2012年北京市高考数学试卷(理科)及解析

合集下载

2012年高考数学北京(理)

2012年高考数学北京(理)

2012年普通高等学校招生全国统一考试数学(理)(北京卷)解析本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、 选择题共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= (A ) (-∞,-1) (B )(-1,-23) (C )(-23,3) (D )(3,+∞) [答案]D[解析]和往年一样,依然是集合(交集)运算,本题考查的是一次和二次不等式的解法.因为A={x ∈R|3x+2>0}32->⇒x ,利用二次不等式的解法可得{}31>-<=x x x B 或,画出数轴易得:A ∩B={x|x >3}.[点评]集合的运算往往与解不等式联系在一起考查,属低档题.(2)设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π(D )44π-[答案]D[解析]题目中表示区域如下图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积,因此P=4422241222ππ-=⨯-⨯[点评]这是道微综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式,概率.与面积、体积、长度有关的概率问题属于几何概型.3.设a,b∈R.“a=O”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]B[解析]a=O,b=0时,a+bi=0是实数,不是纯虚数;而如果a+bi是纯虚数,一定有a=O.[点评]纯虚数的概念要理解到位.(4)执行如图所示的程序框图,输出S值为(A)2(B)4(C)8(D)16[答案]C[解析]本题考查程序框图,设计到判断循环结束的时刻,以及简单整数指数幂的计算,k=o,s=1⇒k=1,s=1⇒k=2,s=2⇒k=3,s=8,结束[点评]读懂程序,做好循环结束的判断.本题属低档题.5.如图. ∟ACB=90º.CD⊥AB于点D,以BD为直径的圆与BC交于点E.则( )A. CE·CB=AD·DBB. CE·CB=AD·ABC. AD·AB=CD ²D.CE·EB=CD ²[答案]A[解析]这是平面几何题,主要考查射影定理的各种情况,要求学生对垂直的变化要有深入了解.[点评]平面几何中三角形相似的知识不容忽视.6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6 [答案]B[解析]分两类:(1)奇偶奇形式:3×2×2=12;偶奇奇形式:3×2=6,共有12+6=18 [点评]排列组合题要注意合理分类.(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A )28+B )30+C )56+D )60+[答案]B[解析]本题考查的是三棱锥的三视图问题,问题变化为求表面积,因此对学生的计算基本功以及空间想象能力都存在着综合性的考查.从所给的三视图可以得到该几何体的直观图,如下图所示,结合图中的数据,利用勾股定理计算出各边的长度,进而求出面积.563056101010+=+++=+++=左右后底表S S S S S[点评]把三视图正确地转化为直观图是解决问题的关键.(8)某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(A )5(B )7(C )9(D )11 [答案]C[解析]该题考查知识点很灵活,要根据图像看出变化趋势,由于目的是看年平均产量最高,就需要随着n 的增大,总年产量变化超过平均值的加入,随着n 的增大,由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C.[点评]考察阅读理解能力,这也对数学的学习平时要求不能过于僵化,要灵活. 第二部分(非选择题共110分)二.填空题(共6小题,每小题5分,共30分). 9.直线(t 为参数)与曲线(“为多α数)的交点个数为[答案]2[解析]直线方程为x+y=1,圆方程为x 2+y 2=9,画出图形易得两个交点.[点评]把参数方程化为普通方程是解决该问题关键.(10)已知{a n }为等差数列,S n 为其前n 项和,若a 1= ,S 2=a 3,则a 2=_________,S n =_________________.[答案]1,42n n[解析]本题考查等差数列的基本计算,难度不大,因为d a d a a a S 211132+=++⇒=211==⇒a d ,所以42)1(,12112n n d n n na S d a a n +=-+==+= [点评]等差、等比数列的通项公式、前n 项和公式是必须要掌握的内容,并会熟练应用.11.在△ABC 中,若α=2,b+c=7,cos B =14-,则b= [答案]4[解析]在⊿ABC 中,由余弦定414)(744))((42cos 222-=-+=-++=-+=c b c c b c b c ac b c a B化简得8c-7b+4=0,又b+c=7,解得b=4.[点评]正余弦定理是解三角形的有力工具,要烂熟于心.12.在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F.且与该撇物线相交于A 、B两点.其中点A 在x 轴上方.若直线l 的倾斜角为60º.则△OAF 的面积为[答案]3[解析]根据y 2=4x 得焦点坐标F (1,0),因为直线l 的倾斜角为60º,所以直线的斜率为K=tan600=3,利用点斜式,直线方程为y=3x-3,将直线和曲线联立⇒⎪⎩⎪⎨⎧=-=xy x y 4)1(32A (3,23)B (332,31-),因此33212121=⨯⨯=⨯⨯=∆A OAF y OF S [点评]直线与抛物线的关系可以转化为求交点坐标问题.(13)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则∙的值为________, ∙的最大值为 .[答案]1,1[解析]CB DE ∙=〉〈=∙DE cos ,而DA DE =〉〈,cos ,所以∙=1=;容易发现当E 点移动到B 点时,∙取最大值1.[点评]向量问题应多在数形结合上做文章.14.已知f(x)=m(x-2m )(x+m+3),g(x)=2x -2,若同时满足条件: ①x ∈R ,f(x) <0或g(x) <0 ②x ∈(﹣∝, ﹣4),f(x)g(x) <0则m 的取值范围是 [答案](-4,-2)[解析]根据g(x)= 2x -2<0,可解的x<1.由于x ∈R ,f(x) <0或g(x) <0成立,导致f(x)在x ≥1时,必须是f(x)<0的,因此f(x)的开口必须向下,m<0,且此时两个根为x 1=2m,x 2=-m-3,为保证条件①成立,需要⇒⎩⎨⎧<--=<=131221m x m x ⎪⎩⎪⎨⎧-><421m m ,又m<0,故结果为-4<m<0;又②x ∈(﹣∝, ﹣4),f(x)g(x) <0,得x ∈(-∞,-4)时,g(x)<0恒成立,因此就需要在这个范围内f(x)有取正数的可能,即-4应该比x 1,x 2中的小根大,当m ∈(-1,0)时,-m-3<-4,此时不成立;当m=-1时,有两相等根-2,此时不成立;当m ∈(-4,-1)时,2m<-4,得m<-2. 综上可知:m ∈(-4,-2)[点评]本题考查学生函数的综合能力,涉及到二次函数图像的开口,根的大小,涉及到指数函数的平移的单调性,还涉及到简易逻辑中的“或”,典型的“小题大做”.三、解答题公6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 已知函数(sin cos )sin 2()sin x x x f x x-=.(1) 求f (x )的定义域及最小正周期; (2) 求f (x )的单调递增区间.[解析] (1)由sinx ≠0得,x ≠πk ,即函数定义域为{x |x ≠πk ,k ∈Z}(sin cos )2sin cos()sin 2cos 21)1sin 4x x x x f x x x x x π-==--=--,所以T=π(2)由πππππk x k 224222+≤-≤+-,即ππππk x k +≤≤+-838,又x ≠πk , 故单调增区间是Z k k k k ∈⎥⎦⎤ ⎝⎛+⎪⎭⎫⎢⎣⎡-83,,8πππππ [点评]本题是三角函数题,考查知识比较基础,属容易题. 16. (本小题共14分)如图1,在Rt △ABC 中,∟C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∠BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图2.(1) 求证:A 1C ⊥平面BCDE ;(2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由[解析](1)∵DE ⊥A 1D ,且DE ⊥CD,∴DE ⊥底面A 1D C, ∴DE ⊥A 1C,又因为A 1C ⊥CD, A 1C ⊥平面BCDE.(2)以C 点为坐标原点,CA 1为竖轴,CB 为横轴,CD 为纵轴建立空间直角坐标系,则C (0,0,0)M (0,1,3),=CM (0,1,3), =BE (-1,2,0),)32,0,3(1=B A ,设平面A 1BE 的法向量为),,(111z y x =,解得)23,21,1(=n ,设所求线面角为α,sin α=4,22πα=∴(3)设点P 坐标为(m,0,0), )32,0,(1-=m P A ,)32,2,0(1-=D A ,设平面A 1DP 的法向量为2n ,解得)63,2,1(2m m n =,又平面A 1BE 与平面A 1DP 垂直,02=∙n ,解得m=-2,故在BC 上不存在这样的点P.[点评]立体几何问题的考查往往以垂直、平行为重点,进一步考查三种角,我们可以充分利用好垂直条件,建立空间直角坐标系求解或证明.17(本小题共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c 其中a >0,a+b+c=600.当数据a,b,c 的方差s 2最大时,写出a,b,c 的值(结论不要求证明),并求此时s 2的值.(注:2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦ ,其中x 为数据x 1,x 2…,x n 的平均数).[解析](1)P=32600400= (2)P=1031000300=(3)a=600,b=0,c=0,方差最大值为8万[点评]本题第三问考查学生的能力很强,化简计算观察的考查非常到位. 18.(本小题共13分)已知函数f (x )=ax 2+1(a>0),g(x)=x 3+bx.(1) 若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c )处具有公共切线,求a 、b 的值; (2) 当a 2=4b 时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.[解析](1)∵)1()1(g f '='∴2a=3+b , ∵f(1)=g(1),∴a=b , ∴a=b=3.(2)令F(x)=f(x)+g(x)= x 3+ax 2+42a x+1∴6,20423)(2122a x a x a ax x x F -=-==++=',得由于a>0,所以-2a <-6a∴(-∞,-2π),(- 6π,+∞)为增区间,(-2π,- 6π)为减区间,F(-1)=a-42a ,F(-2a )=1,且 F(-1) ≤F(-2a) ② -2a>-1,即a<2时,最大值为F(-1)=a-42a②当-2a ≤-1,即a ≥2时,最大值为F(-1)=a-42a 或F(-2a )=1,而F(-1)=a-42a =-(2a-1)2+1≤1,所以最大值为1.[点评]本题考查的是导数中较为常规的题目,切线、单调性、极值和最值这些内容也都是学习的重点,难点在第二问中的讨论,思维含量要求很高.19.(本小题共14分)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R)(1) 若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(2) 设m=4,曲线c 与y 轴的交点为A ,B (点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N ,直线y=1与直线BM 交于点G.求证:A ,G ,N 三点共线.[解析](1)利用椭圆的标准方程,易解得27<m<5 (2) 由得消去y y x kx y ⎩⎨⎧=++=82422(2k 2+1)x 2-16kx+24=0 ∴1224,1216222211+=+=+k x x k k x x 直线BM 的方程为)1,23(221111+⇒+=+y x G x x y y三点共线可以用2211223x y y x k k AN AG -=+⇒=,结合韦达定理代入化简可得结论. [点评]此题难度在于运算,思维含量适中,对学生来讲易于解答.20.(本小题共13分)设A 是由m ×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m ,n)为所有这样的数表构成的集合.对于A ∈S(m,n),记r i (A)为A 的第ⅰ行各数之和(1≤ⅰ≤m ),C j (A)为A 的第j 列各数之和(1≤j ≤n ):记K(A)为∣r 1(A)∣,∣R 2(A)∣,…,∣Rm(A)∣,∣C 1(A)∣,∣C 2(A)∣,…,∣Cn(A)∣中的最小值.(1) 对如下数表A ,求K (A )的值;(2)设数表A ∈S (2,3)形如求K (A )的最大值;(3)给定正整数t ,对于所有的A ∈S (2,2t+1),求K (A )的最大值.[解析](1)k (A )=0.7;[点评]本题第二、三问难度较大,不易解决,属难题.。

