模式识别期末练习题
最新模式识别期末考试
问答1. 什么是模式?通过对具体个别事物进行观测所得到的具有时间和空间分布的信息称为模式。
模式所指的不是事物本身,而是我们从事物中获得的信息。
2. 模式识别系统主要由哪些部分组成?信息获取,预处理,特征提取与选择,分类决策,后处理。
3. 最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 p ( x |W i ), i =1,2 \ P (X | W j ) P (w j )如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
4. 怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn | 3 i) = P(x1| 3 i) P(x2| 3 i)…P(xn| 3 i)后验概率: P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i) 类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均 值方差,最后得到类条件概率分布。
方差:var(x) (x^x)A 2 m —1 i 二二:解答1.设有如下三类模式样本集 3 1, 3 2和3 3,其先验概率相等,求 S W 和Sb3 1 : {(1 0) T , (2 0) T , (1 1)、3 2 : {(-1 0) T , (0 1) T, (-1 1)T}3 3: {(-1-1) T, (0 -1) T , (0 -2) T }答:由于三类样本集的先验概率相等,则概率均为1/3。
多类情况的类内散度矩阵,可写成各类的类内散布矩阵的先验概率的加权和,即:ccS w P®i )E{(x —m)(x —mJ T|斜}=送 C ii =1i 4类间散布矩阵常写成:cS b「P(・i)(m i - m °)(m i - m °)T其中,m 。
为多类模式(如共有 c 类)分布的总体均值向量,即:P ( X | W i ) P (W i ) 2利用贝叶斯公式得到后验概率 P(W i | x)二均值:1mmean(x)xim y 其中Ci 是第i 类的协方差矩阵。
模式识别期末考试题及答案
模式识别期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪一种方法不属于统计模式识别方法?A. 最小二乘法B. 感知机C. 支持向量机D. 决策树答案:A3. 在模式识别中,以下哪种技术用于降低特征维度?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 神经网络D. K-均值聚类答案:A4. 以下哪一种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 支持向量机(SVM)C. 主成分分析(PCA)D. K-最近邻(K-NN)答案:B5. 以下哪一项不是模式识别的评价指标?A. 准确率B. 精确率C. 召回率D. 信息熵答案:D二、填空题(每题2分,共20分)6. 模式识别的主要任务包括分类、回归、聚类和________。
答案:预测7. 统计模式识别方法包括最小二乘法、感知机、________和决策树。
答案:支持向量机8. 主成分分析(PCA)的主要目的是________特征。
答案:降低维度9. 在模式识别中,________用于将样本分为不同的类别。
答案:分类器10. 支持向量机(SVM)的基本思想是找到一个________,使得不同类别的样本之间的间隔最大化。
答案:最优分割超平面三、简答题(每题10分,共30分)11. 请简述模式识别的主要步骤。
答案:(1)数据预处理:对原始数据进行清洗、标准化和降维等处理。
(2)特征提取:从原始数据中提取有助于分类的特征。
(3)模型训练:使用训练集对分类器进行训练。
(4)模型评估:使用测试集对分类器的性能进行评估。
(5)模型优化:根据评估结果对模型进行调整和优化。
12. 请简述支持向量机(SVM)的基本原理。
支持向量机是一种二分类模型,其基本思想是找到一个最优分割超平面,使得不同类别的样本之间的间隔最大化。
SVM通过求解一个凸二次规划问题来寻找最优分割超平面,从而实现分类任务。
(完整word版)【模式识别】期末考试试卷01
《模式识别》期末考试试题(B)一、填空题(15个空,每空2分,共30分)1.基于机器学习的模式识别系统通常由两个过程组成, 即分类器设计和()。
2.统计模式识别把( )表达为一个随机向量(即特征向量), 将模式类表达为由有穷或无穷个具有相似数值特性的模式组成的集合.3.特征一般有两种表达方法:(1)将特征表达为数值;(2)将特征表达为()。
