+m)]2 -2.2(a+m).7 +72 = [2(a+m)-7]2
解:原式= (x-y+6)2 解:原式= (a-b-8)2
3. 4(x+y)2+12(x+y)+9
解:原式= [2(x+y)+3]2 =(2x+2y+3)2
4. (a+b)2-6(a+b)(a-b)+9(a-b)2 解:原式= [(a+b)-3(a-b)]2=(a+b-3a+3b)2 = (-2a+4b)2 =[-2(a-2b)]2 =4(a-2b)2
因式分解-完全平方公式
2
a 2ab b a b 2 2 a 2ab b a b
2 2
2
2
我们可以通过以上公式把 “完全平方式”分解因式 我们称之为:运用完全平 方公式分解因式
2 2
现在我们把这个公式反过来
2
2
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
a 2ab b a 2ab b
2 2
2
2
我们把以上两个式子 叫做完全平方式
两个“项”的平方和加 上(或减去)这两“项” 的积的两倍
1x 2 xy y 是 2 2 是 2A 2 AB B 2 2是 3甲 2 甲乙 乙 2 2 是 4 2
2 2
判别下列各式是不是 完全平方式
a 2ab b a 2ab b
2 2
2
2
完全平方式的特点
:
1、必须是三项式 2、有两个“项”的平方 3、有这两“项”的2倍或-2倍
2 2 首 2首尾 尾
请同学们根据完全平 方式的特点再写出几 个完全平方式
2 2 1 a b 2ab 是 2 2
2 2 2
2
(2) ( a y ) 2ay 1 ( ay 1 )
(3)
2
1 1 2 2 2 ( rs ) r s ( rs ) 4 2
例1:分解因式
(1) x2-4x+4
解:原式= x 2 x 2 2
2 2
( x 2)
2
例1:分解因式(2)Biblioteka =(x2-2x+1)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解练习题(完全平方公式)一、选择题
1.已知y2+my+16是完全平方式,则m的值是()
A.8 B.4 C.±8 D.±4
2.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1
3.下列各式属于正确分解因式的是()
A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2
C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2 4.把x4-2x2y2+y4分解因式,结果是()
A.(x-y)4 B.(x2-y2)4
C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2
二、填空题
5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)2
7.-4x2+4xy+(_______)=-(_______).
8.已知a2+14a+49=25,则a的值是_________.
三、解答题
9.把下列各式分解因式:
(1)a2+10a+25 (2)m2-12mn+36n2
(3)xy3-2x2y2+x3y (4)(x2+4y2)2-16x2y2 (5)a4-6a2+9 (6)4a2+12ab+9b2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.
四、探究题
12.你知道数学中的整体思想吗?解题中,•若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.
你能用整体的思想方法把下列式子分解因式吗?
①(x+2y)2-2(x+2y)+1 ②(a+b)2-4(a+b-1)
13、已知a2+10ab+25b2与|b-2|互为相反数,求a+b的值。