2012年北京市高考数学试卷(理科)(含解析版)

2012年北京市高考数学试卷(理科)(含解析版)
与曲线 c 交于不同的两点 M、N,直线 y=1 与直线 BM 交于点 G.求证:A, G,N 三点共线.
第 5页(共 27页)
20.(13 分)设 A 是由 m×n 个实数组成的 m 行 n 列的数表,满足:每个数的绝 对值不大于 1,且所有数的和为零,记 s(m,n)为所有这样的数表构成的集 合.对于 A∈S(m,n),记 ri(A)为 A 的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A) 为 A 的第 j 列各数之和(1≤j≤n);记 K(A)为|r1(A)|,|R2(A)|,…, |Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表 A,求 K(A)的值;
1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A∈S(2,3)形如
(1)求证:A1C⊥平面 BCDE; (2)若 M 是 A1D 的中点,求 CM 与平面 A1BE 所成角的大小; (3)线段 BC 上是否存在点 P,使平面 A1DP 与平面 A1BE 垂直?说明理由.
17.(13 分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃 圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生
A.28+6
B.30+6
C.56+12
D.60+12
8.(5 分)某棵果树前 n 年的总产量 Sn 与 n 之间的关系如图所示.从目前记录的
结果看,前 m 年的年平均产量最高,则 m 的值为( )
A.5
B.7
C.9
第 2页(共 27页)
D.11
二.填空题共 6 小题.每小题 5 分.共 30 分.
点 E.则( )
A.CE•CB=AD•DB

2012年理数高考试题答案及解析-北京-(5446)

2012年理数高考试题答案及解析-北京-(5446)

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-,-1)B (-1,-23) C (-23,3)D (3,+)【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。

因为32}023|{xx R x A,利用二次不等式可得1|{x x B 或}3x 画出数轴易得:}3|{xx BA .故选D .【答案】D 2.设不等式组2,20yx ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4(B )22(C )6(D )44【解析】题目中220yx 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222P,故选D 。

【答案】D3.设a ,b ∈R 。

“a=0”是“复数a+bi 是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当0a时,如果0b同时等于零,此时0bi a 是实数,不是纯虚数,因此不是充分条件;而如果bi a已经为纯虚数,由定义实部为零,虚部不为零可以得到0a,因此想必要条件,故选B 。

【答案】B4.执行如图所示的程序框图,输出的S 值为()A. 2 B .4 C.8 D. 16【解析】0k ,11k s ,21k s ,22k s ,8s ,循环结束,输出的s 为8,故选C 。

【答案】5.如图. ∠ACB=90o ,CD ⊥AB 于点D ,以BD 为直径的圆与BC 交于点 E.则()A. CE ・CB=AD ・DBB. CE ・CB=AD ・ABC. AD ・AB=CD 2D.CE ・EB=CD 2【解析】在ACB 中,∠ACB=90o ,CD ⊥AB 于点D ,所以DB AD CD 2,由切割线定理的CB CECD2,所以CE ・CB=AD ・DB 。

2012年理数高考试题答案及解析-北京

2012年理数高考试题答案及解析-北京

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-,-1)B (-1,-) C (-,3)D (3,+) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。

因为,利用二次不等式可得或画出数轴易得:.故选D . 【答案】D2.设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )(B ) (C ) (D )【解析】题目中表示的区域如图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D 。

【答案】D3.设a ,b ∈R 。

“a=0”是“复数a+bi 是纯虚数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【解析】当时,如果同时等于零,此时是实数,不是纯虚数,因此不是充分条件;而如果已经为纯虚数,由定义实部为零,虚部不为零可以得到,因此想必要条件,故选B 。