4.特征提取是指采用( )实现由模式测量空间向特征空间的转变。
5.同一类模式类样本的分布比较集中,没有或临界样本很少,这样的模式类称为()。
6.加权空间的所有分界面都通过()。
7.线性多类判别:若每两个模式类间可用判别平面分开, 在这种情况下,M类有( )个判别函数,存在有不确定区域.8.当取0—1损失函数时,最小风险贝叶斯判决准则等价于( )判决准则。
9.Neyman-Pearson决策的基本思想是()某一错误率,同时追求另一错误率最小。
10.聚类/集群:用事先不知样本的类别,而利用样本的先验知识来构造分类器属于( )学习. 11.相似性测度、聚类准则和( )称为聚类分析的三要素。
12.K/C均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的()达到最小。
13.根据神经元的不同连接方式,可将神经网络分为分层网络和相互连接型网络两大类。
其中分层网络可细分为前向网络、( )和层内互连前向网络三种互连方式.14.神经网络的特性及能力主要取决于网络拓扑结构及( )。
15.BP神经网络是采用误差反向传播算法的多层前向网络,其中,神经元的传输函数为S型函数,网络的输入和输出是一种( )映射关系。
二、简答题(2题,每小题10分,共20分)1.两类问题的最小风险Bayes决策的主要思想是什么?2.已知一组数据的协方差矩阵为11/21/21⎡⎤⎢⎥⎣⎦,试问: (1)协方差矩阵中各元素的含义是什么? (2)K —L 变换的最佳准则是什么?(3)为什么说经K-L 变换后消除了各分量之间的相关性?三、 计算题(2题,每小题13分,共26分)1.已知有两类样本集,分别为ω1={x 1, x 2}={(1,2)T , (-1,0)T }; ω2={x 3, x 4} ={(—1,—2)T , (1,-1)T }设初始权值w 1=(1,1,1)T , ρk =1,试用感知器固定增量法求判别函数,画出决策面。
最新模式识别与机器学习期末考查试题及参考答案
模式识别与机器学习期末考查试卷研究生姓名:入学年份:导师姓名:试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。
主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。
机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。
主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。
两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。
机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。
(2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。
模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。
而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更侧重于理论,包括泛化效果、收敛性等。
模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。
许多算法他们都在研究,但是研究的目标却不同。
如SVM 在模式识别中研究所关心的就是其对人类效果的提高,偏工程。
而在机器学习中则更侧重于其性能上的理论证明。
试题2:列出在模式识别与机器学习中的常用算法及其优缺点。
答:(1) K近邻法KNN算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。
在应用KNN算法解决问题的时候,要注意的两个方面是样本权重和特征权重。
优缺点:非常有效,实现简单,分类效果好。
模式识别期末试题及答案
模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。
通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。
2.2 请解释监督学习和无监督学习的区别。
监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。
通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。
而无监督学习则没有标签或输出信息。
无监督学习的目标是从未标记的数据中找到模式和结构。
这种学习方法通常用于聚类、降维和异常检测等任务。
3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。
