(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版
五年级下册数学试题-计算综合.裂项(B级)(解析版)全国通用
(1) 能熟练运算常规裂和型题目; (2) 复杂整数裂项运算; (3) 分子隐蔽的裂和型运算。
(4) 通项归纳一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
1、 对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有: 1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)(()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭考试要求知识结构裂项()()()()()21122k n n k n k n n k n k n k =-+++++()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++()()()()()11222hh n n k n k kn n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h hn n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
小学奥数裂项公式汇总资料
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
(完整版)整数裂项.docx
整数裂项整数裂 基本公式(1) 1 2 2 3 3 4 ... (n1) n1 1) n ( n1) (n3(2) 1 2 3 2 3 4 34 5 ... (n2) (n 1) n1 ( n 2)( n 1)n(n 1)4【例 1 】 1 2 2 3 3 4 L49 50=_________【考点】整数裂 【 度】 3 星【 型】 算【解析】是整数的裂 。
裂 思想是:瞻前 后,相互抵消。
S = 12 23 34 L 49 501×2×3= 1×2×32×3×3= 2×3×( 4- 1)= 2×3×4- 1×2×3 3×4×3= 3×4×( 5- 2)= 3×4×5- 2× 3× 4⋯⋯49×50×3= 49×50×( 51- 48) =49 ×50×51- 48×49×50 3S = 1×2×3+ 2×3×3+ 3×4×3+ ⋯+ 49×50×3= 49×50×51 S = 49×50×51÷3= 41650【答案】 41650【巩固】 1 2 2 3 3 44 5 5 6 6 77 8 8 9 9 10 ________【考点】整数裂【 度】 3 星【 型】 算【解析】本 数 少,可以直接将每一 乘 都 算出来再 算它 的和,但是 于 数 多的情况 然不能 行 算. 于 数 多的情况,可以 行如下 形:n n 1 n 2n 1 n n 111n 1 n n 1 , n n 13n n 1 n 233所以原式1 12 31 2 3 4 1 1 2 3L1 9 10 11 18 9 1033 333 110 11 33093另解:由于 n n 1 n 2 n ,所以原式12 1 22 2 L92 91222 L921 2L 91 9 10 19 1 9 1033062 1采用此种方法也可以得到1 2 2 3 Lnn11 n2 一 .n n3【答案】 330【例 2 】 1 44 77 10 L49 52 =_________【考点】整数裂【 度】 3 星【 型】 算【解析】S = 1 4 4 7 7 10 L 49 521×4×9= 1×4×7+ 1×4×24×7×9= 4×7×( 10- 1)= 4×7×10- 1×4×77×10×9= 7×10×( 13-4)= 7×10×13- 4×7×10⋯⋯⋯⋯.49×52×9= 49×52×( 55- 46)= 49×52×55- 46×49×529S= 49×52×55+ 1×4×2S=( 49×52×55+ 1×4×2)÷9=15572【答案】 15572【例 3 】 1 2 3 2 3 4 3 4 5 L 9 10 11【考点】整数裂【度】 3 星【型】算【解析】 n n1n21n1n2n311 n n1n2 ,所以,n n44原式11 2 3 41 2 3 4 511 2 3 4L19 10 11 1218 9 10 11 444441910111229704从中可以看出,1232343 4 5L n n11n 2 n 3 n 2n n 14【答案】 2970【例 4 】算:1 3 5357L171921.【考点】整数裂【度】 3 星【型】算【解析】可以行整数裂.357 3 5 7 9 1 3 5 7 ,8579 5 7 9 11 3 5 7 9 ,817192117 19 21 23 15 17 19 21 ,8所以原式135********L1719212315171921 88135171921231357171921231358819503也可适用公式.原式 3 2 3 3 2 5 2 5 5 2 L19 2 19 19 2 3222 3 5222 5 L19222193353L 193 4 3 5 L 19133353L 193 4 1 3 5 L 19 3而 133353L 193132333L 203234363L20312022128110211219900,441 3 5 L 19 102100 ,所以原式19900 4 100 3 19503.