26.人教版·河南省安阳市林州市期末七年级下册数学试卷
河南省安阳市七年级下学期数学期末试卷
河南省安阳市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果一个有理数的平方根和立方根相同,那么这个数是()A . ±1B . 0C . 1D . 0和12. (2分) (2020七下·防城港期末) 下列调查中,调查方式选择最合理的是()A . 为了解广西中学生的课外阅读情况,选择全面调查B . 调查七年级某班学生打网络游戏的情况,选择抽样调查C . 为确保第55颗北斗卫星成功发射,应对零部件进行全面调查D . 为了解一批袋装食品是否含有防腐剂,选择全面调查3. (2分)(2020·龙湖模拟) 如图,直线、被直线所截,下列选项中不能得到∥ 的是()A . ∠1=∠2B . ∠2=∠3C . ∠3=∠5D . ∠3+∠4=180°4. (2分)若三角形的三边分别为x-1、x、x+1(x>1),则x的取值范围是()A . x>1B . 1<x<2C . x>2D . x≥25. (2分)如果关于不等式(a-2)x>a-2的解集是x<1,那么a的取值范围是()A . a≤2B . a<2C . a>2D . a<06. (2分)在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是()A . (﹣3,300)B . (7,﹣500)C . (9,600)D . (﹣2,﹣800)7. (2分)如图,直线AB,CD,EF相交于点O,则∠AOE+∠DOB+∠COF等于()A . 90°B . 120°C . 180°D . 360°8. (2分) (2018九上·康巴什月考) 在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A .B .C .D .9. (2分)(2017·长春模拟) 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A . 3×4+2x<24B . 3×4+2x≤24C . 3x+2×4≤24D . 3x+2×4≥2410. (2分)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列出下列哪一个方程式?()A . 0.4x+0.6y+100=500B . 0.4x+0.6y﹣100=500C . 0.6x+0.4y+100=500D . 0.6x+0.4y﹣100=500二、填空题 (共6题;共7分)11. (2分)(2012·茂名) 如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:________.(填“稳定性”或“不稳定性”)12. (1分) (2019八上·绍兴期末) 在平面直角坐标系中,点(2,3)到x轴的距离是________.13. (1分) (2019九上·武汉月考) 如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=________°.14. (1分) (2016八上·芦溪期中) 的整数部分a=________,小数部分b=________.15. (1分) (2018八上·仁寿期中) 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是________16. (1分) (2019七下·大连期中) 如图,用4个相同的小长方形与1个小正方形镶嵌成正方形图案,已知该图案的周长为28,小正方形的周长为12,则小长方形的面积为________.三、解答题 (共9题;共77分)17. (10分) (2019八上·水城月考) 解方程(1)(2)18. (10分)解不等式组,并将解集在数轴上表示出来.19. (5分) (2019八上·昌邑期中) 如图,完成下列推理过程:如图所示,点E在外部,点D在BC边上,DE交AC于F ,若,,求证:.证明:∵ (已知),(▲),∴ (▲),又∵ ,∴▲▲(▲),即,在和中(已证)∵ (已知)(已证)∴ (▲).∴ (▲)20. (6分)(2020·东莞模拟) 如图,在△ABC中,∠C=90°.(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.21. (8分)(2020·江都模拟) 某校全体学生积极参加献爱心慈善捐款活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制出两幅不完整的统计图(统计图中每组含最小值,不含最大值).请依据图中信息解答下列问题:(1)求随机抽取的学生人数;(2)填空:(直接填答案) ①“20元~25元”部分对应的圆心角度数为________°;②捐款的中位数落在________.(填金额范围);(3)若该校共有学生2100人,请估算全校捐款不少于20元的人数.22. (15分)(2011·温州) 2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.23. (6分) (2020七下·高港期中) 如图(1)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P 作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.(2)问题迁移:如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(3)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.24. (2分) (2019八下·山亭期末) 求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:① 或② .解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.25. (15分) (2019八上·庆元期末) 如图,以矩形ABCD的相邻边建立直角坐标系,AB=3,BC=5.点E是边CD上一点,将△ADE沿着AE翻折,点D恰好落在BC边上,记为F.(1)求折痕AE所在直线的函数解析式________;(2)若把翻折后的矩形沿y轴正半轴向上平移m个单位,连结OF,若△OAF是等腰三角形,则m的值是________,参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共77分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
林州七年级数学期末试卷
一、选择题(每题3分,共30分)1. 下列数中,属于整数的是()A. -2.5B. 0.001C. -3/4D. 1/22. 下列各数中,负数是()A. 0.5B. -1/4C. 1/2D. 03. 下列各数中,正数是()A. -1/3B. 0C. -2D. 34. 如果a=5,b=-3,那么a-b的值是()A. 2B. -8C. 8D. 05. 下列各数中,绝对值最大的是()A. -5B. -4C. -3D. -26. 下列方程中,解为整数的是()A. 2x-3=7B. 3x+2=8C. 4x-5=10D. 5x+6=117. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形8. 下列函数中,是正比例函数的是()A. y=2x+3B. y=x^2C. y=3/xD. y=kx(k为常数)9. 下列各数中,是偶数的是()A. 13B. 14C. 15D. 1610. 下列各数中,是质数的是()A. 4B. 6C. 8D. 11二、填空题(每题3分,共30分)11. -5的倒数是__________,0的倒数是__________。
12. 3/4的平方根是__________,(-3/4)的平方根是__________。
13. 若a=2,b=-3,则a+b的值是__________,a-b的值是__________。
14. 下列各数中,最小的数是__________。
15. 下列各数中,最大的数是__________。
16. 若x=5,则x-3的值是__________,x+3的值是__________。
17. 下列各数中,绝对值最小的数是__________。
18. 下列各数中,质数和合数的个数分别是__________。
19. 下列各数中,正数和负数的个数分别是__________。
20. 下列各数中,奇数和偶数的个数分别是__________。
三、解答题(每题10分,共40分)21. 解方程:2x-3=7。
河南省安阳市2020-2021学年七年级下学期期末数学试题
二、填空题
11.化简: ______.
12.如图,点 在 的平分线 上,点 在 上, , ,则 的度数是_______.
13.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需_______分钟.
本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.
5.C
【分析】
由 求解 ,利用三角形的内角和可得答案.
【详解】
解:如图:记 与 的交点为 ,
, ,
故选C.
【点睛】
本题考查的是平行线的性质与三角形的内角和定理,掌握相关知识是解题关键.
6.A
【分析】
(1) 这一结论正确吗?为什么?
(2)你能得出 和 = 这两个结论吗?若能,写出你的推理过程.
23.如图1,在平面直角坐标系中点 、 的坐标分别为 , .现同时将点 、 分别向上平移 个单位长度,再向右平移 个单位长度,分别得到点 、 的对应点 、 ,连接 、 、 .
(1)求点 、 的坐标;
(2)如图2,点 是线段 上的一点,连接 、 .求证: 的值为定值,并求出这个值.
18.计算:
(1) ;
(2) .
19.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
C. 的立方根是 D. 的立方根是
2019-2020学年河南省安阳市林州市七年级(下)期末数学试卷(最全解析)
2019-2020学年河南省安阳市林州市七年级(下)期末数学试卷一、选择题(每小题3分,共30分) 1.(3分)8的立方根是( ) A .2B .2±C .2D .42.(3分)已知第二象限的点(2,2)P a b --,那么点P 到y 轴的距离为( ) A .2a -B .2a -C .2b -D .2b -3.(3分)不等式组2411x x >-⎧⎨-⎩的解集,在数轴上表示正确的是( )A .B .C .D .4.(3171的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(3分)下列命题是假命题的是( )A .在同一平面内,过一点有且只有一条直线与已知直线垂直B .负数没有立方根C .在同一平面内,若a b ⊥,b c ⊥,则//a cD .同旁内角互补,两直线平行6.(3分)为了解某市七年级2800名学生的视力情况,从中抽查了100名学生的视力进行统计分析,下列四个判断正确的是( ) A .2800名学生是总体 B .样本容量是100 名学生C .100名学生的视力是总体的一个样本D .每名学生是总体的一个样本7.(3分)如图,已知//AB CD ,AF 与CD 交于点E ,BE AF ⊥,50B ∠=︒,则DEF ∠的度数是( )A .10︒B .20︒C .30︒D .40︒8.(3分)已知236a x +=,要使x 是负数,则a 的取值范围是( ) A .3a >B .3a <C .3a <-D .33a -<<9.(3分)已知点(36,4)P m m --在第四象限,化简|2||8|m m ++-的结果为( ) A .10B .10-C .26m -D .62m -10.(3分)把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费的情况下,共有几种截法( ) A .1种B .2种C .3种D .4种二.填空题(每小题3分,共15分)11.(3分)如果4x -是16的算术平方根,那么1x +的立方根为 . 12.(310 4.5(填“>”或“<” ).13.(3分)若x 的一半与1的和为非负数,且0x <,则x 可取的所有整数解的和是 . 14.(3分)已知A ∠的两边与B ∠的两边分别平行,且A ∠比B ∠的3倍少40︒,那么A ∠=︒.15.(3分)若||20x y y -+-=,则1xy +的值为 . 三、解答题(解答题要有必要的文字说明,证明过程或计算步骤) 16.(8分)计算:(1)201935|1|427(1)+---; (2)223(3)(4)27|12---+. 17.(8分)解方程组: (1)32316x y x y -=⎧⎨+=⎩;(2)25528x y x y -=⎧⎨+=⎩.18.(8分)如图,已知//AB CD ,EF 交AB 于点E ,交CD 于点F ,FG 平分EFD ∠,交AB 于点G .若150∠=︒,求BGF ∠的度数.19.(8分)按要求完成下列证明:已知:如图,在ABC ∆中,CD AB ⊥于点D ,E 是AC 上一点,且1290∠+∠=︒. 求证://DE BC .证明:CD AB ⊥(已知),1∴∠+ 90(=︒ ).1290∠+∠=︒(已知), ∴ 2(=∠ ).//(DE BC ∴ ).20.(9分)解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-⎪⎩,并把解集在数轴上表示出来.21.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,ABC ∆的顶点都在格点上,建立平面直角坐标系, (1)点A 的坐标为 ,点C 的坐标为 .(2)将ABC ∆先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△111A B C .(3)连接1A B ,1A C ,求△1A BC 的面积.22.(12分)每年5月20日是中国学生营养日,按时吃早餐是一种健康的饮食习惯.为了解本校七年级学生饮食习惯,李明和同学们在七年级随机调查了一部分学生每天吃早餐的情况.并将统计结果绘制成如图统计图(不完整).图中A表示不吃早餐,B表示偶尔吃早餐,C表示经常吃早餐,D表示每天吃早餐.请根据统计图解答以下问题:(1)这次共调查了多少名学生?(2)请补全条形统计图;(3)这个学校七年级共有学生1200名.请估计这个学校七年级每天约有多少名学生不吃早餐?23.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2019-2020学年河南省安阳市林州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.(3分)8的立方根是( ) A .2B .2±C .2D .4【分析】根据立方根的定义进行选择即可. 【解答】解:8的立方根是2, 故选:A .【点评】本题考查了立方根的定义,掌握立方根的定义是解题的关键. 2.(3分)已知第二象限的点(2,2)P a b --,那么点P 到y 轴的距离为( ) A .2a -B .2a -C .2b -D .2b -【分析】根据第二象限的点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答. 【解答】解:点(2,2)P a b --在第二象限, 20a ∴-<,∴点P 到y 轴的距离为:|2|2a a -=-.故选:B .