请简要解释逻辑回归模型的原理,并说明它适用的场景。
逻辑回归模型是一种用于解决二分类问题的监督学习算法。
其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。
这个映射的概率可以被解释为某个样本属于正类的概率。
逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。
模式识别期末考试题及答案
模式识别期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于模式识别的主要任务?A. 分类B. 回归C. 聚类D. 降维答案:B2. 以下哪种方法不属于模式识别的监督学习方法?A. 支持向量机B. 决策树C. 神经网络D. K-均值聚类答案:D3. 在模式识别中,特征选择和特征提取的主要目的是什么?A. 提高模型的泛化能力B. 减少模型的计算复杂度C. 提高模型的准确率D. 所有以上选项答案:D4. 以下哪种距离度量方法不适用于模式识别?A. 欧几里得距离B. 曼哈顿距离C. 余弦相似度D. 切比雪夫距离答案:C5. 以下哪种算法不属于模式识别中的分类算法?A. K-最近邻B. 支持向量机C. 线性回归D. 决策树答案:C二、填空题(每题2分,共20分)1. 模式识别的主要任务包括分类、回归、聚类和__________。
答案:降维2. 监督学习算法包括线性判别分析、__________、神经网络等。
答案:支持向量机3. 无监督学习算法包括K-均值聚类、层次聚类、__________等。
答案:DBSCAN4. 特征选择和特征提取的主要目的是降低数据的__________和__________。
答案:维度、计算复杂度5. 模式识别中常用的距离度量方法有欧几里得距离、曼哈顿距离、余弦相似度和__________。
答案:切比雪夫距离三、判断题(每题2分,共20分)1. 模式识别是人工智能领域中一个重要的分支,主要研究如何使计算机能够自动识别和处理模式。
()答案:√2. 监督学习算法和无监督学习算法在模式识别中具有相同的作用。
()答案:×3. 支持向量机是一种基于最大间隔的分类算法。
()答案:√4. K-均值聚类算法是一种基于距离度量的聚类算法。
()答案:√5. 特征选择和特征提取的主要目的是提高模型的泛化能力。
()答案:√四、简答题(每题10分,共30分)1. 简述模式识别的基本流程。
模式识别期末试题汇编
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
广东模式识别期末试卷
广东模式识别期末试卷
一.简述典型的模式识别系统的各部分组成,分别阐述各个组成
部分的功能。
举例说明模式识别的应用。
(20分)
二.假设在某地区切片细胞中正常(ω1)和异常(ω2)两类的先
验概率分别为:P(ω1)=0.8,P(ω2)=0.2。
现有一待识别细胞呈现出
状态x,由其类条件概率密度分布曲线查得p(x|ω1)=0.2,p(x|ω
2)=0.5,
(1)试对细胞x进行分类(判断细胞为正常还是异常);
(2)在以上的基础上,当λ11=0,(λ11表示λ(α1|ω1)的简
写),λ12=6,λ21=1,λ22=0时,按最小风险贝叶斯决策进行分类。
(20分)
三、模糊集: A=0.4 / x1+ 0.6/ x2 +0.9/ x3 + 0/ x4 +0.4
/ x5 B=0.2 / x1 + 0.8/ x2 + 0/ x3 + 0.7/ x4 +1 / x5;(15分)
四、已知,;
试求模糊合成矩阵;(15分)
五、为什么说K-L变换是一种独特的正交变换(它的特点);(10
分)
六、设有一维空间二次判别函数
试映射成广义齐次线性判别函数;并总结把高次函数映射成齐次
线性判别函数的方法。
(20分)。
模式识别期末考试试题
模式识别期末考试试题# 模式识别期末考试试题## 一、选择题(每题2分,共20分)1. 模式识别中,特征提取的目的是什么?A. 降低数据维度B. 提高计算效率C. 增强数据的可解释性D. 以上都是2. 在K-近邻算法中,K值的选择对结果的影响是什么?A. 无影响B. 影响分类的准确性C. 影响算法的运行时间D. 影响数据的可读性3. 决策树算法中,信息增益的计算是基于以下哪个概念?A. 熵B. 互信息C. 条件熵D. 联合熵4. 支持向量机(SVM)的主要思想是?A. 寻找数据点之间的最大间隔B. 寻找数据点之间的最小间隔C. 寻找数据点的平均间隔D. 寻找数据点的中心点5. 以下哪个算法属于聚类算法?A. K-近邻B. 决策树C. K-均值D. 支持向量机## 二、简答题(每题10分,共30分)1. 描述主成分分析(PCA)的基本原理及其在模式识别中的应用。
2. 解释什么是过拟合(Overfitting)现象,并给出避免过拟合的几种常用方法。