【答案】19503【巩固】算:1 2 3 4 3 4 5 6 5 6 7 8 L 97 98 99 100【考点】整数裂【度】 3 星【型】算【解析】一般的整数裂各之都是的,本中各之是断开的,此可以将中缺少的上,再行算.原式 A ,再 B2345456767 89L96979899 ,A B 1 234 2 3453456L97989910019798991001011901009880 ,5在知道 A 与 B 的和了,如果能再求出 A 与 B 的差,那么 A 、 B 的就都可以求出来了.A B12342345345645 6 7567 8L9798 99 1004(123345567... 979899)42(221)4(421)6(621)L98(9821)4(2 34363L983 )4(246L98)48149250 241100494801020042所以, A1901009880480102002974510040 .【答案】 974510040【例 5 】2004 2003 20032002 2002200120012000L 2 1【考点】整数裂【度】 3 星【型】算【解析】原式2003220012L32122135L20012003212003100222008008其中也可以直接根据公式 1 357L2n 1 n2得出1 35L200120032 1002【答案】2008008【例 6 】 1 1!22!33!L20082008!【考点】整数裂【度】 4 星【型】算【解析】察 22!221(31)213!2! ,3 3!3321(41)32 14!3! ,⋯⋯20082008!20082008 2007L 2 1,(20091)20082007L212009!2008!可,原式1!(2!1!)(3!2!)L(2009!2008!)2009!【答案】 2009!【例 7 】计算:123456L991002345L98 99【考点】整数裂项【难度】 5 星【题型】计算【解析】设原式 =BAA B 122334L98999910011230122 3 412 3 L99 100 101 98 99 100 3【答案】199 100 1013333003B A 1 2 3 2 L 99 2 50 100 5000 B 333300 50003383A 333300 5000328333833283。
小学 奥数裂项法(含答案)
奥数裂项法同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。
(一)阅读思考例如,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:即或下面利用这个等式,巧妙地计算一些分数求和的问题。
【典型例题】例1. 计算:分析与解答:上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。
像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。
例2. 计算:公式的变式当分别取1,2,3,……,100时,就有例3. 设符号()、< >代表不同的自然数,问算式中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,就变成,与前面提到的等式相联系,便可找到一组解,即另外一种方法设都是自然数,且,当时,利用上面的变加为减的想法,得算式。
这里是个单位分数,所以一定大于零,假定,则,代入上式得,即。
又因为是自然数,所以一定能整除,即是的约数,有个就有个,这一来我们便得到一个比更广泛的等式,即当,,是的约数时,一定有,即上面指出当,,是的约数时,一定有,这里,36共有1,2,3,4,6,9,12,18,36九个约数。
当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,故()和< >所代表的两数和分别为49,32,27,25。
【模拟试题】二.尝试体验:1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。
【试题答案】1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。
的值为:75,81,96,121,147,200,361。
因为18的约数有1,2,3,6,9,18,共6个,所以有还有别的解法。
裂项法(二)前一节我们已经讲过,利用等式,采用“裂项法”能很快求出这类问题的结果来,把这一等式略加推广便得到另一等式:,现利用这一等式来解一些分数的计算问题。
(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版.docx
整数裂项与分数裂和考试要求(1)能熟练运算常规裂和型题目;(2)复杂整数裂项运算;(3)分子隐蔽的裂和型运算。
知识结构一、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加 1 的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0 时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a bab1 1(2) a 2b2 a 2b2a ba b a b a b b a a b a b a b b a裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