【答案】B4.执行如图所示的程序框图,输出的S 值为( )∞2323∞32}023|{->⇒>+∈=x x R x A 1|{-<=x x B }3>x }3|{>=x x B A I ⎩⎨⎧≤≤≤≤20,20y x 4π22π-6π44π-⎩⎨⎧≤≤≤≤2020y x 4422241222ππ-=⨯⋅-⨯=P 0=a 0=b 0=+bi a bi a +0=aA. 2 B .4 C.8 D. 16【解析】,,,,,循环结束,输出的s 为8,故选C 。

2012年高考理科数学北京卷-答案

2012年高考理科数学北京卷-答案
2012年普通高等学校招生全国统一考试(北京卷)
数学(理科)答案解析
第Ⅰ卷
一、选择题
1.【答案】D
【解析】 ,利用二次不等式的解法可得 或 ,易得 .
【提示】求出集合 ,然后直接求解 .
【考点】集合间的基本运算.
2.【答案】D
【解析】题目中 表示的区域表示正方形区域,而动点 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此 ,故选D.
20.【答案】(Ⅰ)
(Ⅱ1
(Ⅲ)
【解析】(Ⅰ)由题意可知 , , , ,

(Ⅱ)先用反证法证明 :
若 ,则 ,∴
同理可知 ,
∴ ,由题目所有数和为 ,即 ,
∴ 与题目条件矛盾
∴ .
易知当 时, 存在
∴ 的最大值为1.
(Ⅲ) 的最大值为 .
首先构造满足 的 :
, .
经计算知, 中每个元素的绝对值都小于1,所有元素之和为0,且 , , .
下面证明 是最大值.若不然,则存在一个数表 ,使得 .
由 的定义知 的每一列两个数之和的绝对值都不小于 ,而两个绝对值不超过1的数的和,其绝对值不超过2,故 的每一列两个数之和的绝对值都在区间 中.由于 ,故 的每一列两个数符号均与列和的符号相同,且绝对值均不小于 .
设 中有 列的列和为正,有 列的列和为负,由对称性不妨设 ,则 .另外,由对称性不妨设 的第一行行和为正,第二行行和为负.
【考点】由三视图求几何体的表面积.
8.【答案】C
【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C.
【提示】由已知中图像表示某棵果树前 年的总产量 与 之间的关系,结合图像可得答案.
【考点】函数图像的应用.