3. 给出神经网络在模式识别中的基本工作原理,并说明其优缺点。
## 三、计算题(每题25分,共50分)1. 给定以下数据点,使用K-均值算法将它们分为两个簇,并说明算法的步骤:- 数据点:(1, 2), (2, 3), (5, 6), (8, 7), (9, 8)2. 假设有一个二维数据集,其中包含两类数据点,分别用圆形和三角形表示。
数据点的特征如下表所示:| 特征1 | 特征2 | 类别 || | | - || 1.5 | 2.5 | 圆形 || 2.0 | 3.0 | 圆形 || 3.5 | 4.5 | 三角形 || 4.0 | 5.0 | 三角形 |使用线性判别分析(LDA)方法,找出最佳线性边界,并将数据点分为两类。
## 四、论述题(共30分)1. 论述深度学习在图像识别领域的应用,并讨论其与传统机器学习方法相比的优势和局限性。
## 五、案例分析题(共30分)1. 假设你是一名数据科学家,你的团队正在开发一个用于识别手写数字的系统。
人工智能模式识别技术练习(习题卷1)
人工智能模式识别技术练习(习题卷1)第1部分:单项选择题,共45题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]可视化技术中的平行坐标又称为( )A)散点图B)脸谱图C)树形图D)轮廓图答案:D解析:2.[单选题]描述事物的基本元素,称为( )A)事元B)物元C)关系元D)信息元答案:B解析:3.[单选题]下面不属于层次聚类法的是( )A)类平均法B)最短距离法C)K均值法D)方差平方和法答案:C解析:4.[单选题]核函数方法是一系列先进( )数据处理技术的总称。
A)离散B)连续C)线性D)非线性答案:D解析:5.[单选题]下面哪个网络模型是最典型的反馈网络模型?( )A)BP神经网络B)RBF神经网络C)CPN网络D)Hopfield网络答案:D解析:6.[单选题]粗糙集所处理的数据必须是( )的。
答案:B解析:7.[单选题]模糊聚类分析是通过( )来实现的。
A)模糊相似关系B)模糊等价关系C)模糊对称关系D)模糊传递关系答案:B解析:8.[单选题]模糊系统是建立在( )基础上的。
A)程序语言B)自然语言C)汇编语言D)机器语言答案:B解析:9.[单选题]在模式识别中,被观察的每个对象称为( )A)特征B)因素C)样本D)元素答案:C解析:10.[单选题]群体智能算法提供了无组织学习、自组织学习等进化学习机制,这种体现了群体智能算法的( )A)通用性B)自调节性C)智能性D)自适应性答案:C解析:11.[单选题]下面不属于遗传算法中算法规则的主要算子的是( )A)选择B)交叉C)适应D)变异答案:C解析:12.[单选题]下面不属于蚁群算法优点的是( )。
A)高并行性B)可扩充性C)不易陷入局部最优13.[单选题]只是知道系统的一些信息,而没有完全了解该系统,这种称为( )A)白箱系统B)灰箱系统C)黑箱系统D)红箱系统答案:B解析:14.[单选题]模式分类是一种______方法,模式聚类是一种_______方法。
模式识别期末精彩试题
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
模式识别期末考试题及答案
模式识别期末考试题及答案一、填空题1. 模式识别是研究通过_________从观测数据中自动识别和分类模式的一种学科。
答案:计算机算法2. 在模式识别中,特征选择的主要目的是_________。
答案:降低数据的维度3. 支持向量机(SVM)的基本思想是找到一个最优的超平面,使得两类数据的_________最大化。
答案:间隔4. 主成分分析(PCA)是一种_________方法,用于降低数据的维度。
答案:线性降维5. 隐马尔可夫模型(HMM)是一种用于处理_________数据的统计模型。
答案:时序二、选择题6. 以下哪种方法不属于模式识别的监督学习方法?()A. 线性判别分析B. 支持向量机C. 神经网络D. K-means聚类答案:D7. 在以下哪种情况下,可以使用主成分分析(PCA)进行特征降维?()A. 数据维度较高,且特征之间存在线性关系B. 数据维度较高,且特征之间存在非线性关系C. 数据维度较低,且特征之间存在线性关系D. 数据维度较低,且特征之间存在非线性关系答案:A8. 以下哪个算法不属于聚类算法?()A. K-meansB. 层次聚类C. 判别分析D. 密度聚类答案:C三、判断题9. 模式识别的目的是将输入数据映射到事先定义的类别中。
()答案:正确10. 在模式识别中,特征提取和特征选择是两个不同的概念,其中特征提取是将原始特征转换为新的特征,而特征选择是从原始特征中筛选出有用的特征。
()答案:正确四、简答题11. 简述模式识别的主要任务。
答案:模式识别的主要任务包括:分类、回归、聚类、异常检测等。