重难点(1)复整数裂的特点及灵活运用(2)分子蔽的裂和型运算。
例题精讲一、整数裂【例 1】算:1 3 2 4 3 5 4 6 L 99 101【巩固】算: 3 5 5 7 7 9 L 97 99 99 101【例 2】算1016 22 16 22 28 L 70 76 82 76 8288【巩固】 3 3 3 4 4 4 L 79 7979【例 4】计算:1 1 1 2 2 2 3 3 3 L 99 99 99 100 100 100【例 5】1 1 2 1 2 3 1 2 3 4 L 1 2 3 L100【巩固】 3 3 6 3 6 9 L 3 6 L300二、分数裂和【例 6】填空:51,71,91 62123204 111, 131, 151 3054265675791113151719【巩固】计算: 1122030425672906【例7】 5 6 6 7 78 8 9 9 1056677889910【巩固】36579111357612203042【例 8】计算:132579101119 3457820212435【巩固】12379111725 3571220283042【例 9】111112010263827 2330314151119120123124【巩固】3549637791105 1 316122030425688【例10】122222321821921922021223181919201212221222321222324212 2 2262【巩固】1323132333132333431323263 13课堂检测1、1 4 4 7 7 10 L 4952 =_________57911131517192、计算: 11220304256729063 、1179817512 22 22 32 20042 20052 20052 200624、22 3L20052005 20061 20045、 11 11L 11111223299 2家庭作业1、 1 1 2 2 3 3 L 50 502、 2 4 6 4 6 8 L 96 98 1003、 1 2 3 7911 21 313 5 7 12 20 28 40 564 、(11) (22) (33) L(88) (99 ) 2349105、 1 2 1 2 3 1 2 3 4 L 1 2 3 L 502 23 2 34 2 3 L 50教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
,本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 、(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
$知识点拨教学目标分数裂项计算二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
小学数学奥赛1-2-2-1 分数裂项.学生版
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
小学奥数教程:分数裂项计算 全国通用(含答案)
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
1奥数全套-分数裂项.学生版.doc
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:知识点拨教学目标分数裂项计算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
小学奥数裂项公式汇总
裂项运算常用公式一、分数“裂差”型运算1 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:2 对于分母上为3 个或4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式: 1ab b a b b a a b a b a 11+=⨯+⨯=⨯+ 2ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的;裂和:抵消,或 凑整三、整数裂项基本公式 1)1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n 2 )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n 3 )1()1(31)2)(1(31)1(+--++=+n n n n n n n n 4 )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n 5 !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n 证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和/差公式 2222)(b ab a b a +±=±。
五年级奥数.计算综合.分数裂差(A级).学生版
1、 灵活运用分数裂差计算常规型分数裂差求和2、 能通过变型进行复杂型分数裂差计算求和一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