【点评】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.3.(3分)不等式组2411x x >-⎧⎨-⎩的解集,在数轴上表示正确的是( )A .B .C .D .【分析】根据解一元一次不等式的方法可以解答本题. 【解答】解:2411x x >-⎧⎨-⎩①②,由不等式①,得2x >-,由不等式②,得2x ,故原不等式组的解集是22x -<, 故选:B .【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.4.(31的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间【分析】1的近似值. 【解答】解:4175<,516∴+<.故选:D .【点评】此题主要考查了估算无理数的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法. 5.(3分)下列命题是假命题的是( )A .在同一平面内,过一点有且只有一条直线与已知直线垂直B .负数没有立方根C .在同一平面内,若a b ⊥,b c ⊥,则//a cD .同旁内角互补,两直线平行【分析】根据垂直的定义、立方根及平行线的判定与性质判断即可.【解答】解:A 、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;B 、负数有立方根,原命题是假命题;C 、在同一平面内,若a b ⊥,b c ⊥,则//a c ,是真命题;D 、同旁内角互补,两直线平行,是真命题;故选:B .【点评】本题考查了命题与定理的知识,解题的关键是了解垂直的定义、立方根及平行线的判定与性质等知识,难度不大.6.(3分)为了解某市七年级2800名学生的视力情况,从中抽查了100名学生的视力进行统计分析,下列四个判断正确的是( ) A .2800名学生是总体 B .样本容量是100 名学生C .100名学生的视力是总体的一个样本D .每名学生是总体的一个样本【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量. 【解答】解:A 、2800名学生的视力是总体,故此选项不合题意;B 、样本容量是100,故此选项不合题意;C 、100名学生的视力是总体的一个样本,故此选项符合题意;D 、每名学生的视力是总体的一个样本,故此选项不合题意;故选:C .【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.(3分)如图,已知//AB CD ,AF 与CD 交于点E ,BE AF ⊥,50B ∠=︒,则DEF ∠的度数是( )A .10︒B .20︒C .30︒D .40︒【分析】根据两直线平行,内错角相等可得1B ∠=∠,根据垂直的定义可得90AEB ∠=︒,然后根据平角等于180︒列式计算即可得解. 【解答】解://AB CD ,150B ∴∠=∠=︒,BE AF ⊥,90AEB ∴∠=︒,1801180509040DEF AEB ∴∠=︒-∠-∠=︒-︒-︒=︒.故选:D .【点评】本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键. 8.(3分)已知236a x +=,要使x 是负数,则a 的取值范围是( ) A .3a >B .3a <C .3a <-D .33a -<<【分析】本题应对方程进行化简,得出x 关于a 的表示式,然后根据0x <求出a 的取值范围. 【解答】解:原方程变形为:362x a =-, 223x a ∴=-;0x <, 2203a ∴-<,即223a -<-;3a ∴>故选:A .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.(3分)已知点(36,4)P m m --在第四象限,化简|2||8|m m ++-的结果为( ) A .10B .10-C .26m -D .62m -【分析】先根据第四象限内点的横坐标大于0,纵坐标小于0,列出关于m 的一元一次不等式组,求解得出m 的取值范围,再根据绝对值的定义化简即可. 【解答】解:点(36,4)P m m --在第四象限, ∴36040m m ->⎧⎨-<⎩,解得:24m <<.|2||8|2810m m m m ∴++-=++-=.故选:A .【点评】本题考查了点的坐标,一元一次不等式组的解法,绝对值的定义,解题的关键是根据点所处的位置得到有关m 的一元一次不等式组.10.(3分)把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费的情况下,共有几种截法( ) A .1种B .2种C .3种D .4种【分析】设截成2米长的钢管x 段,3米长的钢管y 段,根据钢管的总长度为20米,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出结论. 【解答】解:设截成2米长的钢管x 段,3米长的钢管y 段, 依题意,得:2320x y +=, 3102x y ∴=-. 又x ,y 均为正整数,∴72x y =⎧⎨=⎩,44x y =⎧⎨=⎩,16x y =⎧⎨=⎩,∴共有3种截法.故选:C .【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.二.填空题(每小题3分,共15分)11.(3分)如果4x -是16的算术平方根,那么1x +【分析】根据平方根定义得出x 的值,然后根据立方根的定义即可得出答案. 【解答】解:4x -是16的算术平方根, 44x ∴-=,即8x =,1x ∴+【点评】本题主要考查了算术平方根和立方根的定义,解题的关键是能够熟练掌握算术平方根和立方根的定义.12.(34.5(填“>”或“<” ).【分析】4.5的大小关系即可.【解答】解:4,4 4.5<,∴ 4.5<. 故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确放缩法的应用.13.(3分)若x 的一半与1的和为非负数,且0x <,则x 可取的所有整数解的和是 3- .【分析】根据题意列出不等式组,解之求得x 的取值范围,进而可得答案.【解答】解:根据题意,得:11020x x ⎧+⎪⎨⎪<⎩,解不等式组,得20x -<,所以x 可取的整数解为2-、1-,213--=-.故答案为3-.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的能力.14.(3分)已知A ∠的两边与B ∠的两边分别平行,且A ∠比B ∠的3倍少40︒,那么A ∠=20︒或125 ︒.【分析】设B ∠的度数为x ,则A ∠的度数为340x -︒,根据两边分别平行的两个角相等或互补得到340x x =-︒或340180x x +-︒=︒,再分别解方程,然后计算340x -︒的值即可.【解答】解:设B ∠的度数为x ,则A ∠的度数为340x -︒,当A B ∠=∠时,即340x x =-︒,解得20x =︒,所以34020x -︒=︒;当180A B ∠+∠=︒时,即340180x x +-︒=︒,解得55x =︒,所以340125x -︒=︒;所以A ∠的度数为20︒或125︒.故答案为:20︒或125.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了两边分别平行的两个角的关系.关键是分类讨论.15.(3分)若||0x y-=,则1xy+的值为5.【分析】依据非负数的性质可求得x、y的值,然后代入计算即可.【解答】解:||0x y-=,x y∴-=,20y-=,解得:2x=,2y=.1415xy∴+=+=.故答案为:5.【点评】本题主要考查的是非负数的性质,熟练掌握非负数的性质是解题的关键.三、解答题(解答题要有必要的文字说明,证明过程或计算步骤)16.(8分)计算:(1)20195|1|(1)+--;(2)2(|1.【分析】(1)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式51231=+-+-6=;(2)原式3431=++9=【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(8分)解方程组:(1)3 2316x yx y-=⎧⎨+=⎩;(2)25 528x yx y-=⎧⎨+=⎩.【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①3⨯+②得:525x =,解得:5x =,把5x =代入①得:2y =,则方程组的解为52x y =⎧⎨=⎩; (2)25528x y x y -=⎧⎨+=⎩①②, ①2⨯+②得:918x =,解得:2x =,把2x =代入①得:1y =-,则方程组的解为21x y =⎧⎨=-⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,已知//AB CD ,EF 交AB 于点E ,交CD 于点F ,FG 平分EFD ∠,交AB 于点G .若150∠=︒,求BGF ∠的度数.【分析】先根据平行线的性质求出CFE ∠的度数,再由补角的定义求出EFD ∠的度数,根据角平分线的性质求出DFG ∠的度数,进而可得出结论.【解答】解://AB CD ,150∠=︒,150CFE ∴∠=∠=︒.180CFE EFD ∠+∠=︒,180130EFD CEF ∴∠=︒-∠=︒. FG 平分EFD ∠,1652DFG EFD ∴∠=∠=︒. //AB CD ,180BGF DFG ∴∠+∠=︒,180********BGF DFG ∴∠=︒-∠=︒-︒=︒.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.19.(8分)按要求完成下列证明:已知:如图,在ABC ∆中,CD AB ⊥于点D ,E 是AC 上一点,且1290∠+∠=︒. 求证://DE BC .证明:CD AB ⊥(已知),1∴∠+ EDC ∠ 90(=︒ ).1290∠+∠=︒(已知), ∴ 2(=∠ ).//(DE BC ∴ ).【分析】直接利用平行线的判定方法结合垂直的定义分析得出答案.【解答】证明:CD AB ⊥(已知),190(EDC ∴∠+∠=︒ 垂直定义). 1290∠+∠=︒(已知), 2(EDC ∴∠=∠ 同角的余角相等). //(DE BC ∴ 内错角相等,两直线平行). 故答案为:EDC ∠;垂直定义;EDC ∠;同角的余角相等;内错角相等,两直线平行.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.20.(9分)解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-⎪⎩,并把解集在数轴上表示出来. 【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:()3172323xxxx x⎧--<⎪⎨--⎪⎩①②,由①得,2x>-;由②得,35x,故此不等式组的解集为:35x.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,ABC∆的顶点都在格点上,建立平面直角坐标系,(1)点A的坐标为(2,7),点C的坐标为.(2)将ABC∆先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△111A B C.(3)连接1A B,1A C,求△1A BC的面积.【分析】(1)直接利用平面直角坐标系得出对应点坐标进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:(2,7)A,(6,5)C;故答案为:(2,7),(6,5);(2)如图所示:△111A B C ,即为所求;(3)△1A BC 的面积为:164122⨯⨯=.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.22.(12分)每年5月20日是中国学生营养日,按时吃早餐是一种健康的饮食习惯.为了解本校七年级学生饮食习惯,李明和同学们在七年级随机调查了一部分学生每天吃早餐的情况.并将统计结果绘制成如图统计图(不完整).图中A 表示不吃早餐,B 表示偶尔吃早餐,C 表示经常吃早餐,D 表示每天吃早餐.请根据统计图解答以下问题:(1)这次共调查了多少名学生?(2)请补全条形统计图;(3)这个学校七年级共有学生1200名.请估计这个学校七年级每天约有多少名学生不吃早餐?【分析】(1)根据D 等级的人数和所占的百分比即可得出答案;(2)用总人数减去其他等级的人数,求出C 等级的人数,从而补全统计图;(3)用总人数乘以不吃早餐的人数所占的百分比即可.【解答】解:(1)这次共调查的学生有:4256%75÷=(名);(2)C等级的人数有:75964218---=(名),补全统计图如下:(3)根据题意得:9⨯=(名),120014475答:这个学校七年级每天约有144名学生不吃早餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50)a-台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润⨯总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:341200 561900x yx y+=⎧⎨+=⎩,解得:200150xy=⎧⎨=⎩,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50)a-台.依题意得:160120(50)7500a a+-,解得:1372 a.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200160)(150120)(50)1850a a-+-->,解得:35a>,1372a,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当36a=时,采购A种型号的电风扇36台,B种型号的电风扇14台;当37a=时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.。
2021-2022学年河南省安阳市七年级(下)期末数学试卷