其中,分类和回归任务属于监督学习,聚类和异常检测任务属于无监督学习。
12. 简述支持向量机(SVM)的基本原理。
答案:支持向量机的基本原理是找到一个最优的超平面,使得两类数据的间隔最大化。
具体来说,SVM通过求解一个凸二次规划问题来确定最优超平面,使得训练数据中的正类和负类数据点尽可能远离这个超平面。
北航2019-2020学年第二学期期末《模式识别基础》试题
2019-2020学年第二学期期末《模式识别基础》试题考试日期:2020年6月17日,上午9:50–12:20 (满分100分)考试科目:《模式识别基础》学号:姓名:注意事项:1、请大家仔细审题,不要漏掉题目2、不要互相交流答案,杜绝试卷雷同一、单选题(每题2分,共10题)1. 下列不属于模式识别系统的基本构成单元的是( )A. 模式采集B. 特征选择与提取C. 模式分类D. 软件界面设计2. 下列不属于模式识别应用范畴的是()A. 利用书写板向计算机输入汉字B. 利用扫描仪向计算机输入图片C. 利用指纹来鉴定人的身份D. 利用语音向计算机输入汉字3. 哪条是贝叶斯分类器必须满足的先决条件( )A. 类别数已知且一定B. 每个类别的样本数已知C. 所有样本的总样本数已知D. 样本特征维度已知且一定4. Parzen窗法做概率密度估计时,当窗宽度变得很小时,容易出现( )A.噪声变弱B. 稳定性变差C. 分辨率变低D. 连续性变好5. 下面不属于非参数估计方法的是( )A. 直方图估计B. Parzen窗估计C. 贝叶斯估计D. K近邻估计6. Fisher线性判别函数的求解过程是将N维特征矢量投影在( )中进行A. 二维空间B. 一维空间C. (N-1)维空间D. N维空间7. 影响聚类算法结果的主要因素不包括( )A. 分类准则B. 已知类别的样本质量C. 特征选取D. 模式相似性测度8. 下列不属于估计量评价标准的是( )A. 无偏性B. 有效性C. 一致性D. 收敛性9. 关于感知器准则,以下说法错误的是( )A. 要求样本是线性可分的B. 可以用梯度下降法求解C. 当样本线性不可分时,感知器算法不能收敛D. 不能随意确定初始权向量10. 对于k均值(C均值)聚类算法,初始类心的选取非常重要,相比较而言,当对数据有一定了解时,如何选择c个样本作为初始类心较好( )A. 按输入顺序选B. 选相距最远的C. 随机挑选D. 选分布密度最高处的二、判断题(正确用“T”表示,错误用“F”表示;每题2分,共10题)1.模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。
模式识别期末试题
和模式分类。
3、聚类分析算法属于 (1);判别域代数界面方程法属于 (1)无监督分类 (2)有监督分类 (3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用J-I 1-1J = (S J -- m);-1(3)。
9、 影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、 欧式距离具有( 1、2 );马式距离具有(1、2、3、4)。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、 线性判别函数的正负和数值大小的几何意义是( 正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
)。
12、 感知器算法 丄。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
13、 积累势函数法较之于 H-K 算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况));1、模式识别系统的基本构成单元包括:模式米集 特征提取与选择(1) ({A B }, {0, 1}, {A >01, A-. 0 A 1 ,A-. 1 A0 , B-.BA , B )0}, A )(2) ({ A }, {0, 1}, {A >0, A —; 0 A }, A )(3) ({ S }, { a, b }, { S — 00 S , S 11 S , S -00,S > 11},S )(4) ({ A }, {0, 1}, {A >01, A > 0A 1, A > 1 A 0}, A )8 、下列四元组中满足文法定义的有(1)( 2)( 4)。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、 F 列函数可以作为聚类分析中的准则函数的有(1)( 3)( 4)。
模式识别_青岛大学中国大学mooc课后章节答案期末考试题库2023年