2012年高考数学(理科)试卷北京卷(含答案)最完美最高清word版

2012年高考数学(理科)试卷北京卷(含答案)最完美最高清word版

2012年普通高等学校夏季招生全国统一考试数学理工农医类(北京卷)本试卷共150分.考试时长120分钟.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()A.(-∞,-1) B.{-1,2 3 -}C.(23-,3) D.(3,+∞)2.在复平面内,复数10i3i+对应的点的坐标为()A.(1,3) B.(3,1)C.(-1,3) D.(3,-1)3.设a,b∈R,“a=0”是“复数a+b i是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.165.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则() A.CE·CB=AD·DBB.CE·CB=AD·ABC.AD·AB=CD2D.CE·EB=CD26.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为() A.24 B.18 C.12 D.67.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+B.30+C.56+D.60+8.某棵果树前n年的总产量S n与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为()A.5 B.7 C.9 D.11第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.直线2,1x ty t=+⎧⎨=--⎩(t为参数)与曲线3cos3sinxyαα=⎧⎨=⎩(α为参数)的交点个数为________.10.已知{a n}为等差数列,S n为其前n项和.若112a=,S2=a3,则a2=________,S n=________.11.在△ABC中,若a=2,b+c=7,1cos4B=-,则b=________.12.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为________.13.已知正方形ABCD的边长为1,点E是AB边上的动点,则DE CB⋅的值为________,DE DC⋅的最大值为________.14.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①x∈R,f(x)<0或g(x)<0;②x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.已知函数(sin cos)sin2()sinx x xf xx-=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.16.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D,E分别是AC,AB上的点,且DE∥BC,DE =2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.图1 图2 17.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600,当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中x为数据x1,x2,…,x n的平均数)18.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.19.已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.20.设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记S(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),c j(A)为A的第j列各数之和(1≤j≤n);记k(A)为|r1(A)|,|r2(A)|,…,|r m(A)|,|c1(A)|,|c2(A)|,…,|cn(A)|中的最小值.(1)对如下数表A,求k(A)的值;(2)设数表A∈S(2,3)形如求k(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求k(A)的最大值.1.D由题意得,A={x|x>23-},B={x|x<-1或x>3},所以A∩B=(3,+∞).2.D由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A的是阴影部分区域μA,故由几何概型的概率公式得:()22212π24π424P A-⨯⨯-==.3.B由已知得,“a+b i是纯虚数”“a=0”,但“a=0”“复数a+b i是纯虚数”,因此“a=0”是“复数a+b i是纯虚数”的必要而不充分条件.4.C初始:k=0,S=1,第一次循环:由0<3,得S=1×20=1,k=1;第二次循环:由1<3,得S=1×21=2,k=2;第三次循环:由2<3,得S=2×22=8,k=3.经判断此时要跳出循环,因此输出的S值为8.5.A由切割线定理得,CD2=CE·CB,又在Rt△CAB中,△ACD∽△CBD,∴CD2=AD·DB,∴CE·CB=AD·DB.6.B先分成两类:(一)从0,2中选数字2,从1,3,5中任选两个所组成的无重复数字的三位数中奇数的个数为23C412⨯=;(二)从0,2中选数字0,从1,3,5中任选两个所组成的无重复数字的三位数中奇数的个数为23C26⨯=.故满足条件的奇数的总个数为12+6=18.7.B根据三棱锥的三视图可还原此几何体的直观图为此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S=12×(2+3)×4+12×4×5+12×4×(2+3)+12541530652⨯-=+8.C结合S n与n的关系图象可知,前2年的产量均为0,显然202S=为最小,在第3年~第9年期间,S n的增长呈现持续稳定性,但在第9年之后,S n的增速骤然降低.因为当n=9时,99S的值为最大,故m值为9.9.答案:2解析:由题意知直线与曲线的参数方程可分别化为x+y-1=0,x2+y2=9,进而求出圆心(0,0)到直线x+y-1=0的距离2322d==<,∴交点个数为2.10.答案:121()4n n+解析:由112a=,S2=a3得,a1+a2=a3,即a3-a2=12,∴{a n}是一个以112a=为首项,以12为公差的等差数列.∴111(1)222na n n⨯=+-=.∴a2=1,221111()()2444n nnS a a n n n n=+=+=+.11.答案:4解析:由余弦定理得,222224(7)1cos222(7)4a cb b bBac b+-+--===-⨯⨯-,解得b=4.12.3解析:由已知得抛物线的焦点坐标为(1,0),直线l的方程为y=tan 60°(x-1),即33y x=联立得233,4.y xy x⎧=⎪⎨=⎪⎩①②由①得313x y=+,③将③代入②并整理得243403y y--=,解得123y=2233y=又点A在x轴上方,∴A(3,3.∴111||||123322OAFS OF y∆=⋅⋅=⨯⨯=.13.答案:1 1解析:DE·CB=(DA+AE)·CB=(CB+AE)·CB=|CB|2+AE·CB.因为AE⊥CB,所以AE·CB=0.所以DE·CB=12+0=1.DE·DC=(DA+AE)·DC=DA·DC+AE·DC=λ|DC|2(0≤λ≤1),∴DE·DC的最大值为1.14.答案:(-4,-2)解析:(一)由题意可知,m≥0时不能保证对x∈R,f(x)<0或g(x)<0成立.(1)当m=-1时,f(x)=-(x+2)2,g(x)=2x-2,此时显然满足条件①;(2)当-1<m<0时,2m>-(m+3),要使其满足条件①,则需10,21,mm-<<⎧⎨<⎩解得-1<m<0;(3)当m<-1时,-(m+3)>2m,要使其满足条件①,则需1,(3)1,mm<-⎧⎨-+<⎩解得-4<m<-1.因此满足条件①的m的取值范围为(-4,0).(二)在满足条件①的前提下,再探讨满足条件②的m的取值范围.(1)当m=-1时,在(-∞,-4)上,f(x)与g(x)均小于0,不合题意;(2)当m<-1时,则需2m<-4,即m<-2,所以-4<m<-2;(3)当-1<m<0时,则需-(m+3)<-4,即m>1,此时无解.综上所述满足①②两个条件的m的取值范围为(-4,-2).15.解:(1)由sin x≠0得x≠kπ(k∈Z),故f(x)的定义域为{x∈R|x≠kπ,k∈Z}.因为(sin cos)sin2 ()sinx x x f xx-==2cos x(sin x-cos x) =sin2x-cos2x-1π)14x--,所以f(x)的最小正周期2ππ2T==.(2)函数y=sin x的单调递增区间为[2kπ-π2,2kπ+π2](k∈Z).由2kπ-π2≤2x-π4≤2kπ+π2,x≠kπ(k∈Z),得kπ-π8≤x≤kπ+3π8,x≠kπ(k∈Z).所以f(x)的单调递增区间为[kπ-π8,kπ)和(kπ,kπ+3π8](k∈Z).16.解:(1)因为AC⊥BC,DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.所以DE⊥A1C.又因为A1C⊥CD,所以A1C⊥平面BCDE.(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,则A1(0,0,,D(0,2,0),M(0,1,B(3,0,0),E(2,2,0).设平面A1BE的法向量为n=(x,y,z),则n·1A B=0,n·BE=0.又1A B=(3,0,-),BE=(-1,2,0),所以30,20.xx y⎧-=⎪⎨-+=⎪⎩令y=1,则x=2,z=所以n=(2,1).设CM与平面A1BE所成的角为θ.因为CM=(0,1,所以sin cos,2CMCMCMθ⋅====nnn,所以CM与平面A1BE所成角的大小为π4.(3)线段BC上不存在点P,使平面A1DP与平面A1BE垂直.理由如下:假设这样的点P存在,设其坐标为(p,0,0),其中p∈[0,3].设平面A1DP的法向量为m=(x,y,z),则m·1A D=0,m·DP=0.又1A D=(0,2,-,DP=(p,-2,0),所以20,20.ypx y⎧-=⎪⎨-=⎪⎩令x=2,则y=p,z=所以m=(2,p).平面A1DP⊥平面A1BE,当且仅当m·n=0,即4+p+p=0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.17.解:(1)厨余垃圾投放正确的概率约为4002=4001001003=++“厨余垃圾”箱里厨余垃圾量厨余垃圾总量.(2)设生活垃圾投放错误为事件A,则事件A表示生活垃圾投放正确.事件A的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P(A)约为400240600.71000++=,所以P(A)约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200, 所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.18.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1),且f ′(1)=g ′(1). 即a +1=1+b ,且2a =3+b . 解得a =3,b =3. (2)记h (x )=f (x )+g (x ),当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1,h ′(x )=3x 2+2ax +14a 2.令h ′(x )=0,得12a x =-,26ax =-.a >0时,h (x )与h ′(x )的情况如下:所以函数h (x )的单调递增区间为(-∞,2-)和(6-,+∞); 单调递减区间为(2a -,6a-). 当2a-≥-1,即0<a ≤2时, 函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2. 当2a -<-1,且6a-≥-1,即2<a ≤6时, 函数h (x )在区间(-∞,2a -)内单调递增,在区间(2a-,-1]上单调递减,h (x )在区间(-∞,-1]上的最大值为()12ah -=.当6a-<-1,即a >6时,函数h (x )在区间(-∞,2a -)内单调递增,在区间(2a -,6a -)内单调递减,在区间(6a-,-1]上单调递增,又因为h (2a -)-h (-1)=1-a +14a 2=14(a -2)2>0,所以h (x )在区间(-∞,-1]上的最大值为()12ah -=. 19.解:(1)曲线C 是焦点在x 轴上的椭圆,当且仅当50208852m m m m ⎧⎪->⎪->⎨⎪⎪>--⎩,,,解得72<m <5,所以m 的取值范围是(72,5).(2)当m =4时,曲线C 的方程为x 2+2y 2=8,点A ,B 的坐标分别为(0,2),(0,-2).由22428y kx x y =+⎧⎨+=⎩,,得(1+2k 2)x 2+16kx +24=0. 因为直线与曲线C 交于不同的两点, 所以∆=(16k )2-4(1+2k 2)×24>0,即232k >. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=kx 1+4,y 2=kx 2+4,x 1+x 2=21612k k -+,x 1x 2=22412k +. 直线BM 的方程为1122y y x x ++=,点G 的坐标为(1132x y +,1). 因为直线AN 和直线AG 的斜率分别为222AN y k x -=,1123AG y k x +=-,所以k AN -k AG =21212121222633y y kx kx x x x x -++++=+ =2121221622()4412=0243312k x x k k k x x k -⨯⨯+++=++,即k AN =k AG .故A ,G ,N 三点共线.20.解:(1)因为r 1(A )=1.2,r 2(A )=-1.2,c 1(A )=1.1,c 2(A )=0.7,c 3(A )=-1.8, 所以k (A )=0.7.(2)不妨设a ≤b .由题意得c =-1-a -b . 又因为c ≥-1,所以a +b ≤0.于是a ≤0. r 1(A )=2+c ≥1,r 2(A )=-r 1(A )≤-1,c 1(A )=1+a ,c 2(A )=1+b ,c 3(A )=-(1+a )-(1+b )≤-(1+a ). 所以k (A )=1+a ≤1.当a =b =0且c =-1时,k (A )取得最大值1.(3)对于给定的正整数t ,任给数表A任意改变A 的行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *∈S (2,2t +1),并且k (A )=k (A *).因此,不妨设r 1(A )≥0,且c j (A )≥0(j =1,2,…,t +1).由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c j (A )(j =1,2,…,t +1). 又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0,所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A )=r 1(A )-c t +2(A )-…-c 2t +1(A )=12112t t j jj j t a b++==+-∑∑≤(t +1)-t ×(-1)=2t +1. 所以21()2t k A t +≤+. 对数表A 0:第1列则A 0∈S (2,2t +1),且0()2k A t =+.综上,对于所有的A ∈S (2,2t +1),k (A )的最大值为212t t ++.。

2012年北京高考数学真题及答案(理科)

2012年北京高考数学真题及答案(理科)