1、 对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭考试要求知识结构分数裂差()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222hhn n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭ 二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
整数裂项,小学奥数整数裂项公式方法 讲解
整数裂项,小学奥数整数裂项公式方法讲解在小学奥数中有一些非常长的整数算式,仅仅用一般的运算法则满足不了计算要求,这时候我们要找式子中各乘式之间的规律,把各乘式裂项,前后抵消,从而简化计算。
规律和之前G老师讲过的分数裂项法十分类似。
先看一道整数裂项的经典例题:【例1】1x2+2x3+3x4+4x5+……98x99+99x100分析:题中计算式共有99个乘法式子相加,如果一个一个计算下来,恐怕一个下午就过去了,G老师告诉同学们,遇见这种复杂的计算式,一定是有规律的,数学重点考查的是思维。
能不能想办法把乘法式子换成两个数的差,再让其中一些项抵消掉,就像分数裂项的形式,最后只剩下头和尾呢?1x2=(1x2x3-0x1x2)÷3;2x3=(2x3x4-1x2x3)÷3;3x4=(3x4x5-2x3x4)÷3;……99x100=(99x100x101-98x99x100)÷3;规律是不是找着了?原式=(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+……+99x100x101-98x99x100)÷3=99x100x101÷3=333300整数裂项法就是将整数乘积化成两个乘积差的形式,这个差也不是随便乘一个数,而是要根据题目中各项数字公差来确定的。
比如在例1中,1x2和2x3这两项,1与2,2与3的的差都是1,我们就在1x2这一项乘以(2+1),再减去(1-1)x1x2;2x3这一项,也化成[2x3x(3+1)-(2-1)x2x3]……这样就刚好可以前后项互相抵消,然后再除以后延与前伸的差[(3+1)-(2-1)]。
整数裂项法应用:式中各项数字成等差数列,将各项后延一位,减去前伸一位,再除以后延与前伸的差。
【例2】1x3+3x5+5x7+……+95x97+97x99分析:算式中各个项中数字之差都是2,满足整数裂项条件,后延一位,减去前伸一位,再除以后延与前伸的差6。
小学数学奥数专题 分数裂项 PPT+课后作业 带答案
6
6
7
7
6
6 7
1 1
1 2
1 2
1 3
1 3
1 4
1 4
1 5
1 5
1 6
1 6
1 7
1 1 1 1 1 1 1 1 1 1 1 1 12 2 334 4 5 5 6 6 7
11 17
6 7
总结:b a b a 1 1 ab ab ab a b
2.之前的题目分子都是统一的,而这道题目的分子互不相同,因此
要找到新的简算方式。
3 5 7 9 11 1 2 23 3 4 45 56
21 3 2 43 5 4 65 1 2 23 3 4 45 5 6
2 1 2
1 1 2
3 2
3
2
2 3
4 3
4
3 3
4
4
5 5
4 4
5
1
1 2
1
1 6
1
1 12
1
1 20
1
1 30
1
1 42
1
1 56
7
1 2
1 6
1 12
1 20
1 30
3
3
5
5
3
3
5
5
7
7
5
5
7
7
9
9
7
7
9
9
11 11
9
9 11
13 1113
11 1113
1 1
1 3
1 3
1 5
1 5
1 7
1 7
1 9
1 9
1 11
高斯小学奥数五年级上册含答案_分数裂项
第十九讲分数裂项-------------------------------------------------------------------------------------------= + , = + , = + + . 个是单位分数分母的乘积.那反过来,如果一个分数可以写成 a + b 或者的形式,我们裂和: a + b = + ;裂差: = - .+ + + + + L + ; + + + + L + + + + + + L + ; + + + + L +1 1 1漫画中的分数有 、 和 ,它们的分子都是 1.这样分数我们称之为单位分数.每个2 3 6分数都可以拆成若干个分母不同的单位分数之和,比如:1 1 1 1 1 1 7 1 1 123 6 5 6 30 8 24 8我们来研究一下两个单位分数的和与差有什么性质.看下面的例子.1 1 5 + 7 1 1 7 - 5 + =- =5 7 5 ⨯ 75 7 5 ⨯ 7我们发现,结果的分母都是单位分数分母的乘积,分子一个是单位分数分母的和,另一a -b a ⨯ b a ⨯ b就可以把这个分数拆成两个单位分数的和或者差.这个拆分的过程叫做“裂和”和“裂差”.1 1 b - a 1 1 a ⨯ b a b a ⨯ b a b在以前的学习中,我们接触了很多分数运算的技巧.这些技巧虽然强大,但能够用来处理分数数列的并不太多.这一讲,我们将要接触一类分数数列的问题,利用裂项的技巧,可以将这类看似很复杂的题目轻松的解决.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - 例题 1.