模式识别_青岛大学中国大学mooc课后章节答案期末考试题库2023年1.贝叶斯决策是通过计算样本后验概率的大小来进行决策的,下面表达式中wi代表类别,x代表样本,能够表示后验概率的是答案:P(wi|x)2.下列表达中不能影响贝叶斯估计结果的是答案:数据的线性变换3.下列关于感知器算法的说法中错误的是答案:感知器算法也适用于线性不可分的样本4.下面关于BP神经网络的说法错误的是答案:BP算法由误差的正向传播和数据的反向传播两个过程构成。
5.在利用神经网络进行分类时,神经网络的输入节点的个数______输入的特征数量。
答案:等于6.下面不能用来度量概率距离的参数是答案:欧式距离7.下面关于错误率的说法中错误的是答案:在实际当中,人们主要采用理论分析的方法来评价监督模式识别系统中分类器的错误率。
8.下面关于BP神经网络的说法错误的是答案:BP算法由误差的正向传播和数据的反向传播两个过程构成。
9.下面关于熵的说法中,错误的是答案:熵表示不确定性,熵越小不确定性越大。
10.下面关于PCA算法的说法中错误的是答案:PCA算法是通过变换矩阵得到原有特征的线性组合,新特征之间是线性相关的。
11.下列属于监督模式识别的是答案:字符识别人脸识别车牌识别12.基于最小错误率的贝叶斯决策规则可以采用不同的形式,下列能表达其决策规则的是答案:似然比后验概率类条件概率13.下面关于最大似然估计的说法中正确的是答案:最大似然估计是在已知概率密度函数的形式,但是参数未知的情况下,利用训练样本来估计未知参数。
在最大似然函数估计中,要估计的参数是一个确定的量。
在最大似然估计中要求各个样本必须是独立抽取的。
14.在基于样本直接设计分类器时,属于分类器设计三要素的是答案:准则函数的形式寻优算法判别函数的类型15.下面关于最小平方误差判别的说法中正确的是答案:在最小平方误差判别中可以使用梯度下降法来求解最小平方误差判别方法中的准则函数是误差长度的平方和。
模式识别期末试题
一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
2018-模式识别期末试卷-精选word文档 (20页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==模式识别期末试卷篇一:【模式识别】期末考试试卷02《模式识别》期末考试试题(A)一、填空题(15个空,每空2分,共30分)1.基于机器学习的模式识别系统通常由两个过程组成, 即()和分类判决。
2.统计模式识别把观察对象表达为一个随机向量(即特征向量), 将()表达为由有穷或无穷个具有相似数值特性的模式组成的集合。
3.特征一般有两种表达方法: (1)将特征表达为();(2)将特征表达为基元。
4.特征提取是指采用变换或映射实现由模式测量空间向()的转变。
5.同一类模式类样本的分布比较集中,没有或临界样本很少,这样的模式类称为()。
6.加权空间的所有()都通过坐标原点。
7.线性多类判别:若每两个模式类间可用判别平面分开,在这种情况下,M类有()个判别函数,存在有不确定区域。
8.当取()损失函数时, 最小风险贝叶斯判决准则等价于最大后验概率判决准则。
9.Neyman-Pearson决策的基本思想是()某一错误率,同时追求另一错误率最小。
10.聚类/集群:用事先不知样本的类别,而利用样本的先验知识来构造分类器属于()学习。
11.相似性测度、()和聚类算法称为聚类分析的三要素。
12.K/C均值算法使用的聚类准则函数是()准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的距离平方和达到最小。
13.根据神经元的不同连接方式,可将神经网络分为分层网络和相互连接型网络两大类。
其中分层网络可细分为前向网络、具有反馈的前向网络和()三种互连方式。
14.神经网络的特性及能力主要取决于()及学习方法。
15.BP神经网络是采用误差反向传播算法的多层前向网络,其中,神经元的传输函数为S型函数,网络的输入和输出是一种()映射关系。
二、简答题(2题,每小题10分,共20分)1.简述有监督分类方法和无监督分类方法的主要区别。
四川大学模式识别期末考试内容
2.一个典型的模式识别系统主要由哪几个部分组成
3.什么是后验概率?
系统在某个具体的模式样本X条件下位于某种类型的概率。
4.确定线性分类器的主要步骤
①采集训练样本,构成训练样本集。样本应该具有典型性
5.序贯分类方法,除了考虑分类造成的损失外,还考虑特征获取造成的代价,先用一部分特征分类,然后逐步加入性特征以减少分类损失,同时平衡总的损失,以求得最有效益。
十四、假设在某个地区细胞识别中正常(w1)和异常(w2)两类先验概率分别为P(w1)=0。9,P(w2)=0。1,现有一待识别的细胞,其观察值为x,从类条件概率密度分布曲线上查得 , ,并且已知 , , ,
分解法:把所有样本看做一类,逐级分解为每个样本一类。
10.特征抽取与特征选择的区别?