2021-2022学年河南省安阳市七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.2022年中国举办了第二十四届冬季奥林匹克运动会,图中是吉祥物“冰墩墩”,将图中的“冰墩墩”通过平移可以得到的图形是()A.B.C.D.2.若a>b,则下列不等式一定成立的是()A.a﹣3>b﹣3B.﹣a+c>﹣b+c C.m2a>m2b D.a2>b23.下列调查中,适合于采用普查方式的是()A.调查央视“五一晚会”的收视率B.了解外地游客对新乡旅游景点的印象C.了解一批新型节能灯的使用寿命D.了解某航班上的乘客是否都持有“绿色健康码”4.在平面直角坐标系中,点P(−√5,3)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限5.下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行,其中是真命题的有()A.1个B.2个C.3个D.4个6.下列计算中,正确的是()3=−2C.√(−7)2=−7D.−√25=5 A.√4=±2B.√−87.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B、C两点,若∠1=42°,则∠2的度数是()A .24°B .84°C .42°D .48°8.如图,天平左盘中物体A 的质量为mg ,天平右盘中每个砝码的质量都是1g ,则m 的取值范围在数轴上可表示为( )A .B .C .D .9.已知有含盐20%与含盐5%的两种盐水,若要配制含盐14%的盐水200千克.设需含盐20%的盐水x 千克,含盐5%的盐水y 千克,则下列方程组中,正确的是( )A .{x +y =20020%x +5%y =14%B .{x +y =20020%x +5%y =200C .{x +y =20020%x +5%y =200×14%D .{x +y =2005%x +20%y =200×14%10.如图,第一个正方形的顶点A 1(﹣1,1),B 1(1,1);第二个正方形的顶点A 2(﹣3,3),B 2(3,3);第三个正方形的顶点A 3(﹣6,6),B 3(6,6)按顺序取点A 1,B 2,A 3,B 4,A 5,B 5…,则第12个点应取点B 12,其坐标为( )A .(12,12)B .(78,78)C .(66,66)D .(55,55)二、填空.(每小题3分,共15分)11.比较大小:2−√5 ﹣1(选填“>”“=”“<”).12.已知方程x a +3+y b ﹣1+5=0,是关于x ,y 的二元一次方程,则a b = .13.已知点M 在第四象限,点M 到x 轴的距离为3,到y 轴的距离为1,则点M 的坐标为 .14.我们知道方程组{2x +3y =193x +4y =26的解是{x =2y =5,现给出另一个方程组{2(2x +4)+3(y +3)=193(2x +4)+4(y +3)=26,它的解是 . 15.定义一种运算a *b ={a(a ≥b)b(a <b),则不等式(x +1)*(2﹣x )>2的解集是 . 三、计算题.(其75分)16.计算:(1)√4+√−83−√14; (2)﹣12022+√(−2)2−√273+|√3−2|. 17.解方程组:(1){y =2x −53x +4y =2; (2){3(x −1)=y +5y−13=x+55. 18.已知,如图,AB ∥CD ,∠BCF =180°,BD 平分∠ABC ,CE 平分∠DCF ,∠ACE =90°,求证:AC ⊥BD .19.请根据小明同学解不等式的过程,完成下面各项任务:解不等式x+16≥2x−54+1解:去分母,得2(x +1)≥3(2x ﹣5)+1…………第一步去括号,得2x +2≥6x ﹣5+1…………第二步移项,得2x ﹣6x ≥﹣5+1+2…………第三步合并同类项,得﹣4x ≥﹣2…………第四步系数化为1,得x ≥12⋯⋯⋯⋯第五步所以不等式的解集为:x ≥12任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程完整的写出来;任务三:请你根据平时的学习经验,写出一条解不等式时需要注意的事项.20.为迎接建党100周年,某校组织学生开展了党史知识竞赛活动,竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛的情况,随机调查了部分学生,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题.(1)本次被调查的学生共有名;(2)在扇形统计图中,“B”所对应的扇形的圆心角的度数为,并把条形统计图补充完整;(3)如果本校共有1500名学生,请你估计参加“歌颂时代精神”项目的人数.21.如图,△ABC在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坚标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴上有一点P,使△PBC与△ABC面积相等,求出P点的坐标.22.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问:1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元.每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23.已知直线AB∥CD,点M为直线AC上的动点(点M不与点A,C重合),ME⊥AC交CD于E.(1)如图1,当点M在CA上时,若∠MAB=46°,则∠MEC=.(2)如图2,当点M在CA的延长线上时,∠MAB与∠MEC有怎样的数量关系?写出结论,并说明理由.(3)当点M在AC的延长线上时,∠MAB与∠MEC有怎样的数量关系?写出结论,并说明理由.。
2021-2022学年河南省安阳市安阳县七年级下学期期末数学试题
2021~2022学年度七年级第二学期期末考试数学一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列式子是不等式的是()A .43x y +=B .x C .x y+D .30x ->2.下列调查中,适宜采用抽样调查的是()A .调查某班学生的身高情况B .调查某批汽车的抗撞击能力C .调查亚运会100米游泳决赛运动员兴奋剂的使用情况D .调查一架“歼20”隐形战斗机各零部件的质量3.将不等式组1030x x -<⎧⎨->⎩的解集在数轴上表示出来正确的是()A .B .C .D .4.下列命题中,为真命题的是()A .内错角相等B .对顶角相等C .同位角相等D .互补的两个角是邻补角5.下列结论正确的是()A .18-没有平方根B .立方根等于本身的数只有0C .4的立方根是2±D 4=6.点()2,1C m m +-在平面直角坐标系的y 轴上,则C 点坐标为()A .()3,0-B .()3,0C .()0,3D .()0,3-7.若22x y =⎧⎨=⎩是关于x 、y 的二元一次方程4ax y -=的解,则a 的值为()A .若ac bc <,则a b >B .若a b >,则22ac bc >C .若a b >,则22a b -->--D .若2211a b c c >++,则a b >9.如图,将一张长方形纸片进行折叠,若2120∠-∠=︒,则EFC ∠的度数为()A .100°B .110°C .130°D .135°10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1-,第2次接着运动到点()2,0-,第3次接着运动到点()3,2-,…,按这样的运动规律,经过第2022次运动后,动点P 的坐标是()A .()2022,0-B .()2022,0C .()2022,2-D .()2022,2二、填空题(每小题3分,共15分)11.在平面直角坐标系中,点()3,5-到x 轴的距离为______.12.如图,DE BC ∥,BD 平分ABC ∠,260∠=︒,则1∠=______°.13.某网店为了直观地表示店内各种型号口罩的月销量占总销量的百分比,最适合的统计图是______统计图.14.若a b <<,且a 、b 为两个连续的整数,c 为这四个数13,π中的唯一有理数,则abc =______.15.若关于x 的不等式组21320x x m x ++⎧≤⎪⎨⎪->⎩恰有3个奇数解,则m 可以取到的正整数为______.三、解答题(本大题共8个小题,共75分)16.(10分)(12.(2)求出等式中x 的值:32160x +=.17.(9分)定义一种新的算法:x y ax by ⊗=+,如2323a b ⊗=+.若()138⊗-=,()3210-⊗=-,求a ,b 的值.18.(9分)补全下列证明过程:如图,1B C ∠+∠=∠,求证:BD CE ∥.证明:如图,作射线AP ,使AP BD ∥,∴______B =∠(______).又∵1B C ∠+∠=∠,∴1∠+______=______(______),即______C =∠,∴______(______).又∵AP BD ∥,∴BD CE ∥(______).19.(9分)如图,每个小方格都是边长为1个单位长度的正方形,点A ,B 的坐标分别为()1,3-,()1,1-.(1)请在图中画出平面直角坐标系,并写出点C 的坐标.(2)将三角形ABC 向下平移3个单位然后再向右平移2个单位,得到三角形111A B C ,画出平移后的三角形111A B C .20.(9分)如图所示的是一个数值转换器.(1)当输入的x 值为9时,输出的y 值为______;当输入x 值后,经过两次取算术平方根运算,输出的y 值x 值为______.(2)嘉淇发现输入x 值后要取其算术平方根,因此他输入的x 值应为非负数.但是当他输入x 值后,却始终输不出y 值,请你分析,他输入的x 值是多少?21.(9分)某校领导为监考老师提供中餐,分别有烩面(A )、浆面条(B )、道口烧鸡(C ),扁粉菜(D )四种选择.监考老师们可以根据自己的喜好选择其中一种作为中餐,选择结果如下:根据统计图的信息解决下列问题:(1)该校监考老师共有______人.(2)补全上面的条形统计图.(3)扇形统计图中C 对应的圆心角的度数是______°.(4)若该校全体教师共800人,期末考试后校领导打算给全体老师提供一次中餐,要使老师们都能选到自己喜欢的中餐,试估计需要准备烩面(A )、浆面条(B )共多少份?22.(10分)郑州某中学的20名同学外出游玩,游玩门票分为两种:A 门票(郑州方特欢乐世界门票)280元/张;B 门票(郑州方特欢乐世界+方特梦幻王国联票)440元/张.在门票总预算不超过7000元的情况下,购买A ,B 两种门票共20张,要求B 种门票的数量不少于A 种门票数量的一半.若设购买B 种门票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案,写出解答过程.(2)根据计算判断,哪种购票方案更省钱?23.(10分)阅读下列材料,解答下面的问题:我们知道方程3530x y +=有无数个解,但在实际问题中往往只需求出其中正整数解.例:由3530x y +=,得3033655x y x -==-(x 、y 为正整数).要使365x -为正整数,则35x 为正整数,可知x 为5的倍数,从而5x =,代入3635y =-⨯=.所以3530x y +=的正整数解为53x y =⎧⎨=⎩.(1)请你直接写出方程4324x y +=的正整数解______.(2)若124a -为自然数,则求出满足条件的正整数a 的值.(3)关于x ,y 的二元一次方程组2827x y y kx +=⎧⎨+=⎩的解是正整数,求整数k 的值.2021~2022学年度七年级第二学期期末考试数学参考答案1.D2.B 3.C 4.B 5.A 6.D 7.C 8.D 9.C 10.A 11.512.3013.扇形14.415.6或716.解:(12--)423=--+9=.(2)3216x =-,38x =-,2x =-.17.解:依题意,得383210a b a b -=⎧⎨-+=-⎩,解得22a b =⎧⎨=-⎩,∴2a =,2b =-.18.解:PAB ∠,两直线平行,内错角相等;PAB ∠;C ∠;等量代换;PAC ∠;AP CE ∥;内错角相等,两直线平行;平行于同一直线的两直线互相平行.19.解:(1)建立平面直角坐标系如下图,()2,1C .(2)如图所示,三角形111A B C 即为所求.20.解:(1,25.(2)当0x =或1时,始终输不出y 值.∵0的算术平方根是0,1的算术平方根是1.这两个数无论取几次算术平方根,一定是有理数,∴他输入的x 值是0或1.21.解:(1)150.(2)C 类别人数为()150********-++=(人),补全条形统计图如下.(3)144.(4)根据题意,得3045800400150+⨯=(份).22.解:(1)购买B 种门票x 张,则购买A 种门票()20x -张.根据题意,得()202440280207000x x x x -⎧≥⎪⎨⎪+-≤⎩,解得203534x ≤≤,∴满足条件的x 为7或8,∴共有两种购买方案.方案一:A 种门票13张,B 种门票7张.方案二:A 种门票12张,B 种门票8张.(2)方案一购票费用2801344076720⨯+⨯=(元),方案二购票费用2801244086880⨯+⨯=(元).∵67206880<元元,∴方案一更省钱.23.解:(1)34x y =⎧⎨=⎩.(2)若124a -为自然数,则4a -的值为12,6,4,3,2,1,则满足条件的正整数a 的值有5,6,7,8,10,16.(3)2827x y y kx +=⎧⎨+=⎩,解得94x k =-.∵x ,y 是正整数,k 是整数,∴()49k -=或3或1,即5k =-或1或3,当3k =时,9x =,10y =-,不符合题意,需舍去,∴5k =-或1.。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(含参考答案)
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
七年级下册安阳数学期末试卷达标检测(Word版 含解析)
七年级下册安阳数学期末试卷达标检测(Word 版 含解析) 一、选择题 1.81的算术平方根是()A .3B .﹣3C .﹣9D .92.下列图形中,可以由其中一个图形通过平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点(a 2+1,2020)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交.A .1个B .2个C .3个D .4个5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )A .28.72B .0.2872C .13.3D .0.1333 7.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.如图,动点P 从点()3,0出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为()0,3……第2021次碰到长方形边上的坐标为( )A .()7,4B .()5,0C .()8,3D .()1,4二、填空题9.如果,a 的平方根是3±,则317a -=__________.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,在△ABC 中,∠ABC ,∠ACB 的角平分线相交于O 点. 如果∠A=α,那么∠BOC 的度数为____________.12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.13.如图,在四边形ABCD 纸片中,AD ∥BC ,AB ∥CD .将纸片折叠,点A 、B 分别落在G 、H 处,EF 为折痕,FH 交CD 于点K .若∠CKF =35°,则∠A +∠GED =______°.14.已知221m <,若0,m >且2m +是整数,则m =______ .15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A 20的坐标为__________.三、解答题17.(1)计算:3317362271? 48-++-- (2)比较325- 与-3的大小18.求下列各式中x 的值.(1)4x 2﹣25=0;(2)(2x ﹣1)3=﹣64.19.如图//AB DE .试问B 、E ∠、BCE ∠有什么关系?