绝密★使用完毕前2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{A x=∈R|320}x+>,{B x=∈R|(1)(3)0}x x+->,则A B=I(A)(,1)-∞-(B)2(1,)3--(C)2(,3)3-(D)(3,)+∞(2)设不等式组2,2xy⎧⎨⎩≤≤≤≤表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)π4(B)π22-(C)π6(D)4π4-(3)设,a b∈R.“0a=”是“复数ia b+是纯虚数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(4)执行如图所示的程序框图,输出的S值为(A)2(B)4(C)8(D)16数学(理)(北京卷)第1 页(共11 页)(5)如图,90ACB∠=︒,CD AB⊥于点D,以BD为直径的圆与BC交于点E.则(A)CE CB AD DB⋅=⋅(B)CE CB AD AB⋅=⋅(C)2AD AB CD⋅=(D)2CE EB CD⋅=(6)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(A)24(B)18(C)12(D)6(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)28+(B)30+(C)56+(D)60+(8)某棵果树前n年的总产量nS与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11BA DCE正(主)视图侧(左)视图俯视图42 3 4数学(理)(北京卷)第2 页(共11 页)数学(理)(北京卷) 第 3 页(共 11 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2012年北京市高考数学试卷(理科)答案与解析

2012年北京市高考数学试卷(理科)答案与解析

2012年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.(5分)(2012•北京)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=),}}2.(5分)(2012•北京)设不等式组,表示的平面区域为D,在区域D内随机取B=44.(5分)(2012•北京)执行如图所示的程序框图,输出的S值为()5.(5分)(2012•北京)如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()6.(5分)(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数=6=6中选两个数字排在个位与十位,共有=637.(5分)(2012•北京)某三棱锥的三视图如图所示,该三棱锥的表面积是()8+60+66+120+12=,=10=6.8.(5分)(2012•北京)某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()二.填空题共6小题.每小题5分.共30分.9.(5分)(2012•北京)直线(t为参数)与曲线(α为参数)的交点个数为2.解:直线d=10.(5分)(2012•北京)已知﹛a n﹜是等差数列,s n为其前n项和.若a1=,s2=a3,则a2= 1.,,知,解得d==,d=11.(5分)(2012•北京)在△ABC中,若a=2,b+c=7,cosB=﹣,则b=4.,利用余弦定理可得﹣12.(5分)(2012•北京)在直角坐标系xOy中.直线l过抛物线y2=4x的焦点F.且与该抛物线相交于A、B两点.其中点A在x轴上方.若直线l的倾斜角为60°.则△OAF的面积为.的方程为:,即代入抛物线方程,化简可得,或的面积为故答案为:13.(5分)(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.解:因为==114.(5分)(2012•北京)已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣∞,﹣4),f(x)g(x)<0.则m的取值范围是(﹣4,﹣2).三、解答题公6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2012•北京)已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.sin)﹣)由,解得原函数的单调递增区间为16.(14分)(2012•北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.,,法向量为垂直,则,可求得2,法向量为∴∴,,∴,,法向量为∴垂直,则,17.(13分)(2012•北京)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:S2=[++…+],其中为数据x1,x2,…,x n的平均数),因此有当正确的概率为率为,18.(13分)(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.,求导函式可得:.,设,解得:,,∴))﹣在在;<﹣时,即(﹣时,最大值为19.(14分)(2012•北京)已知曲线C:(5﹣m)x2+(m﹣2)y2=8(m∈R)(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.则,从而可得,三点共线,只需证,,解得:,解得:,方程为:,,三点共线,只需证,20.(13分)(2012•北京)设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S (m,n),记r i(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),C j(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.)首先构造满足是最大值即可.)的最大值为.的下面证明)的最大值为。

2012年普通高等学校招生全国统一考试理数北京卷pdf版含答案

2012年普通高等学校招生全国统一考试理数北京卷pdf版含答案

( )
∴= A1B 0 ,3,− 2 3 , A1E =(−2 ,−1,0)
设平面 A1BE 法向量为 n = ( x ,y ,z)

A1B

n
=0
A1E ⋅ n =0

3
y

2
3z
= 0 ∴
z
=
3y 2
−2x − y =0
x
=
−y 2
( )
∴ n = −1,2 , 3
( ) 又∵ M −1,0 , 3
( ) ( ) ( ) (求: s2=
1 n
2
x1 − x +
2
x2 − x + +
xn

x
2
,其中
x
为数据
x1

x2
,…,
xn
的平均数)
18.(本小题共 13 分)
已知函数 f ( x) = ax2 + 1(a > 0) , g ( x=) x3 + bx . (1)若曲线 y = f ( x) 与曲线 y = g ( x) 在它们的交点 (1,c) 处具有公共切线,求 a ,b 的值;
4
5
6
7
8
答案
D
D
B
C
A
B
B
C
二、填空题
题号 答案
9
10
11
n2 + n
2
1;
4
4
12
13
14
3
1;1
(−4 ,− 2)
三、解答题 15.
解:
= f (x) (sin x − cos x)s= in 2x (sin x − cos x)2sin x= cos x 2(sin x − cos x) cos x

2012年全国高考理科数学试题及答案-北京卷

2012年全国高考理科数学试题及答案-北京卷

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。

因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .【答案】D 2.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π(D )44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。

【答案】D3.设a ,b ∈R 。

“a=0”是“复数a+bi 是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【解析】当0=a 时,如果0=b 同时等于零,此时0=+bi a 是实数,不是纯虚数,因此不是充分条件;而如果bi a +已经为纯虚数,由定义实部为零,虚部不为零可以得到0=a ,因此想必要条件,故选B 。

【答案】B4.执行如图所示的程序框图,输出的S 值为( )A. 2 B .4 C.8 D. 16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。

2012年高考试题理科数学(北京卷)——含答案及解析 免费

2012年高考试题理科数学(北京卷)——含答案及解析 免费

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、 选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A∩B=A. (﹣∞,﹣1)B. (﹣1,﹣23)C.(﹣23,3) D. (3,+∞) 【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

2.设不等式组0202x y ≤≤⎧⎨≤≤⎩,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A . 4πB . 22π- C. 6π D. 44π- 【考点】概率【难度】容易【点评】本题考查几何概率的计算方法。

在高二数学(理)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(理)强化提高班中有对概率相关知识的总结讲解。

3.设a ,b ∈R .“a =O ”是“复数a +b i 是纯虚数”的A .充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D .既不充分也不必要条件【考点】复数的计算【难度】容易【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

4.执行如图所示的程序框图,输出S值为A. 2B. 4C. 8D. 16【考点】算法初步【难度】中等【点评】本题考查几何概率的计算方法。

在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。

2012年北京卷理科数学高考试卷(原卷 答案)

2012年北京卷理科数学高考试卷(原卷 答案)