(1)计算:1 1 1 1 1 11⨯ 2 2 ⨯ 3 3 ⨯ 4 4 ⨯ 5 5 ⨯ 6 2012⨯ 20133 3 3 3 3(2)计算:. 2 ⨯ 5 5 ⨯ 8 8 ⨯11 11⨯14 98⨯101「分析」观察题中的式子,如果按常规的方法把它们通分,会相当繁琐.观察各项分母,每 一项都是两个自然数的乘积,而分子都是分母两个乘数的差,那么我们能不能利用分数拆分 的方式将算式做一个变形,使运算变的简单呢?练习 1.(1)计算:1 1 1 1 1 11⨯ 2 2 ⨯ 3 3 ⨯ 4 4 ⨯ 5 5 ⨯ 6 100⨯1012 2 2 2 2(2)计算:. 1⨯ 3 3⨯ 5 5 ⨯ 7 7 ⨯ 9 99⨯101- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -利用裂项,将算式中的分数做适当的拆分,使其中一部分可以相互抵消,可以达到简化 计算的效果.但裂项并非万能,只有具备一定特点的算式才能裂项.因此,大家在学习裂项时,必须注意以下几点:+++++L+;++++L+++++L+;++++L+练习3.计算:3(1)要弄清具有何种特征的算式可以裂项;(2)要根据题目的具体情况,灵活选用合适的裂项方法,切忌生搬硬套;(3)裂项相消之后究竟哪些项消去了,哪些项留下来了,必须一清二楚.只有把握住这三点,才能准确的把握这一技巧.希望大家在下面的学习中细心体会.-------------------------------------------------------------------------------------------例题2.(1)计算:222222 1⨯22⨯33⨯44⨯55⨯619⨯20 11111(2)计算:.1⨯44⨯77⨯1010⨯1328⨯31「分析」我们发现,每个分数的分母还是两个自然数的乘积,但是分子却不是这两个自然数的差.这样的情况我们应该怎么去拆分分数呢?练习2.(1)计算:(2)计算:111111⨯33⨯55⨯77⨯997⨯99 888881⨯55⨯99⨯1313⨯1745⨯49.例题3.计算:4812162024 -+-+-.1⨯33⨯55⨯77⨯99⨯1111⨯13「分析」观察各项分母,是连续奇数顺次首尾相连的形式.但与前面两题不同的是,本题各项分子并不相同,仔细观察会发现,4=1+3,8=3+5,…,24=11+13,现在分子等于分母中两个乘数的和,那我们能不能像例题1一样,对算式进行拆分呢?579111315-+-+-+.1⨯22⨯33⨯44⨯55⨯66⨯77⨯8-------------------------------------------------------------------------------------------通过前面的例题,同学们知道对于很有特点的分数算式,是可以采用裂项的方式来简化计算的.请同学们观察下面的算式,能从中发现哪些规律呢?-------------------------------------------------------------------------------------------.(1)1⨯4+++L++++L+例题4.111111111(1)1+3+5+7+9+11+13+15+17;261220304256729015791113151719(2)1-+-+-+-+.2612203042567290「分析」第(1)小题都是一些带分数,可以将整数部分和小数部分分开来计算.其中整数部分就是一个等差数列,那分数部分呢?虽然第(2)小题每个分数的分母与第(1)小题相同,但分子却有着不一样的规律,而且运算符也是加减交错的.在这种情况下,裂项又该如何进行呢?练习4.11111(1)1+2+3+4+5;3153563994812162024(2)8-7+6-5+4-3.315356399143-------------------------------------------------------------------------------------------例4和练4的两道题,第1题是裂差形式的裂项,第2题是裂和形式的裂项.它们有着共同之处:首先,分母能写成两数相乘的形式,其次,这些乘数“首尾顺次相连”如果算式中分数之间符号相同,都是加号或者都是减号,那就用裂差;如果算式中分数之间有加号也有减号,那就用裂和.-------------------------------------------------------------------------------------------例题5.2⨯53⨯68⨯112⨯33⨯44⨯59⨯10;(2)12+2222+3232+42192+2021⨯22⨯33⨯419⨯20.「分析」虽然本题的各项分母都具备了裂项的特征,但分子也是算式,很难直接用分母中各乘数相加减的形式表示出来.这种情况下,我们不妨将前几个分数算出来,找一下规律.---------------------------------------------------------------------分数裂项的题型非常多,前面我们学到的只是一些比较基本的类型.下面来看一些较复杂的题型.---------------------------------------------------------------------例题6.计算:1+++L+.----------------------1111⨯2⨯32⨯3⨯43⨯4⨯548⨯49⨯50「分析」每个分数的分母不再是两个自然数的乘积了,而是三个,这样的情况应该怎么处理呢?