解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB则B ∠=______( )又∵//AB DE ,//CF AB∴____________( )∴E ∠=____________( )∴12B E ∠+∠=∠+∠( )即B E ∠+∠=____________20.如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点C (41)-,. (1)写出点A ,B 的坐标;(2)求ABC ∆的面积.21.阅读下面的文字,解答问题大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:4<7<9,即2<7<3,∴7的整数部分为2,小数部分为(7﹣2)请解答:(1)57整数部分是,小数部分是.(2)如果11的小数部分为a,7的整数部分为b,求|a﹣b|+11的值.(3)已知:9+5=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.二十二、解答题22.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm?二十三、解答题23.如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠=︒.100EOF(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.24.已知AB ∥CD ,点M 在直线AB 上,点N 、Q 在直线CD 上,点P 在直线AB 、CD 之间,∠AMP =∠PQN =α,PQ 平分∠MPN .(1)如图①,求∠MPQ 的度数(用含α的式子表示);(2)如图②,过点Q 作QE ∥PN 交PM 的延长线于点E ,过E 作EF 平分∠PEQ 交PQ 于点F .请你判断EF 与PQ 的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN ,若NE 平分∠PNQ ,请你判断∠NEF 与∠AMP 的数量关系,并说明理由.25.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)【参考答案】一、选择题1.A解析:A 【分析】9=,再计算9的算术平方根即可.【详解】819=,93=故选A【点睛】9是解题的关键.2.C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C.【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.A【分析】根据点的横纵坐标的正负判断即可.【详解】解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.4.D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案.【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误,②过直线外一点有且只有一条直线与已知直线平行,故本小题错误,③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误.综上所述:错误的个数为4个.故选D.【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键.5.D【分析】根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数.【详解】解:由题意可知AD//BC,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC,∴∠2=180°-∠AEF=124°,故选:D.【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键.6.C【分析】根据立方根的变化特点和给出的数据进行解答即可.【详解】解:∵,∴⨯≈,10=13.3313.3故选:C.【点睛】本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.7.A【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.A【分析】该题属于找规律题型,只要把运动周期找出来即可解决.【详解】由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3解析:A【分析】该题属于找规律题型,只要把运动周期找出来即可解决.【详解】由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,2021÷6=366……5,第2021次碰到长方形的边的点的坐标为(7,4),故选:A.【点睛】本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答.二、填空题9.-4【分析】根据题意先求出,再代入,即可.【详解】解:∵的平方根是,∴,∴ ,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 解析:-4【分析】根据题意先求出a ,即可.【详解】解:∵3±, ∴2(3)9=±= , ∴81a = , ∴4==-,故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a 的值. 10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.90°+【解析】∵∠ABC、∠ACB的角平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,解析:90°+1 2α【解析】∵∠ABC、∠ACB的角平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,∵在△OBC中,∠BOC=180°-∠OBC-∠OCB,∴∠BOC=180°-(90°-12∠A)=90°+12∠A=90°+12α.12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.13.145【分析】首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.【详解】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.【详解】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠A=∠C,根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK,∵AD∥BC,∴∠DEF=∠EFB,∠AEF=∠EFC,∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK,∴∠GEF﹣∠DEF=∠EFC﹣∠EFK,∴∠GED=∠CFK,∵∠C+∠CFK+∠CKF=180°,∴∠C+∠CFK=145°,∴∠A+∠GED=145°,故答案为145.【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键.14.2【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m是整数,∵,∴m2≤4,∴−2≤m≤2,∴m=−2,−1解析:2【分析】根据题意可知m是整数,然后求出m的范围即可得出m整数即可求出答案.【详解】解:∵∴m是整数,∵2m<∴m2≤4,∴−2≤m≤2,∴m=−2,−1,0,1,2当m=±2或−1m>∵0,∴m=2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型.15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本1,4解析:()【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A 3,A 6,A 9的坐标,观察得出A 3n 横坐标为1−3n ,可求出A 18的坐标,从而可得结论.【详解】解:观察图形可知:A 3(−2,1),A 6(−5,2),A 9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A 3n 横坐标为1−3n ,∴A 18横坐标为:1−3×6=−17,∴A 18(−17,6),把A 18向左平移2个单位,再向上平移2个单位得到A 20,∴A 20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可; (2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式==31 63()22 -++--=-1;(2)∵3(3)27-=-2527->-∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.18.(1)x=;(2)x=.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x=;(2)(2x﹣1)3=﹣64解析:(1)x=52±;(2)x=32-.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x 2﹣25=0,4x 2=25,x 2=254, x =52±; (2)(2x ﹣1)3=﹣64,2x ﹣1=﹣4,2x =﹣3,x =32-. 【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点C 作//CF AB ,则B ∠=∠1,同理可以得到E ∠=∠2,由此即可求解.【详解】解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB ,则B ∠=∠1(两直线平行,内错角相等),又∵//AB DE ,//CF AB ,∴DE ∥CF (平行于同一条直线的两直线平行),∴E ∠=∠2(两直线平行,内错角相等)∴12B E ∠+∠=∠+∠(等量代换)即B E ∠+∠=∠BCE ,故答案为:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE .【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1),;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(解析:(1)(3,4)A ,(0,1)B ;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(1)(3,4)A ,(0,1)B(2)3ABC S S S =-△长方形个三角形 11145241533222=⨯-⨯⨯-⨯⨯-⨯⨯ =9【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 二十三、解答题23.(1) ;(2)的值为40°;(3).【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53. 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即可得关于n 的方程,计算可求解n 值.【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD ,∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,, ∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒,即360BEO EOF DFO ∠+∠+∠=︒,∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO ,设BEM OEM x CFN OFN y ∠=∠=∠=∠=,, ∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD ,∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,, ∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠() x KMN HNM y =+∠-∠-=x -y=40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠,∴KFD EHK AEG ∠=∠+∠,∵50EHK NMF ENM ∠=∠-∠=︒,∴50KFD AEG ∠=︒+∠,即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠. ∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ , 1AEO AEG OEG AEG AEG n∠=∠+∠=∠+∠, ∵260BEO DFO ∠+∠=︒,∴100AEO CFO ∠+∠=︒, ∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=, 解得53n = .经检验,符合题意, 故答案为:53. 【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 24.(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =∠AMP ,见解析【分析】1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=∠AMP,见解析解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=12【分析】1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=12(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可(180°﹣∠NQE)=12得结论.【详解】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=12∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=12(180°﹣∠NQE)=12(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣12(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+3 2α=12α=12∠AMP.∴∠NEF=12∠AMP.【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。
七年级下册安阳数学期末试卷达标检测(Word版 含解析)