绝密★启用前2012年普通高等学校招生全国统一考试(北京卷)理科数学本试卷共20题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合,,则( )A .B .C .D .2.设不等式组表示的平面区域为.在区域内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .B .C .D .3.设.“”是“复数是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.执行如图所示的程序框图,输出的值为( ) A .2B .4C .8D .16 5.如图,,于点,以为直径的圆与交于点,则( ) A .B .C .D .6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24 B .18 C .12 D .6 7.某三棱锥的三视图如图所示,该三棱锥的表面积是( ){}|320A x x =∈+>R ()(){}|130B x x x =∈+−>R A B =()1−∞−,213⎧⎫−−⎨⎬⎩⎭,233⎛⎫− ⎪⎝⎭,()3+∞,0202x y ⎧⎨⎩≤≤,≤≤D D π4π22−π64π4−a b ∈R ,0a =i a b +S 90ACB ∠=︒CD AB ⊥D BD BC E CE CB AD DB ⋅=⋅CE CB AD AB ⋅=⋅2AD AB CD ⋅=2CE EB CD ⋅=EBDACA .B .C .D .8.某棵果树前前的总产量与之间的关系如图所示.从目前记录的结果看,前年的年平均产量最高,值为( )A .5B .7C .9D .11第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9直线(为参数)与曲线(为参数)的交点个数为 .10.已知为等差数列,为其前项和.若,,则 . 11.在中,若,,,则 .12.在直角坐标系中,直线过抛物线的焦点,且与该抛物线相交于,两点,其中点 在轴上方,若直线的倾斜角为.则的面积为 .13.已知正方形的边长为1,点是边上的动点,则的值为 ;的最大值为 .14.已知,.若同时满足条件:①,或; ②,则的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数.(1)求的定义域及最小正周期;28+30+56+60+n n S n m m 21x t y t =+⎧⎨=−−⎩t 3cos 3sin x y αα=⎧⎨=⎩α{}n a n S n 112a =23S a =2a =ABC △2a =7b c +=1cos 4B =−b =xOy l 24y x =F A B A x l 60︒OAF △ABCD E AB DE CB ⋅DE DC ⋅()()()23f x m x m x m =−++()22x g x =−x ∀∈R ()0f x <()0g x <()()()40x f x g x ∃∈−∞−<,,m ()()sin cos sin 2sin x x xf x x −=()fx 34正(主)视图侧(左)视图俯视图(2)求的单调递增区间.16.(本小题共14分) 如图1,在中,,,.,分别是,上的点,且,,将沿折起到的位置,使,如图2. (1)求证:平面; (2)若是的中点,求与平面所成角的大小;(3)线段上是否存在点,使平面与平面垂直?说明理由.17.(本小题共13分) 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率; (3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值. (求:,其中为数据,,…,的平均数)18.(本小题共13分) 已知函数,.(1)若曲线与曲线在它们的交点处具有公共切线,求,的值; (2)当时,求函数的单调区间,并求其在区间上的最大值. 19.(本小题共14分)已知曲线(1)若曲线是焦点在轴上的椭圆,求的取值范围; (2)设,曲线与轴的交点为(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点.求证:三点共线.()f x Rt ABC △90C ∠=︒3BC =6AC =D E AC AB DE BC ∥2DE =ADE △DE 1A DE △1AC CD ⊥1AC ⊥BCDE M 1A D CM 1A BE BC P 1A DP 1A BE a b c ,,0a >600a b c ++=a b c ,,2s a b c ,,2s ()()()2222121n s x x x x x x n ⎡⎤=−+−++−⎢⎥⎣⎦x 1x 2x n x ()()210f x ax a =+>()3g x x bx =+()y f x =()y g x =()1c ,a b 24a b =()()f x g x +(]1−∞−,()()()22:528C m x m y m −+−=∈R C x m 4m =C y A B ,A B 4y kx =+C M N 1y =BM G A G N ,,AC D E B A 1MC B ED 图1图220.(本小题共13分)设是由个实数组成的行列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记为所有这样的数表构成的集合. 对于,记为的第行各数之和,为的第列各数之和;记为,,…,,,,…,中的最小值. (1)对如下数表,求的值;(2)设数表求的最大值;(3)给定正整数,对于所有的,求的最大值.A m n ⨯m n ()S m n ,()A S m n ∈,()i r A A i ()1i m ≤≤()j c A A j ()1j n ≤≤()k A ()1||r A ()2||r A ()||m r A ()1||c A ()2||c A ()||n c A A k A (23A S ∈,()k A t ()221A S t ∈+,()k A2012年普通高等学校招生全国统一考试(北京卷)理科数学(参考答案)1.D 【解析】 试题分析:,或,所以,故选D.考点:集合的运算 2.D 【解析】 【分析】试题分析:阴影部分的面积为:4π−,故选.D 考点:1、几何概型的计算,面积比【方法点晴】本题主要考查的是几何概型,属于中等题,由题作出所对应的图像,可得平面区域D 为如图所示的正方形区域,而区域内的任意点到原点的距离大于的区域为图中的阴影部分,由几何概型的公式可知概率即为面积之比,易得答案. 【详解】 3.B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B 【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义 4.C 【解析】 【分析】 【详解】试题分析:列出循环过程中S 与k 的数值,不满足判断框的条件即可结束循环. 解:第1次判断后S=1,k=1, 第2次判断后S=2,k=2, 第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8. 故选C .考点:循环结构. 5.A 【解析】如图所示,由切割线定理可知2•CE CB CD =,在直角△ACB 中,090ACB ∠=,CD AB ⊥,则由射影定理可知2=?,CD AD DB ∴••CE CB AD DB =. 【考点定位】本题考查的是平面几何的知识,具体到本题就是射影定理的各种情况,需要学生对于垂直的变化有比较深刻的印象. 6.B 【解析】 【分析】【详解】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况. 7.B 【解析】从所给的三视图可以得到该几何体为三棱锥,如右图所示.图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长,本题所求表面积应为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10S S S S ====后右底左,,因此该几何体表面积30S S S S S =+++=+后右底左B .【考点定位】本小题主要考查的是三棱锥的三视图问题,原来考查的是棱锥或棱柱的体积而今年考得是表面积,因此考查了学生的计算基本功和空间想象的能力. 8.C 【解析】 【分析】由题意利用三角函数的图象变换原则,即可得出结论. 【详解】由题意,将函数()sin 2f x x =的图象向右平移6π个单位长度, 可得()sin 2()sin(2)63g x x x ππ=−=−.故选C . 【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型. 9.2 【解析】 【分析】试题分析:将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论.根据题意,由于直线2{1x ty t=+=−−(t 为参数)与曲线3cos {3sin x y αα==(α为参数)化为普通方程分别是x+y-1=0和x 2+y 2=9,那么可知∵圆心(0,0)到直线x+y-1=0的距离为d=<3,∴直线与圆有两个交点,故答案为2考点:参数方程与普通方程点评:本题考查参数方程与普通方程的互化,考查直线与圆的位置关系,属于基础题 【详解】请在此输入详解!10.1 ,【解析】【考点定位】本小题主要考查等差数列的基本运算,考查通项公式和前n 项和公式的计算 11.4 【解析】在△ABC 中,利用余弦定理222cos 2a c b B ac+−=,14()()47()444c b c b c b c c ++−+−−==,化简得:,与题目条件7b c +=联立,可解得2,4,3a b c ===,【考点定位】本题考查的是解三角形,考查余弦定理的应用.利用题目所给的条件列出方程组求解 12【解析】由24y x =可求得焦点坐标(1,0)F ,因为倾角60º,所以直线的斜率为0tan 60k ==,利用点斜式,直线方程为y =2{4y y x =={1(,33A B ⇒−,因此11122OAF A S OF y ∆=⨯⨯=⨯⨯=.【考点定位】本题考查的是解析几何中抛物线的问题,根据交点弦问题求围成面积.此题把握住抛物线的基本概念,熟练的观察出标准方程中的焦点和准线坐标和方程是成功的关键,当然还要知道三角形面积公式. 13. 1,1 【解析】根据平面向量的点乘公式•••cos DE CB DE DA DE DA θ==,由图可知,•cos DE DA θ=, 因此•DE CB =2||1DA =;••cos cos DE DC DE DC DE αα==,而•cos DE α就是向量DE 在DC 边上的射影,要想让•DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为DC ,所以长度为1.【考点定位】本题是平面向量问题,考查学生对于平面向量点乘知识的理解,其中包含动点问题,考查学生最值的求法. 14.()4,2m ∈−− 【解析】根据()220xg x =−<可解得x<1,由于题目中第一个条件的限制,导致f(x)在1x ≥是必须是()0f x <,当m=0时,()0f x =不能做到f(x)在1x ≥时()0f x <,所以舍掉,因此,f(x)作为二次函数开口只能向下,故m<0,且此24n n +时2个根为122,3x m x m ==−−,为保证条件成立,只需1221{31x m x m =<=−−<1{24m m <⇒>−,和大前提m<0取交集结果为40m −<<;又由于条件2的限制,可分析得出在(,4),()x f x ∃∈−∞−恒负,因此就需要在这个范围内g(x)有得正数的可能,即-4应该比12x x 两个根中较小的来的大,当(1,0)m ∈−时,34m −−<−,解得交集为空,舍.当m=-1时,两个根同为24−>−,舍.当(4,1)m ∈−−时,24m <−,解得2m <−,综上所述,(4,2)m ∈−−.【考点定位】本题考查学生函数的综合能力,涉及到二次函数的图像开口,根大小,涉及到指数函数的单调性,还涉及到简易逻辑中的“或”,还考查了分类讨论思想. 15.2==2T ππ 单调递增区间为[,)8k k πππ−和(k Z ∈)【考点定位】本题考查三角函数知识,此类型题在平时练习时练的较多,考生应该觉得非常容易入手。