不妨联想一下整数裂项的处理方法.. )南极为什么会有恐龙在这一章里,我们经常对分数进行裂项和重组.其实在自然界里,分裂和重组的现象也 无处不在.下面就是一个例子.南极洲位于地球的最南端.那里气温寒冷,冰雪常年覆盖,除了企鹅外,我们很难看到 其它生物的踪影.然而你能想象吗?在如此寒冷的地方,科学家们居然发现了恐龙的化石! 实际上,恐龙只适宜生活在温带和热带,它们是怎么越过大洋,到南极大陆去了呢?要回答这一问题,我们必须先了解一些关于地球的知识.几十年前,人们发现地壳是由 一些紧密拼合在一起但又在缓慢运动的大板块构成的.可以这样比喻,板块背上驮着许多大 陆,当板块向一个或另一个方向运动时,大陆也随之一起运动.每隔一段时期,板块会将所 有的大陆汇合在一起,地球此时仅由一个主要陆地构成,称为“泛大陆” 当板块继续运动 时,大陆又重新分裂.在四十多亿年的地球发展史中,泛大陆分裂和重组过多次,最后一次完整的泛大陆是在 约 2.25 亿年前形成的.早期恐龙在那时已经开始出现,并且有机会分散到泛大陆的各个地 方.大约在两亿年前,泛大陆分裂成四部分.北部就是现在的北美、欧洲和亚洲,南部是由 现在的南美和非洲构成,最南部是现在的南极洲和澳大利亚,印度是剩余的一小部分.随着 时间的流逝,北美又与亚洲和欧洲分裂开,南美也与非洲相离.(如果看一张地图,并假定 把非洲和南美洲拼合在一起,你就会看到它们拼合得多么天衣无缝! 印度向北移动,并且 大约在 5000 万年前与亚洲相碰撞,形成巨大的喜马拉雅山脉,两块大陆在那里聚合并缓慢 地褶皱变形.这时,南极和澳大利亚也已相互分离.当大陆分裂后,每一个大陆都携带着自 己的恐龙而去.到 6500 万年以前,恐龙灭绝了,大陆也完全分裂开.所以,现在的每一个 大陆都有自己的恐龙化石.这也是为什么在南极也能发现恐龙化石的原因.2.25 亿年前2 亿年前 1.35 亿年前6500 万年前 现在作业3.计算:1+1+L+作业1.计算:1+1+L+3⨯44⨯51199⨯200.作业2.计算:1+2+3+L+1⨯22⨯44⨯711⨯55⨯925⨯291046⨯56..作业4.计算:7-13+19-252⨯55⨯88⨯1111⨯14+31374349-+-14⨯1717⨯2020⨯2323⨯26.作业5.计算:4+16+36+64+100+144+196+256.315356399143195255例题1.答案:(1) 2012 ;(2);(2)原式 = - 例题2. 答案:(1) 19 ;(2)详解:(1)原式 = 1 - ⎪ ⨯ 2 = ;(2)原式 = 1 - ⎪ ÷ 3 = .1 ⎫ 19 10 = .例题4. 答案:(1) 81 ;(2)1 详解:(1)原式 = (1 + 3 + L + 17 ) + ⎪ = 81 + = 81 .+ + L + (2)原式 = 1 + 2 - + L + = 1 + = 1 .例题5. 答案:(1) 7;(2) 38 1 - + 1 - + L + 1 - = 8 - + + L + ⎪ = 8 - = 7 .2 + + 2 + + L + 2 + = 38 + + + L + ⎪ = 38 + 详解:原式 = - + - + L + - ⎪÷ 2⎪ ÷ 2 = =- 练习1. 答案:(1) 100 ;(2)第十九讲 分数裂项992013 202详解:(1)原式 = 1 - 1 2012 1 1 99 = =2013 2013 2 101 202.1010 31⎛ ⎛ 1 ⎫ 10 ⎝ 20 ⎭ ⎝ 31 ⎭31例题3. 答案: 1213详解:原式 = 1 - 1 1213 139 110 10⎛ 1 1 1 ⎫ 9 9 ⎝ 1⨯ 2 2 ⨯ 39 ⨯10 ⎭ 10 10 2 + 3 9 + 10 1 11⨯ 2 2 ⨯ 3 9 ⨯10 10 101 195 20详 解 :( 1 ) 注 意 到 每 个 分 数 的 分 母 都 比 分 子 大 2 , 原 式 可 写 成2 2 2 ⎛ 2 2 2 ⎫ 4 1 2 ⨯3 3 ⨯4 9 ⨯10 ⎝ 2 ⨯ 3 3 ⨯ 4 9 ⨯10 ⎭5 5 ( 2 )注意到每个分数的分子都比分母的 2 倍多 1 ,原式可写成1 1 1 ⎛ 1 1 1 ⎫ 19 19 1⨯2 2 ⨯3 19 ⨯ 20 ⎝ 1⨯ 2 2 ⨯ 3 19 ⨯ 20 ⎭ 2020例题6. 答案: 3061225⎛ 1 1 1 1 1 1 ⎫ ⎝ 1⨯ 2 2 ⨯ 3 2 ⨯ 3 3 ⨯ 448 ⨯ 49 49 ⨯ 50 ⎭= 38 .⎛ 11 ⎫ 306 ⎝ 1⨯2 49 ⨯ 50 ⎭1225.100101 101;(2)原式 = 1 - ;(2) 简答:(1)原式 = 1 - ⎪÷ 2 = ;(2)原式 = 1 - ⎪⨯ 2 = .1 ⎫ 49 99 练习4. 答案:(1)155;(2) 3+ + + + = 15 . = 1 - + - + - = 3 .简答:原式 = - + - + L + + - + - + L + - = 1 - = 简答:原式 = ⨯ 1 - + - + L + - ⎪= ⨯ =+ - - + L - - = - = .+ + L + = 8 + ⨯ 1 - ⎪ = 8 .简答:(1)原式 = 1 - 1 100 1 100 = =101 101 101 101. 练习2. 答案:(1)49 9699 49⎛ ⎛ 1 ⎫ 96 ⎝ 99 ⎭ ⎝ 49 ⎭49练习3. 