七年级下册安阳数学期末试卷达标检测(Word 版 含解析)一、选择题1.实数4的算术平方根是()A .2B .2C .2±D .162.下列运动属于平移的是( )A .汽车在平直的马路上行驶B .吹肥皂泡时小气泡变成大气泡C .铅球被抛出D .红旗随风飘扬 3.若点P 在x 轴的下方,y 轴的右方,到x 轴、y 轴的距离分别是3和4,则点P 的坐标为( ) A .(4,﹣3) B .(﹣4,3) C .(﹣3,4) D .(3,4) 4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( )A .1个B .2个C .3个D .4个5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是( )A .35︒B .45︒C .50︒D .52︒8.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x k k y y --⎧⎛⎫--⎡⎤⎡⎤=+--⎪ ⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎝⎭⎨--⎡⎤⎡⎤⎪=+-⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩,[]a 表示非负实数a 的整数部分,例如[]2.82=,[]0.30=.按此方案,第2021棵树种植点的坐标为( ).A .()1,405B .()2,403C .()2,405D .()1,403二、填空题9.0.0081的算术平方根是______ 10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,将矩形ABCD 沿MN 折叠,使点B 与点D 重合,若∠DNM =75°,则∠AMD =_____.14.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2021A 的坐标是______.三、解答题17.(1)计算:3317362271? 48- (2325-与-3的大小18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图//AB DE .试问B 、E ∠、BCE ∠有什么关系?解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB则B ∠=______( )又∵//AB DE ,//CF AB∴____________( )∴E ∠=____________( )∴12B E ∠+∠=∠+∠( )即B E ∠+∠=____________20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.数学活动课上,王老师说:22”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y ,其中x 是一个整数,且0<y <1,求出2x+(y-3)2012的值. 二十二、解答题22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.24.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.26.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中H ABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B .【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;C 、铅球被抛出是旋转与平移组合,故C 选项不符合;D 、随风摆动的红旗,不属于平移,故D 选项不符合.故选:A .【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.A【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】点P 在x 轴的下方,y 轴的右方,∴点P 在第四象限, 又点P 到x 轴、y 轴的距离分别是3和4,∴点P 的横坐标是4,纵坐标是-3,即点P 的坐标为()4,3-,故选:A .【点睛】本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.4.C【分析】根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可.【详解】解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题;(2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题; (3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题; (4)1的平方根±1 ,故(4)是假命题;所以假命题的个数有3个,故选:C .【点睛】本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:a b∵25<30<36,∴56,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.A【分析】根据所给的xk 、yk 的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,,,,,……,将以上等式相加,得:,当k=20解析:A【分析】根据所给的x k 、y k 的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,11x=,2110 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,3221 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,4332 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,……112 1555k k k kx x---⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:155kkx k-⎡⎤=-⎢⎥⎣⎦,当k=2021时,20212020 202152021540415x⎡⎤=-=-⨯=⎢⎥⎣⎦;11y=,2110 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,3221 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,4332 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,……112 55k k k ky y---⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:11+5kky-⎡⎤=⎢⎥⎣⎦,当k=2021时,202120201+4055y⎡⎤==⎢⎥⎣⎦,∴第2021棵树种植点的坐标为()1,405,故选:A.【点睛】本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键.二、填空题9.3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3【分析】根据算术平方根的性质解答即可.【详解】0.09=,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.10.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称∴36n m =-=-,∴262(3)0m n -=--⨯-=,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.11.a=b.【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b.【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.30°【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.【详解】解:∵四边形ABCD是矩形,∴DN∥AM,∵∠DNM =75º解析:30°【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD 的度数,从而可以求得∠AMD 的度数,本题得以解决.【详解】解:∵四边形ABCD 是矩形,∴DN ∥AM ,∵∠DNM =75º,∴∠DNM =∠BMN =75º,∵将矩形ABCD 沿MN 折叠,使点B 与点D 重合,∴∠BMN =∠NMD =75º,∴∠BMD =150º,∴∠AMD =30º,故答案为:30º.【点睛】本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.14.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.15.2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,-1)【分析】A的坐标.根据图象可得移动8次图象完成一个循环,从而可得出点2022【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化,横坐标每一次循环增加4∵2021÷8=252…5,∴2021A的坐标为(252×4+2,-1),∴点2021A的坐标是是(1010,-1).故答案为:(1010,-1).【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式==31 63()22 -++--=-1;(2)∵3(3)27-=-2527->-∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13. 【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点C 作//CF AB ,则B ∠=∠1,同理可以得到E ∠=∠2,由此即可求解.【详解】解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB ,则B ∠=∠1(两直线平行,内错角相等),又∵//AB DE ,//CF AB ,∴DE ∥CF (平行于同一条直线的两直线平行),∴E ∠=∠2(两直线平行,内错角相等)∴12B E ∠+∠=∠+∠(等量代换)即B E ∠+∠=∠BCE ,故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)1(2)19【分析】(1)根据已知的条件就可以求出;(2x,y的值,即可解答.【详解】解:(1)∵12,∴1;(2)解:∵12,∴9<10,∵x+y,且x是一个整数,0<y<1,∴x=9,y=91,∴2x+(2012=2×9+2012=18+1=19.【点睛】二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm ,则宽为2x cm∴6x 2=300∴x 2=50又∵x >0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.24.(1);(2)①,②,理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD =12CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.。
河南省安阳市林州市红旗渠大道学校2021-2022学年七年级下学期期末数学试题
河南省安阳市林州市红旗渠大道学校2021-2022学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________8.若方程组3133x y k x y +=+⎧⎨+=⎩的解x ,y 满足01x y <+<,则k 的取值范围是( )A .10k -<<B .40k -<<C .08k <<D .4k >-9.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步,问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A .3(2)218x y x y =+⎧⎨=-⎩B .3(2)218x y x y =-⎧⎨=-⎩C .3(2)29x y x y =+⎧⎨=+⎩D .3(2)29x y x y =-⎧⎨=+⎩10.在平面直角坐标系中,对于点()P x y ,,我们把点()11P y x '-++,叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为()24,,点2022A 的坐标为( ) A .()33-,B .()22--,C .()31-,D .()24,三、解答题23.如图,在平面直角坐标系中,已知A (30,),B (43,),将线段OA 平移至CB ,连接OC ,AB ,CD ,BD .(1)直接写出点C 的坐标;(2)点D 在x 轴上从点O 沿正方向运动,点D 在运动过程中是否存在ODC V 的面积是ABD △的面积的3倍?如果存在,请求出点D 的坐标;如果不存在,请说明理由;(3)点D 在运动过程中(不考虑与点O 、点A 重合的情形),请写出OCD ∠,ABD ∠,BDC ∠三者之间存在怎样的数量关系,并说明理由.。
河南省安阳市林州市2023-2024学年七年级下学期期末数学试题(无答案)