特征抽取:原始特征的数量可能很大,或者样本处于一个高维空间中,通过映射(或变换)的方法可以用低维空间来义上就是指一种变换。
特征选择:从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的,这个过程叫特征选择。
试对该细胞x用一下两种方法进行分类:
1.基于最小错误率的贝叶斯决策;
2.基于最小风险的贝叶斯决策;
请分析两种结果的异同及原因。
答:1。
2。
十七、写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。
十八、请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主要思想。
信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或以为波形。
离散K-L变换又称主成分分析(PCA),是一种基于目标统计特性的最佳正交变换,被广泛应用于数据压缩、特征降维等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013模式识别练习题一. 填空题1、模式识别系统的基本构成单元包括:模式采集、特征选择与提取和模式分类。
2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。
3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。
4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
5、感知器算法1,H-K算法(2)。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重要情况;最小最大判别准则主要用于先验概率未知的情况。
7、“特征个数越多越有利于分类”这种说法正确吗?错误。
特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。
一般在可分性判据对特征个数具有单调性和(C n m>>n )的条件下,可以使用分支定界法以减少计算量。
8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大;当ωi类模式与ωj类模式的分布相同时,J ij= 0 。
二、选择题1、影响聚类算法结果的主要因素有( B C D)。
A.已知类别的样本质量;B.分类准则;C.特征选取;D.模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是( C D)。
A.平移不变性;B.旋转不变性;C尺度不变性;D.考虑了模式的分布3、影响基本K-均值算法的主要因素有( D A B)。
A.样本输入顺序;B.模式相似性测度;C.聚类准则;D.初始类中心的选取4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的( B D)。
A. 先验概率;B. 后验概率;C. 类概率密度;D. 类概率密度与先验概率的乘积 5、在统计模式分类问题中,当先验概率未知时,可以使用(B D )。
A. 最小损失准则;B. 最小最大损失准则;C. 最小误判概率准则;D. N-P 判决 6、散度J D 是根据( C )构造的可分性判据。
A. 先验概率;B. 后验概率;C. 类概率密度;D. 信息熵;E. 几何距离 7、似然函数的概型已知且为单峰,则可用( A B C D E )估计该似然函数。
A. 矩估计;B. 最大似然估计;C. Bayes 估计;D. Bayes 学习;E. Parzen 窗法 8、KN 近邻元法较之Parzen 窗法的优点是( B )。
A. 所需样本数较少;B. 稳定性较好;C. 分辨率较高;D. 连续性较好 9、从分类的角度讲,用DKLT 做特征提取主要利用了DKLT 的性质:( A C )。
A.变换产生的新分量正交或不相关;B.以部分新的分量表示原矢量均方误差最小;C.使变换后的矢量能量更集中10、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有( B C )。
A. 已知类别样本质量;B. 分类准则;C. 特征选取;D. 量纲 11、欧式距离具有( A B );马式距离具有( A B C D )。
A. 平移不变性;B. 旋转不变性;C. 尺度缩放不变性;D. 不受量纲影响的特性 12、聚类分析算法属于( A );判别域代数界面方程法属于( C ) 。
A.无监督分类;B.有监督分类;C.统计模式识别方法;D.句法模式识别方法 13、若描述模式的特征量为0-1二值特征量,则一般采用( D )进行相似性度量。
A. 距离测度;B. 模糊测度;C. 相似测度;D. 匹配测度 14、 下列函数可以作为聚类分析中的准则函数的有( A C D ) 。
A.][1BW S S Tr J -=; B.1-=BW SS J ; C.∑∑==-=cj n i j j ijm xJ 112)( ; D.)()(1m m m m J j cj j -'-=∑=15、Fisher 线性判别函数的求解过程是将N 维特征矢量投影在( B )中进行 。
A.二维空间; B.一维空间; C. N-1维空间16、用parzen 窗法估计类概率密度函数时,窗宽过窄导致波动过大的原因是( B 、C )。
A.窗函数幅度过小;B.窗函数幅度过大;C. 窗口中落入的样本数过少;D.窗口中落入的样本数过多。
17、如下聚类算法中,属于静态聚类算法的是 ( A 、B )。
A. 最大最小距离聚类;B. 层次聚类;C. c-均值聚类。
18、 一般,k-NN 最近邻方法在( B )的情况下效果较好。
A.样本较多但典型性不好;B.样本较少但典型性好;C.样本呈团状分布;D.样本呈链状分布19、影响c 均值聚类算法效果的主要因素之一是初始类心的选取,相比较而言,( C )c 个样本作为初始类心较好。