2012年高考真题—理科科数学(北京)

2012年高考真题—理科科数学(北京)

2012年高考真题—理科科数学(北京)已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则A∩B=A (-,-1)B (-1,-)C (-,3)D (3,+)【答案解析】D设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)(B)(C)(D)【答案解析】D设a,b∈R。

“a=0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案解析】B执行如图所示的程序框图,输出的S值为()A. 2 B .4 C.8 D. 16【答案解析】A从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A.24B. 18C. 12D. 6【答案解析】B某三棱锥的三视图如图所示,该三梭锥的表面积是()A. 28+6B. 30+6C. 56+ 12D. 60+12【答案解析】B某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高。

m值为()A.5B.7C.9D.11【答案解析】C直线为参数)与曲线为参数)的交点个数为______。

【答案解析】2已知等差数列为其前n项和。

若,,则=_______。

【答案解析】,在∈ABC中,若=2,b+c=7,cosB=,则b=_______。

【答案解析】4在直角坐标系xOy中,直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。

若直线l的倾斜角为60.则∈OAF的面积为【答案解析】已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________,的最大值为______。

【答案解析】1,1已知,,若同时满足条件:∈,或;∈, 。

则m的取值范围是_______。

【答案解析】(本小题共13分)已知函数。

(1)求的定义域及最小正周期;(2)求的单调递减区间。

北京高考数学试题与答案理科

北京高考数学试题与答案理科

2012 年一般高等学校招生全国一致考试数学 (理) (北京卷 )本试卷共 5 页, 150 分。

考试时长 120 分钟。

考生务势必答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8 小题,每题 5 分,共 40 分.在每题列出的四个选项中,选出切合题目要求的一项.(1)已知会合A { x R 3x 20},B{ x R ( x1)(x 3)0},则 AI B(A)( ,1)(B)(2(C)(2(D)(3,) 1, ), 3)33(2)设不等式组0x2,D .在地区 D 内随机取一个点,则此点到坐0y表示的平面地区为2标原点的距离大于 2 的概率是( A)( B )2( C)4 2(D )464(3)设a,b R .“a0 ”是“复数 a bi 是纯虚数”的( A)充足而不用要条件(B)必需而不充足条件( C)充足必需条件(D)既不充足也不用要条件(4)履行以下图的程序框图,输出的S 值为开始(A)2k= 0, S=1(B)4k=k+ 1(C)8(D)16S=S?2kk<3是否输出 S结束(5)如图,ACB 90 , CD AB 于点 D ,以 BD 为直径的圆与交BC 于点 E .则CE(A)CE CB AD DB(B)CE CB AD AB(C)AD AB CD 2(D)CE EB CD 2( 6)从0, 2中选一个数字,从1,3, 5 中选两个数字,构成无重复数字的三位数,此中奇数的个数为( A)24(B)18(C)12(D)6(7)某三棱锥的三视图以下图,该三棱锥的表面积是4(A)2865234(B)3065正(主)视图侧(左)视图(C)56 12 5(D)60 12 5俯视图(8)某棵果树前n年的总产量S n与n之间的关系S n以下图.从当前记录的结果看,前m 年的年均匀产量最高,m 的值为(A)5(B)7第二部分(非选择题共 110 分)(C)9(D)11O 1 2 3 4 5 6 7 8 9 10 11 n二、填空题共6小题,每题 5分,共 30 分.x 2 tx 3cos (为参数 ) 的交点个数为(9)直线1 (t 为参数 ) 与曲线3sin.yty(10)已知 { a n } 为等差数列,S n 为其前 n 项和.若 a 1 1 a 3 ,则 a 2., S 21 2(11)在 ABC 中,若 a2 , b c7 , cosB ,则 b.4(12)在直角坐标系xoy 中,直线 l 过抛物线 y 24x 的焦点 F ,且与该抛物线订交于 A 、 B两点,此中, A 点在 x 轴上方.若直线l 的倾斜角为 60 ,则 OAF 的面积为.ABCD 的边长为 1,点 E 是 AB 边上的动点,则uuur uur(13)已知正方形 DE CB 的值为.(14)已知 f ( x)m( x 2m)( x m3) , ( ) 2x2.若同时知足条件:g x① x R , f ( x) 0 或 g( x)0 ;② x (, 4) , f ( x) g( x) 0 .则 m 的取值范围是.三、解答题共 6 小题 ,共 80 分 . 解答应写出文字说明 ,演算步骤或证明过程 .(15)(本小题共 13 分)已知函数 f ( x) (sin x cosx)sin 2x.sin x(Ⅰ)求 f ( x) 的定义域及最小正周期;(Ⅱ)求 f ( x) 的单一递加区间.(16)(本小题共 14 分)如图 1,在 Rt ABC 中,C 90 , BC 3, AC 6 ,D 、E 分别为 AC 、 AB 上的AA点,且 DE //BC ,DE 2 ,将ADE 沿 DE 折起到A1 DE 的地点,使 A1C CD ,如2.(Ⅰ)求:AC平面BCDE;1(Ⅱ)若 M 是A1D的中点,求 CM 与平面A1BE所成角的大小;(Ⅲ)段 BC 上能否存在点 P ,使平面A1DP 与平面 A1 BE 垂直?明原因.(17)(本小共 13 分)最近几年来,某市了促生活垃圾的分理,将生活垃圾分厨余垃圾、可回收物和其他垃圾三,并分置了相的垃圾箱.居民生活垃圾分投放状况,随机抽取了市三垃圾箱中1000吨生活垃圾,数据以下(位:吨):“厨余垃圾”箱“可回收物”箱“其余垃圾”箱厨余垃圾400100100可回收物3024030其余垃圾202060(Ⅰ)估厨余垃圾投放正确的概率;(Ⅱ)估生活垃圾投放的概率;(Ⅲ)假厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其余垃圾”箱的投放量分a, b, c,此中a0 , a b c600.当数据a, b, c 的方差s2最大,写出a, b, c 的(不要求明),并求此s2的.(注:s21 [( x1nx )2( x2x) 2⋯( x n x ) 2 ] ,此中x 数据x1, x2 ,, x n的均匀数)(18)(本小共13 分)已知函数 f ( x) ax2 1 (a 0) , g( x) x3bx .(Ⅰ)若曲线yf ( x)与曲线yg( x)在它们的交点(1, c)处拥有公共切线,求a, b 的值;(Ⅱ)当a 24b 时,求函数f ( x)g( x)的单一区间,并求其在区间--1 上的最大值.(19)(本小题共14 分)已知曲线C :(5m) x 2(m2) y 28 (mR ) .(Ⅰ)若曲线C 是焦点在 x轴点上的椭圆,求m 的取值范围;(Ⅱ) 设 m4 ,曲线 C 与 y 轴的交点为 A 、B (点 A 位于点 B 的上方),直线 y kx 4与曲线C 交于不一样的两点M 、 N,直线y1与直线BM交于点G .求证:A,G,N三点共线.(20)(本小题共 13 分)设 A是由 m n 个实数构成的 m 行 n 列的数表,知足:每个数的绝对值不大于 1,且所有数的和为零.