答案:1 18简答:原式 = 1 + 11.8 8121113简答:(1)原式 = 1 + 2 + 3 + 4 + 5 +1 1 1 1 1 51⨯ 3 3 ⨯ 5 5 ⨯ 7 7 ⨯ 9 9 ⨯11 11(2)原式 = 8 - 7 + 6 - 5 + 4 - 3 +作业1. 答案:1976004 8 12 16 20 24 121⨯ 3 3 ⨯ 5 5 ⨯ 7 7 ⨯ 9 9 ⨯11 11⨯13 131 1 1 1 1 1 1 1 197 - = - = 3 4 4 5 199 200 3 200 600作业2. 答案:5556.简答:原式 = 1 -作业3. 答案: 7291 1 1 1 1 1 1 1 552 2 4 4 7 46 56 56 56.1 ⎛ 1 1 1 1 1 ⎫ 1 28 7 4 ⎝ 5 5 9 25 29 ⎭ 4 29 29.作业4. 答案:6 13简答:原式 = 1 1 1 1 1 1 1 1 62 5 5 8 23 26 2 26 13作业5. 答案: 8 817简答:原式 = 8 +1 1 1 1 ⎛ 1 ⎫ 8 1⨯ 3 3 ⨯ 5 15 ⨯172 ⎝ 17 ⎭ 17。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 能熟练运算常规裂和型题目;
(2) 复杂整数裂项运算;
(3) 分子隐蔽的裂和型运算。
一、 复杂整数裂项型运算
复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N 。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、 “裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1)11a b a b a b a b a b b a
+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
考试要求
知识结构
整数裂项与分数裂和
(1) 复杂整数裂项的特点及灵活运用
(2) 分子隐蔽的裂和型运算。
一、
整数裂项
【例 1】 计算:1324354699101⨯+⨯+⨯+⨯++⨯L
【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯L
【例 2】 计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯L
【例 3】 计算1×1+2×2+3×3+……+99×99+100×100
例题精讲
重难点
【巩固】333444797979⨯⨯+⨯⨯++⨯⨯L
【例 4】 计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯L
【例 5】 ()()()()1121231234123100+++++++++++++++L L
【巩固】()()()33636936300++++++++++L L
二、
分数裂和
【例 6】 填空: ()+=2165, ()+=31127, ()+=4
1209
()+=513011,()+=614213, ()+=715615
【巩固】计算:90
197217561542133011209127651+-+-+-+-
【例 7】 5667788991056677889910
+++++-+-+⨯⨯⨯⨯⨯
【巩固】 36579111357612203042
++++++
【例 8】计算:132579101119 3457820212435 ++++++++=
【巩固】12379111725 3571220283042 +++++++
【例 9】111112010263827 2330314151119120123124 +++++++++
【巩固】
354963779110531
1 6122030425688⎡⎤
⎛⎫
-+-+--÷ ⎪
⎢⎥
⎝⎭
⎣⎦
【例 10】
22222222 122318191920 122318191920 ++++ ++⋯⋯++
⨯⨯⨯⨯
【巩固】3332223333222233322233223226
21262143214321321321212111+⋯+++⋯++-⋯+++++++-+++++++-
1、 14477104952⨯+⨯+⨯++⨯L =_________
2、 计算:57911131517191612203042567290
-+-+-+-+
3、 11798175451220153012
++++++ 课堂检测
4、 22222222
1223200420052005200612232004200520052006
++++++++⨯⨯⨯⨯L
5、 2221111112131991⎛⎫⎛⎫⎛⎫+
⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭
L
1、 1122335050⨯+⨯+⨯++⨯L
2、 2464689698100⨯⨯+⨯⨯++⨯⨯L
家庭作业
3、12379112131 3571220284056 +++++++
4、
12389 (1)(2)(3)(8)(9)
234910 -⨯-⨯-⨯⨯-⨯-
L
5、12123123412350 2232342350 ++++++++++⨯⨯⨯⨯
++++++
L
L
L
学生对本次课的评价
○特别满意○满意○一般
家长意见及建议
家长签字:教学反馈。