2023-2024学年第二学期学情调研七年级数学试题一、选择题(每小题3分,共30分)1.“4的算术平方根”用数学符号表示为( )AB . CD .2.如图,与是内错角的是()A .B .C .D .3.若点在第二象限,且到轴的距离是3,到轴的距离是1,则点的坐标是()A .B .C .D .4.关于的二元一次方程的自然数解有( )A .3组B .4组C .5组D .6组5.若,则下列不等式不一定成立的是( )A .B .C .D .6.不等式的解集在数轴上表示为( )A .B .C .D .7.下列调查中,适宜采用全面调查方式的是( )A .调查某品牌钢笔的使用寿命B .了解我区中学生学生的视力情况C .调查乘坐飞机的乘客是否携带违禁物品D .了解我区中学生课外阅读情况1∠2∠3∠4∠5∠P x y P ()3,1()1,3-()1,3--()3,1-,x y 27x y +=a b >20242024a b +>+20242024a b>1202412024a b -<-a bc c>()320x --≤8.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为尺,则所列方程组正确的是()A .B .C .D .9.如图,为三角形的高,能表示点到直线(线段)的距离的线段有()A .2条B .3条C .4条D .5条10.用5个大小完全相同的长方形纸片在平面直角坐标系中摆成如图所示的图案,已知,则点的坐标是( )A .B .C .D .二、填空题(每题3分,共15分)11.如图,数轴上点表示的实数是-1,半径为1的圆从点沿数轴向右滚动一周,圆上的点达到点,则点表示的数是______.12,则______.13.如图两点的坐标分别为,点是轴上一点,且三角形的面积为,则点的坐标为______.x y 4.50.51y x y x =+⎧⎨=-⎩ 4.521y x y x =+⎧⎨=-⎩ 4.50.51y x y x =-⎧⎨=+⎩ 4.521y x y x =-⎧⎨=-⎩AD ABC ()1,5A -B ()6,4-2014,33⎛⎫- ⎪⎝⎭()6,5-1411,33⎛⎫- ⎪⎝⎭A A A A 'A ' 1.8308≈≈0.18308≈x ≈,AB ()()2,4,6,0P x ABP 6P14.如图所示,一艘船从点出发,沿东北方向航行至点,再从点出发沿南偏东方向航行至点,则等于______度.15.若方程组的解满足,则的取值范围是______.三、解答题(共8大题75分)16.(8分)(1;(2)解方程组:17.(8分)解不等式组:把解集表示在数轴上,并写出该不等式组的所有整数解.18.(8分)如图,点在线段上,点在线段上,于点于点.(1)求证:;(2)若平分,求的度数.A B B 15 C ABC ∠24221x y k x y k +=⎧⎨+=+⎩01y x <-<k 2+-4143314312x y x y +=⎧⎪--⎨-=⎪⎩21131x x +>-⎧⎨-≥⎩F AB E G 、CD FG BC ⊥,H AE BC ⊥,12K ∠=∠//AB CD BC ,100ABD D ∠∠=FGD ∠19.(9的近似值的过程.因为面积是2,且,可画出如图所示的示意图.由各部分面积之和等于总面积,可列方程.因为,所以认为是个较为接近0的数,即,故略去,可得方程,解得程)20.(10分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取______名学生进行调查,扇形图中的______;(2)请补全统计图;(3)在扇形图中“扬琴”所对扇形的圆心角是______度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有多少名.21.(10分)已知是由经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:(1)观察表中各对应点坐标的变化,并填空:______,______,______;(2)在平面直角坐标系中画出及平移后的;(3)直接写出的面积是______.12<<()101x x =+<<2212x x ++=01x <<20x ≈2x 212x +=0.5x = 1.5≈x =A B C '''△ABC △ABC△(),0A a ()3,0B ()5,5C A B C '''△()4,2A '()7,B b '(),7C c 'a =b =c =ABC △A B C '''△A B C '''△22.(10分)为拓展学生视野,促进书本知识与生活实践的深度融合,我市某中学组织七年级全体学生前往红旗渠研学基地开展研学活动在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量/(人/辆)3530租金/(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,租车总辆数为几辆?(3)学校共有几种租车方案?最少租车费用是多少?23.(12分)【问题情境】已知,平分.交于点.【问题探究】(1)如图1,,试判断EF 与的位置关系,并说明理由;【问题解决】(2)如图2,,当时,求的度数;【问题拓展】(3)如图2,若,试说明.图1 图212,EG ∠=∠AEC ∠BD G 45,15,75MAE FEG NCE ∠=∠=∠=CD 140,30MAE FEG ∠=∠= //AB CD NCE ∠//AB CD 2NCE MAE FEG ∠=∠-∠。
2024—2025学年最新人教版七年级下学期数学期末考试试卷(含参考答案)
最新人教版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列各数为无理数的是()A.0.618B.C.D.2、若a>b,则下列不等式不一定成立的是()A.﹣5a<﹣5b B.a﹣5>b﹣5C.a2>b2D.5a>5b3、下列问题中,最适合采用全面调查方式的是()A.调查所生产的整批火柴是否能够划燃B.了解一批导弹的杀伤半径C.流感防控期间,调查我校出入校门口学生的体温D.了解全国中小学生的体重情况4、若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣45、若a<<b,且a与b为连续整数,则a与b的值分别为()A.1;2B.2;3C.3;4D.4;56、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)7、已知方程组的解满足x+y=2,则k的值为()A.2B.﹣2C.4D.﹣48、《九章算术》是中国传统数学最重要的著作,书中记载:“今有牛五、羊二、直金十二两;牛二、羊五、直金九两,问牛、羊各直金几何?”意思是:“假设有5头牛和2只羊共值金12两,2头牛和5只羊共值金9两.问每头牛、每只羊各值金多少两?”如果按书中记载,1头牛和1只羊一共值金()两.A.3B.3.3C.4D.4.39、如果不等式组无解,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥210、已知非负实数a,b,c满足,设S=a+b+c,则S的最大值为()A.B.C.D.二、填空题(每小题3分,满分18分)11、16的算术平方根是.12、点P(m+2,2m﹣5)在x轴上,则m的值为.13、已知方程2x2n﹣1﹣7y=10是关于x、y的二元一次方程,则n=.14、如果x2=64,那么x的值是.15、已知x,y满足方程组,则x﹣y的值是.16、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=°.最新人教版七年级下学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1).18、解不等式组,并求出它的非负整数解.19、已知关于x、y的方程组的解和的解相同,求代数式b﹣a的平方根.20、运动是一切生命的源泉,运动使人健康、使人聪明、使人快乐,运动不仅能改变人的体质,更能改变人的品格,某中学为了解学生一周在家运动时长t (单位:小时)的情况,从本校学生中随机抽取了部分学生进行问卷调查,并将收集的数据整理分析,共分为四组(A.0≤t<1,B.1≤t<2,C.2≤t <3,D.3≤t<4,其中每周运动时间不少于3小时为达标),绘制了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)请补全频数分布直方图,并计算在扇形统计图中C组所对应扇形的圆心角的度数;(3)若该校有学生2000人,试估计该校学生一周在家运动时长不足2小时的人数.21、如图,在平面直角坐标系中,点A、B、C的坐标分别为A(2,﹣1),B(4,3),C(1,2).将△ABC先向左平移4个单位,再向下平移2个单位得到△A1B1C1.(1)请在图中画出△A1B1C1;(2)写出平移后的△A1B1C1三个顶点的坐标;A1(,)B1(,)C1(,)(3)求△ABC的面积.22、如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.23、某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金1020元;若购买甲种书柜3个,乙种书柜4个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,学校至多能够提供资金37 50元,请写出所有购买方案供这个学校选择(两种规格的书柜都必须购买).24、对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知关于x,y的方程组,若a≥﹣2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.25、如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于A(0,a)、B(b,0)两点,且a、b满足|a﹣4|+(2b﹣a)2=0.(1)求A、B两点的坐标;(2)如图1,过点B作直线AB的垂线,在此垂线上截取线段BC,使BC=A B,求点C的坐标;(3)如图2,在(2)的条件下,BC交y轴于点E,点F为x轴负半轴上一点,记△ABE的面积为S1,四边形FOEC的面积为S2,设点F(x,0),.①用含x的式子表示y;②当2x+5y=﹣2时,求的值.最新人教版七年级下学期数学期末考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、4 12、2.5 13、1 14、±8 15、7 16、50三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、4﹣18、不等式组的非负整数解为:0,1,2,319、±20、(1)120 (2)图略,144度(3)700人21、(1)图略(2)A1(﹣2,﹣3),B1(0,1),C1(﹣3,0);(3)5.22、(1)略(2)120°23、(1)甲种书柜单价为240元,乙种书柜的单价为180元(2)方案一:甲种书柜1个,乙种书柜19个,方案二:甲种书柜2个,乙种书柜18个.24、(1)(2)x+y≥﹣9(3)点B的坐标为(12,0)或(﹣12,0)或(0,9)或(0,﹣9)或(0,18)或(0,﹣18).25、(1)A(0,4)、B(2,0)(2)点C的坐标为(﹣2,﹣2)(3)的值为.。
2022届河南省安阳市初一下期末经典数学试题含解析
2022届河南省安阳市初一下期末经典数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.如图,一块含30角的直角三角板ABC 的直角顶点A 在直线DE 上,且//BC DE ,则BAD 等于( )A .90B .60C .45D .30【答案】B【解析】【分析】 由DE ∥BC 得∠EAC=30°,再根据∠DAE 为平角即可求得∠BAD 的度数.【详解】因为∠C=30°,DE ∥BC ,所以∠EAC=30°,又因为∠DAE 为平角,∠BAC=90°所以∠BAD=180°-90°-30°=60°,故选B.【点睛】本题考查平行线的性质和平角,要熟练掌握两直线平行内错角相等和平角等于180°.2.已知点与点在同一条平行于轴的直线上,且到轴的距离等于,那么点是坐标是( )A .或B .或C .或D .或 【答案】A【解析】【分析】由点A 和B 在同一条平行于x 轴的直线上,可得点B 的纵坐标;由“B 到y 轴的距离等于4可得,B 的横坐标为4或-4,即可确定B 点的坐标【详解】解:∵A(5,-2)与点B(x ,y)在同一条平行于x 轴的直线上∴B 的纵坐标y =-2,∵“B 到y 轴的距离等于4”∴B 的横坐标为4或-4所以点B 的坐标为(4,-2)或(-4,-2)故选:A.【点睛】本题考查了点的坐标的确定,注意:由于没具体说出B 所在的象限,所以其坐标有两解,注意不要漏解. 3.在平面直角坐标系中,点()2,0A -所在的位置是( )A .第二象限B .第三象限C .x 轴负半轴D .y 轴负半轴【答案】C【解析】【分析】由于点P 的纵坐标为0,则可判断点A (-2,0)在x 轴负半轴上.【详解】解:点A (-2,0)在x 轴负半轴上.故选:C .【点睛】本题考查了点的坐标:记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =ACB .BD =CDC .∠B =∠CD .∠BDA =∠CDA【答案】B【解析】 试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意;D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意. 故选B .考点:全等三角形的判定.5.已知a ,b .c 均为实数,a <b ,那么下列不等式一定成立的是( )A .a b 0->B .3a 3b -<-C .a c b c <D .()()22a c 1b c 1+<+ 【答案】D【解析】 分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A 、∵a <b ,∴a-b <0,故本选项错误;B 、∵a <b ,∴-3a >-3b ,故本选项错误;C 、当c=0时,a|c|=b|c|,故本选项错误;D 、∵a <b ,c 2+1>0,∴a (c 2+1)<b (c 2+1),故本选项正确.故选D .点睛:本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.6.在圆锥体积公式213V r h π=中(其中,r 表示圆锥底面半径,h 表示圆锥的高),常量与变量分别是( ) A .常量是1,,3π变量是,V hB .常量是1,,3π变量是,h rC .常量是1,,3π变量是,,V h rD .常量是1,3变量是,,,V h r π 【答案】C【解析】【分析】 根据常量,变量的概念,逐一判断选项,即可得到答案.【详解】在圆锥体积公式213V r h π=中,常量是1,,3π变量是,,V h r ,故选C .【点睛】本题主要考查常量与变量的概念,掌握“在一个过程中,数值变化的量是变量,数值不变的量是常量”是解题的关键.7.如图,150,a b ∠=︒∕∕,则2ACB ∠+∠=( )A.240°B.230°C.220°D.200°【答案】B【解析】【分析】过C作CD∥a,依据平行线的性质,即可得到∠2+∠ACD=180°,∠BCD+∠3=180°,再根据∠3=130°,即可得到∠ACB+∠2的度数.【详解】如图,过C作CD∥a,∵a∥b,∴CD∥b,∴∠2+∠ACD=180°,∠BCD+∠3=180°,∴∠2+∠ACB+∠3=360°,又∵∠1=50°,∴∠3=130°,∴∠2+∠ACD=360°-130°=230°,故选:B.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.8.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.7989(1) 799(1)x xx x+<+-⎧⎨+>-⎩D.7989(1) 799(1)x xx x+<+-⎧⎨+≥-⎩【答案】C 【解析】【分析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x-1)位同学植树的棵树,植树的总棵树<8+(x-1)位同学植树的棵树,把相关数值代入即可.【详解】(x-1)位同学植树棵树为9×(x-1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列方程组为:.故选C【点睛】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题的突破点.9.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A.B.C.D.【答案】D【解析】【分析】由图2可得,行车速度在途中迅速减小并稳定了100多米然后又迅速提升,说明应该是进行一次性的拐弯,再对4个选项进行排除选择.【详解】解:行车路线为直线,则速度一直不变,排除;B.进入辅路后向右转弯,速度减小应该不大,排除;C.向前行驶然后拐了两次弯再掉头行驶,中间速度应该有两次变大变小的波动呢,排除;D.向前行驶拐了个较大的弯再进入直路行驶,满足图2的速度变化情况.故选:D.【点睛】本题考查了函数图象的应用,正确理解函数图象的自变量和函数关系并对照实际问题进行分析是解题关键.10.下列四个实数中最大的是()A.﹣5 B.0 C.πD.3【答案】C【解析】【分析】【详解】解:根据实数比较大小的方法,可得﹣5<0<3<π,所以四个实数中最大的是π.