A. 按输入顺序选前;B. 选相距最远的;C. 选分布密度最高处的;D. 随机挑选。
20、类域界面方程法中,能求线性不可分情况下分类问题近似或精确解的方法是( B 、C 、D )。
A. 感知器算法;B. 伪逆法;C. 基于二次准则的H-K 算法;D. 势函数法。
三、简答题1、试说明Mahalanobis 距离平方的定义,到某点的Mahalanobis 距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。
答:Mahalanobis 距离的平方定义为:∑---=12)()(),(u x u x u x rT其中x ,u 为两个数据,1-∑是一个正定对称矩阵(一般为协方差矩阵)。
根据定义,距某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis 距离就是通常的欧氏距离。
2、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。
答:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
3、已知一组数据的协方差矩阵为⎪⎪⎭⎫ ⎝⎛12/12/11,试问(1) 协方差矩阵中各元素的含义。
(2) 求该数组的两个主分量。
(3) 主分量分析或称K-L 变换,它的最佳准则是什么?(4) 为什么说经主分量分析后,消除了各分量之间的相关性。
答:协方差矩阵为⎪⎪⎭⎫⎝⎛12/12/11,则(1) 对角元素是各分量的方差,非对角元素是各分量之间的协方差。
(2) 主分量,通过求协方差矩阵的特征值,用⎪⎪⎪⎪⎭⎫ ⎝⎛----121211λλ=0得4/1)1(2=-λ,则 ⎩⎨⎧=2/32/1λ,相应地:2/3=λ,对应特征向量为⎪⎪⎭⎫ ⎝⎛11,21=λ,对应⎪⎪⎭⎫ ⎝⎛-11。
这两个特征向量,即为主分量。
(3) K-L 变换的最佳准则为:对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。
(4) 在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关性消除。
4、试说明以下问题求解是基于监督学习或是非监督学习:(1) 求数据集的主分量 (2) 汉字识别 (3) 自组织特征映射 (4) CT 图像的分割答:(1) 求数据集的主分量是非监督学习方法;(2) 汉字识别:对待识别字符加上相应类别号—有监督学习方法; (3) 自组织特征映射—将高维数组按保留近似度向低维映射—非监督学习; (4) CT 图像分割—按数据自然分布聚类—非监督学习方法; 5、试列举线性分类器中最著名的三种最佳准则以及它们各自的原理。
答:线性分类器三种最优准则:Fisher 准则:根据两类样本一般类内密集,类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
这种度量通过类内离散矩阵Sw 和类间离散矩阵Sb 实现。
感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。
其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。
支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大,它的基本出发点是使期望泛化风险尽可能小。
6、试分析五种常用决策规则思想方法的异同。
答、五种常用决策是:1. 基于最小错误率的贝叶斯决策,利用概率论中的贝叶斯公式,得出使得错误率最小的分类规则。
2. 基于最小风险的贝叶斯决策,引入了损失函数,得出使决策风险最小的分类。
当在0-1损失函数条件下,基于最小风险的贝叶斯决策变成基于最小错误率的贝叶斯决策。
3. 在限定一类错误率条件下使另一类错误率最小的两类别决策。
4. 最大最小决策:类先验概率未知,考察先验概率变化对错误率的影响,找出使最小贝叶斯奉献最大的先验概率,以这种最坏情况设计分类器。
5. 序贯分类方法,除了考虑分类造成的损失外,还考虑特征获取造成的代价,先用一部分特征分类,然后逐步加入性特征以减少分类损失,同时平衡总的损失,以求得最有效益。
7、 1. 什么是特征选择?2. 什么是Fisher 线性判别?答:1. 特征选择就是从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的。
2. Fisher 线性判别:可以考虑把d 维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维,这在数学上容易办到,然而,即使样本在d 维空间里形成若干紧凑的互相分得开的集群,如果把它们投影到一条任意的直线上,也可能使得几类样本混在一起而变得无法识别。
但是在一般情况下,总可以找到某个方向,使得在这个方向的直线上,样本的投影能分开得最好。
问题是如何根据实际情况找到这条最好的、最易于分类的投影线,这就是Fisher 算法所要解决的基本问题。
8、写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。
两类问题:判别函数 )()()(2121111x w p x w p x g λλ+=)()()(2221212x w p x w p x g λλ+=决策面方程:)()(21x g x g =C 类问题:判别函数 )()(1x w p x g j ij cj i λ=∑=,c i ,......2,1=决策面方程:)()(x g x g j i =,j i ≠,c i ,......2,1=,c j ,......2,1=9、请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或波形。