记S( m, n) 为全部这样的数表构成的会合.关于 A S(m , n) ,记 r i ( A) 为 A 的第 i 行各数之和 (1≤ i ≤ m) , c j ( A) 为 A 的第 j 列各数之和 (1 ≤ j ≤ n) .k( A)| r1( A) | ,| r2 ( A) |,⋯,| r m ( A) | , | c1 ( A) | ,|c2 (A) | ,⋯,| c n ( A) |中的最小.(Ⅰ)以下数表 A ,求k( A)的;110.80.10.31(Ⅱ)数表A S(2, 3) 形如11Ca b1求 k ( A) 的最大;(Ⅲ)定正整数t ,于全部的 A S(2, 2t 1) ,求 k ( A) 的最大.2012高考北京数学真答案及析一、号12345678答案D D B C A B B C二、填空号91011121314答案21; n2n431; 1 4 , 24三、解答题15.解:(sin x cos x)sin 2x(sin x cos x)2sin xcos x2(sin x cos x)cos xf ( x)sin x sin xsin 2x1cos2 x 2 sin 2 x π1, x | x kπ,k Z 4(1)原函数的定义域为x | x kπ,k Z ,最小正周期为.π(2)原函数的单一递加区间为πkπ,kπ k3πk Z 8Z ,kπ,kπ816.解:(1)CD DE , A1E DEDE平面 A1CD ,又 A1C平面 ACD1,A1 C DE又 A1C CD,A1 C 平面 BCDE( 2 )如图建系 C xyz ,则 D 2 ,0 ,0 ,A 0,0,2 3 ,B 0,3,0 , E2,2,0zA1(0,0,2 3)∴ A1B 0,3, 2 3 , A1E2, 1,0设平面 A1 BE 法向量为n x ,y ,zA1B n03y 23z 0z 3 y∴∴2则2 x y 0yA1E n0x2ME (-2,2,0)D (-2,0,0)C (0,0,0)yxB (0,3,0)∴ n1,2, 3又∵ M1,0, 3∴ CM1,0, 3∴ cos CM n1342 |CM | | n |1 4 3 1 3 2 2 22∴ CM 与平面 A1 BE 所成角的大小 45(3)设线段 BC 上存在点P,设P点坐标为0 ,a ,0,则 a0 ,3则 A1P0,a , 2 3 ,DP 2 ,a ,0设平面 A1 DP 法向量为n1x1,y1,z1则 ay1z13ay1 2 3z1 0 ∴62 x1ay1 01ay1x12∴ n13a ,6 , 3a假定平面1与平面1垂直A DP A BE则 n 1 n0 ,∴ 3a 12 3a 0 , 6 a 12 , a2∵ 0 a 3∴不存在线段 BC 上存在点 P ,使平面 A 1 DP 与平面 A 1BE 垂直17.( )由题意可知:400 2600 =3 ( )由题意可知: 200+60+4031000=10( )由题意可知: s 2 1 (a 2 b 2 c 2 120000) ,所以有当 a 600 , b 0 , c0 时,有s2380000 .18.解:( )由 1,c 为公共切点可得:f ( x) ax 21(a 0) ,则 f (x)2ax , k 12a ,g( x)x 3 bx ,则 f ( x)=3 x 2 b , k 2 3 b ,2a 3 b又 f (1) a 1 , g(1) 1 b ,a 11 b ,即 ab ,代入①式可得:a 3 .b 3 (2) a24b , 设 h( x)f ( x) g( x) x3ax21a 2 x 14则 h ( x) 3x22ax1 a 2,令 h ( x) 0 ,解得: x 1a, x 2a ;4 26a 0 ,a a ,26原函数在,a单一递加, 在a , a 单一递减, 在 a ,22 66①若 1a ,即 a ≤2 时,最大值为 h(1) a 2≤2 a;4②若a1a,即2 a 6时,最大值为 ha 1226③若 1a时,即 a ≥6 时,最大值为ha1 .≥62综上所述:当 a0 ,2 时,最大值为 h(1)aa 2 ;当 a 2 ,时,最大值为419.( 1)原曲线方程可化简得:x 2 y 21885 m m 2885 m m 2 由题意可得:8 0 ,解得:7m 55 m28m2上单一递加ha .12(2)由已知直线代入椭圆方程化简得:(2k 21)x 2 16kx24 0 ,=32(2 k 23) ,解得: k 232由韦达定理得: x Mx N16k ①, x M x N 24 ,②12k 22k 2 1设 N( x N , k x N 4) , M ( x M , kx M 4) , G( x G ,1)MB 方程为: ykx M 63x M ,1 ,x2,则 G6x Mkx MAG3x M ,1,ANx N ,x N k 2 ,x M k6欲证 A ,G ,N 三点共线,只要证 AG , AN 共线即 3x M( x N k 2)x N 建立,化简得: (3k k) x M x N6( x M x N )x M k 6将①②代入易知等式建立,则A ,G ,N 三点共线得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年北京市高考数学试卷(理科)及解析
一、选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.
1.已知集合A={x ∈R |3x+2>0﹜,B={x ∈ R |(x+1)(x-3)>0﹜则A ∩B=( )
A .(﹣∞,﹣1) B.{21,3
--} C. ﹙2,33-﹚ D.(3,+∝) 2. 设不等式组0202
x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取
一个点,则此点到坐标原点的距离大于2的概率是( )
A.
4π B.22π- C.6π D. 44
π-
3.设,a b R ∈.“0a =”是‘复数a bi +是纯虚数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
4.执行如图所示的程序框图,输出的S 值为( )
A. 2 B .4
C.8
D. 16
5.如图. ∠ACB=90º,CD ⊥AB 于点D ,以BD 为直径的圆与BC 交于点E.则( )
A. CE ·CB=AD ·DB
B. CE ·CB=AD ·AB
C. 2AD AB CD =g
D.2CE EB CD =g
6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )
A. 24
B. 18
C. 12
D. 6
7.某三梭锥的三视图如图所示,该三梭锥的表面
积是( )
A.2865+
B. 3065+
C.56125+
D.60125+
8.某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录
的结果看,前m 年的年平均产量最高。

m 值为( )
A.5
B.7
C.9
D.11
二.填空题共6小题。

每小题5分。

共30分. 9.直线21x t y t
=+⎧⎨=--⎩ (t 3cos x α=⎧交点个数为
10.已知{}n a 等差数列S 2=
,= ,=
11.在△ABC 中,若a =4
-
,则= 12.在直角坐标系xOy 中,直线l 过抛物线2
4y x =的焦点F ,且与该抛物线相交于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60º.则OAF V 的面积为 13.己知正方形ABCD 的边长为1,点E 是AB 边上的动点.则DE CB u u u r u u u r g
的值为
14.已知()(2)(3)f x m x m x m =-++,()22x
g x =-,若同时满足条件:①x R ∀∈,510O n S n
1198764321。

相关文档
最新文档