故选C.【点睛】本题考查实数大小比较.二、填空题A-向左平移2个单位再向上平移3个单位得到点B,则点B的坐标11.在平面直角坐标系中,将点(2,3)是__________.-【答案】(4,6)【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:∵将点A(−2,3)向左平移2个单位再向上平移3个单位得到点B,∴B(−4,6),故答案为(−4,6).【点睛】本题考查坐标的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.已知某组数据的频率是0.35,样本容量是600. 则这组数据的频数是____________.【答案】1【解析】【分析】根据频率=频数÷总数,求解即可.【详解】频数=600×0.35=1.故答案为:1.【点睛】本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.13.4816213-⎛⎫⨯÷=⎪⎝⎭________.【答案】1【解析】【分析】根据负整指数幂和零指数幂的运算法则计算即可【详解】解:481 16216111316-⎛⎫⨯÷=⨯⨯=⎪⎝⎭故答案为:1【点睛】本题考查了负整指数幂和零指数幂,熟练掌握负整指数幂和零指数幂的法则是解题的关键14.一件衬衫成本为100元,商家要以利润率不低于20%的价格销售,这件衬衫的销售价格至少为元______.【答案】1【解析】【分析】设这件衬衫的销售价格为x元,根据利润=销售价格−成本结合利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设这件衬衫的销售价格为x元,依题意,得:x−100≥100×20%,解得:x≥1.故答案为:1.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.15________;【答案】-2【解析】【分析】根据被开方数的取值范围求出二次根式的取值范围即可判断.【详解】∵2.25<3<4<<<∴1.52->>-∴ 1.52最接近的整数是-2.故答案为:-2.【点睛】此题考查的实数的比较大小,利用比较大小的方法找到与无理数最接近的整数是解决此题的关键.16_______.【答案】1【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式=1.故答案为1.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.17.比较大小:3___>”,“ =”或“<” )【答案】<【解析】【分析】先把根号外的因式移入根号内,再比较即可.【详解】解:∵3=9,2312=,∴3<23,故答案为<.【点睛】本题考查了实数的大小比较的应用,能选择适当的方法比较两个实数的大小是解此题的关键.三、解答题18.已知:如图点A 、B 、C 、D 在一条直线上,且EA FB ∥,EC FD ∥,EA FB =.(1)求证:EAC FBD ∆≅∆;(2)求证:AB CD =.【答案】 (1)见解析;(2)见解析.【解析】【分析】(1)根据平行线的性质得到A FBD ∠=∠,ECA D ∠=∠,根据AAS 定理证明△EAC ≌△FBD ; (2)根据全等三角形的性质得到AC =BD ,结合图形证明即可.【详解】(1)证明,因为EA FB ∥,EC FD ∥,所以A FBD ∠=∠,ECA D ∠=∠.在EAC ∆中和FBD ∆中,A FBD ECA D EA FB ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以( AAS )EAC FBD ∆≅∆.(2)由EAC FBD ∆≅∆可得AC BD =,即AB BC CD BC +=+,所以AB CD =.【点睛】本题考查的是全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.19. (1)如图①所示,若AB ∥CD,点P 在AB,CD 外部,则有∠B=∠BOD .又因∠BOD 是△POD 的外角,故∠BOD=∠P+∠D,得∠P=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?并证明你的结论;(2)在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD 之间有何数量关系?(不需证明)(3)根据(2)的结论,求图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.【答案】(1)不成立,结论是∠BPD=∠B+∠D,证明详见解析;(2)∠BPD=∠BQD+∠B+∠D;(3)∠A+∠B+∠C+∠D+∠AEB+∠F=360°.【解析】【分析】(1)延长BP交CD于点E,根据AB∥CD得出∠B=∠BED,再由三角形外角的性质即可得出结论;(2)连接QP并延长,由三角形外角的性质得出∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,由此可得出结论;(3)由(2)的结论得:∠AFG=∠B+∠E.∠AGF=∠C+∠D.再根据∠A+∠AFG+∠AGF=180°即可得出结论.【详解】(1)不成立,结论是∠BPD=∠B+∠D.证明:如图①所示,延长BP交CD于点E.∵AB∥CD,∴∠B=∠BED.又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)如图②所示,连接EG并延长,根据(2)中的结论可知∠AGB=∠A+∠B+∠AEB,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠AEB+∠F=360°.【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.20.如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC ≌△ADE ;(2)求证:CA 平分∠BCD ;(3)如图(2),设AF 是△ABC 的BC 边上的高,求证:EC =2AF .【答案】(1)详见解析(2)详见解析;(3)详见解析.【解析】【分析】(1)根据全等三角形的判定定理ASA 即可证得.(2)通过三角形全等求得AC =AE ,∠BCA =∠E ,进而根据等边对等角求得∠ACD =∠E ,从而求得∠BCA =∠E =∠ACD 即可证得.(3)过点A 作AM ⊥CE ,垂足为M ,根据角的平分线的性质求得AF =AM ,然后证得△CAE 和△ACM 是等腰直角三角形,进而证得EC =2AF .【详解】(1)证明:∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°,∴∠ABC =∠ADE ,在△ABC 与△ADE 中,BAC DAE AB ADABC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ADE (ASA ).(2)证明:∵△ABC ≌△ADE ,∴AC =AE ,∠BCA =∠E ,∴∠ACD =∠E ,∴∠BCA =∠E =∠ACD ,即CA 平分∠BCD ;(3)证明:如图②,过点A 作AM ⊥CE ,垂足为M ,∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM,又∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,∵AC=AE,∠CAE=90°,∴∠ACE=∠AEC=45°,∵AM⊥CE,∴∠ACE=∠CAM=∠MAE=∠E=45°,∴CM=AM=ME,又∵AF=AM,∴EC=2AF.【点睛】此题考查了全等三角形的判定与性质,角的平分线的判定和性质以及等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.21.如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)【答案】(1)65°;(2)γ=α+β,理由见解析;(3)β﹣α=γ.【解析】【分析】(1)利用平行线的性质,三角形内角和定理即可证明.(2)利用平行线的性质,三角形内角和定理即可证明.(3)利用平行线的性质以及三角形的外角的性质即可解决问题.【详解】(1)∵AC∥BD,∴β+∠PCD+∠PDC+α=180°,∵γ+∠PCD+∠PDC=180°,∴γ=α+β=65°.(2)∵AC ∥BD ,∴β+∠PCD+∠PDC+α=180°,∵γ+∠PCD+∠PDC=180°,∴γ=α+β.(3)如图,当P 在B ,M 之间时,∵AC ∥BD ,∴∠1=β,∵∠1=α+γ,∴β=α+γ.【点睛】考查平行线的性质和判定,三角形的内角和定理,三角形的外角的性质解题的关键是熟练掌握基本知识. 22.如图,在ABC 中,62,74,A B ∠=︒∠=︒请按要求用尺规作出下列图形(不写作法,但要保留作图痕迹),并填空.()1作出ACB ∠的平分线交AB 于点D ;()2作//DE BC 交AC 于点,E 平行依据是_____ __;()3BDC ∠的度数为 .【答案】(1)见解析;(2)内错角相等,两直线平行;(3)84°【解析】【分析】(1)根据角平分线的尺规作图法,即可求解;(2)根据平行线的判定定理,尺规作∠CDE=∠BCD ,即可求解;(3)根据三角形内角和定理以及角平分线的定义,即可求解.【详解】(1)如图所示:射线CD 即为所求;(2)如图所示:直线DE 即为所求;由尺规作图得:∠EDC=∠BCD ,∴//DE BC ,故答案是:内错角相等,两直线平行;(3)∵6274A B ∠=︒∠=︒,,∴∠ACB=180°-62°-74°=44°,∵CD 平分∠ACB ,∴∠BCD=12∠ACB=22°, ∴∠BDC=180°=74°-22°=84︒.故答案是:84︒【点睛】 本题主要考查尺规作图,平行线的判定定理以及三角形内角和定理,掌握尺规作角平分线,尺规作一个角等于已知角,是解题的关键.23.如图,//AB CD ,12∠=∠,试判断E ∠与F ∠的大小关系,并说明你的理由.【答案】E F ∠=∠,理由详见解析【解析】【分析】连接BC ,依据AB ∥CD ,可得∠ABC=∠DCB ,进而得出∠EBC=∠FCB ,即可得到BE ∥CF ,进而得到∠E=∠F .【详解】解:∠E=∠F .理由:∵AB∥CD,∴∠ABC=∠DCB,又∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥CF,∴∠E=∠F..【点睛】本题考查的是平行线的判定与性质,利用两直线平行,内错角相等是解答此题的关键.24.如图,三角形ABC在平面直角坐标系中,完成下列问题:(1)请写出三角形ABC各顶点的坐标;(2)求出三角形ABC的面积;(3)若把三角形ABC向上平移2个单位,在向右平移2个单位得到三角形A´B´C´,在图中画出平移以后的图形,并写出顶点A´、B´、C´的坐标.【答案】(1)A(-1,-1),B(4,2),C(1,3)(2)7 (3)A'(1,1),B'(6,4),C'(3,5)【解析】【分析】(1)根据各点所在象限的符号和距坐标轴的距离可得各点的坐标;(2)S△ABC=边长为4,5的长方形的面积减去直角边长为2,3的直角三角形的面积,减去直角边长为3,4的直角三角形的面积,减去边长为2,6的直角三角形面积;(3)把三角形ABC的各顶点向上平移1个单位,再向右平移2个单位得到平移后的坐标,顺次连接平移后的各顶点即为平移后的三角形,根据各点所在象限的符号和距坐标轴的距离可得各点的坐标.(1)A(﹣2,﹣1),B(4,1),C(1,3);(2)△ABC 的面积为:111463423269222⨯-⨯⨯-⨯⨯-⨯⨯=; (3)如图所示:△A′B′C′即为所求;点A′(0,0)、B′(6,2)、C′(3,4).【点睛】考查作图-平移变换,三角形的面积,找出平移后的对应点是解题的关键.25.已知关于x ,y 二元一次方程组326x y n x y +=⎧⎨-=⎩. (1)如果该方程组的解互为相反数,求n 的值及方程组的解;(2)若方程组解的解为正数,求n 的取值范围.【答案】n>1【解析】【分析】(1)先根据题意求出n 的值,再求出方程组的解;(2)用含m 的代数式表示出x 、y ,根据x 的值为正数,y 的值为正数,得关于m 的一元一次不等式组,求解即可.【详解】(1)依题意得0x y +=,所以n=0026x y x y +=⎧⎨-=⎩解得2-2x y =⎧⎨=⎩(2)由326x y n x y +=⎧⎨-=⎩解得222x n y n =+⎧⎨=-⎩∴20220n n +>⎧⎨->⎩∴n>1【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.会用代入法或加减法解二元一次方程组是解决本题的关键.。
安阳市七年级下册末数学试卷及答案
一、填空题1.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 答案:3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.2.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304BCD BFD ∠=∠+︒,则BCD ∠的度数为________.答案:120°【分析】由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.【详解】解:和的角平分线相交于,,,又,,,设,,,在四边形中,,,,解析:120°【分析】由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据3304BCD BFD ∠=∠+︒即可求解. 【详解】解:ABC ∠和CDE ∠的角平分线相交于F ,EDA ADC ∴∠=∠,CBE ABE ∠=∠,又//AB ED ,EDF DAB ∴∠=∠,DEF ABF ∠=∠,设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,BFD EDA ADE x y ∴∠=∠+∠=+,在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,3602()BCD x y ∴∠=︒-+,0433BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,∴∠=︒-+=︒,BCD x y3602()120故答案为:120︒.【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键.3.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)……依此规律A100坐标为________.答案:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.4.在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为_______________.答案:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1解析:(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,可以看出,3=512+,5=912+,7=1312+,各个点的纵坐标等于横坐标的相反数+1,故202112+=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.5.如图,动点P在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P的坐标是________.答案:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P的纵坐标为2,∴经过第2021次运动后,动点P的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.6.如图,正方形ABCD的各边分别平行于x轴或y 轴,且CD边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动.点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2020次相遇地点的坐标是____.答案:(2,0)由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----,∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒)∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2),∴M 、N 第一次相遇的坐标为(0, 2),又∵M 、N 的速度比为1:3,时间相同,∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标,第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标,第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标,第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标,……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0).故答案为:(2, 0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.7.请先在草稿纸上计算下列四个式子的值:326++=__________.答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3n++=1+2+3+n∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.8.观察下列各式:_____.答案:n.【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】解:=n.故答案为:n.【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析:【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】故答案为:【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.9.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____答案:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.10.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.答案:【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.11.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P表示的数是___________,点2P 表示的数是___________.答案:. .【分析】首先利用勾股定理计算出的长,再根据题意可得,然后根据数轴上个点的位置计算出表示的数即可.【详解】解:点表示的数是,是原点,,,以为圆心、长为半径画弧,,解析:1-1-【分析】首先利用勾股定理计算出AB 的长,再根据题意可得12AP AB AP ==上个点的位置计算出表示的数即可.【详解】 解:点A 表示的数是1-,O 是原点,1,1AO BO ∴==,AB ∴=以A 为圆心、AB 长为半径画弧,12AP AB AP ∴==∴点1P 表示的数是1(1-+=-点2P 表示的数是1-故答案为:1-1-【点睛】本题考查了数轴的性质,以及应用数形结合的方法来解决问题.12.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n 个奇数的和:1+3+5+7+…+(2n-1)=n 2;∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.13.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 答案:或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.14.如图,在平面直角坐标系上有个点(1,0)P ,点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向右跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,依此规律跳动下去,4P 的坐标是___________,点P 第8次跳动至8P 的坐标为__________;则点P 第256次跳动至256P 的坐标是__________.答案:【详解】由题中规律可得出如下结论:设点Pm 的横坐标的绝对值是n ,则在y 轴右侧的点的下标分别是4(n-1)和4n-3,在y 轴左侧的点的下标是:4n-2和4n-1; 结合图像解析:(2,2) (3,4) (65,128)【详解】由题中规律可得出如下结论:设点P m 的横坐标的绝对值是n ,则在y 轴右侧的点的下标分别是4(n-1)和4n-3,在y 轴左侧的点的下标是:4n-2和4n-1;结合图像可知:048(1,0)(2,2)(3,4)P P P →→→, 由此可知每经4次变化后点的横坐标增加1,纵坐标增加2,∵256464÷=,64165+=,642128⨯=,∴256P 的坐标是(65,128).故答案为()2,2;()3,4;()65,128.点睛:此题主要考查了点的坐标,解决问题的关键是分析出题目的规律,找出题目中点的坐标的规律,总结规律时要注意观察数字之间的联系,大胆的猜想.15.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析:6 【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1, 1+2+3+4+5+6+3=24,24÷4=6,则(7,3)所表示的数是6 ,故答案为6.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A …表示,则顶点2018A 的坐标是_____.答案:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限解析:(-505,505)【解析】分析:从第1个点开始,每4个点为一个循环,由此即可确定根据下标被4除的余数得到点所在的象限,根据正方形的边长与正方形的序号之间的关系确定正方形的边长,结合点所在的象限和所在的正方形的序号确定点的坐标.详解:由图形可知,每四个所在的象限为一个循环,下标能被4整除的点在第四象限,下标被4除余1的点在第三象限,下标被4除余2的点在第二象限,下标被4除余3的点在24;第68;…,依此类推,第n =2n .2018=4×504+2,则点2018A 在第二象限,所在正方形的边长为2×504,所以点2018A 的坐标为(-505,505).故答案为(-505,505).点睛:从图形的变体中找出点所在的象限随点的下标变化的规律,再找出每一正方形的边长随正方形的序列变化的规律.17.定义运算“@”的运算法则为:2@6 =____.答案:4【分析】把x=2,y=6代入x@y=中计算即可.【详解】解:∵x@y=,∴2@6==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子. 解析:4【分析】把x=2,y=6代入【详解】解:∵∴,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.18.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________. 答案:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P (x ,y )的关联点Q 坐标为(-2,3),∴y′=y -x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P 的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.19.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.答案:【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,做平行于,如下图:,,则,解析:153︒【分析】过点,,E F G ,做,,EH FK GJ 平行于AB ,根据平行线的传递性及性质得MEN BME DNE ∠=∠+∠,同理得出∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,通过等量关系先计算出18+=︒a b ,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,,E F G ,做,,EH FK GJ 平行于AB ,如下图://,//AB EH AB CD ,//EH CD ,则,∠=∠∠=∠BME HEM DNE HEN ,∴∠=∠+∠=∠+∠MEN HEM HEN BME DNE ,同理可得:∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,则5590∠=∠+∠=+=︒MEN BME DNE a b ,18∴+=︒a b ,1801803∠=︒-∠=︒-AMF BMF a ,1801803∠=︒-∠=︒-CNF DNF b , MG 平分AMF ∠,NG 平分CNF ∠,131390,902222AMG AMF a CNG CNF b ∴∠=∠=︒-∠=∠=︒-, 3180()1532∴∠=∠+=︒-+=︒MGN AMG CNG a b , 故答案是:153︒.【点睛】本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.20.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).答案:【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.21.如图,在平面内,两条直线1l,2l相交于点O,对于平面内任意一点M,若p,q分p q为点M的“距离坐标”.根据上述规定,“距离坐别是点M到直线1l,2l的距离,则称(,)标”是(2,1)的点共有________个.答案:4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.22.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.答案:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm ,BC=4cm ,AC=2cm ,将△ABC 沿BC 方向平解析:9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB =3cm ,BC =4cm ,AC =2cm ,将△ABC 沿BC 方向平移a cm∴DE=AB=3cm ,BE=a cm∴EC=BC -BE=(4-a )cm∴阴影部分周长=2+3+(4-a )+a =9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC -BE .23.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.24.如图①:MA 1∥NA 2,图②:MA11NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)答案:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.25.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.26.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.答案:①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE =∠BOE =12∠BOF ,∴∠FOC =∠AOC =12∠AOF ,∴∠EOC =∠FOE +∠FOC =12(∠BOF +∠AOF )=12×80°=40°.故②错误;∵∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,∴∠OCB :∠OFB =1:2.故③错误;∵∠OEB =∠OCA =∠AOE =∠BOC ,∴∠AOE -∠COE =∠BOC -∠COE ,∴∠BOE =∠AOC ,∴∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°, ∴∠OCA =∠BOC =3∠BOE =60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.27.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.答案:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒ CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 28.如图,AB ∥CD ,EM 是∠AMF 的平分线,NF 是∠CNE 的平分线,EN ,MF 交于点O .若∠E +60°=2∠F ,则∠AMF 的大小是___.答案:【分析】作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数.【详解】解:作,如图,,,,,是的平分线,,,,同理可得,,,,解析:40︒【分析】作//EH AB ,则1AME ∠=∠,2CNE ∠=∠,而12AME AMF ∠=∠,所以12MEN AMF CNE ∠=∠+∠,同理可得12F AMF CNE ∠=∠+∠,变形得到22F AMF CNE ∠=∠+∠,利用等式的性质得322F E AMF ∠-∠=∠,加上已给条件602MEN F ∠+︒=∠,于是得到3602AMF ∠=︒,易得AMF ∠的度数. 【详解】解:作//EH AB ,如图,//AB CD ,//EH CD ,1AME ∴∠=∠,2CNE ∠=∠,EM 是AMF ∠的平分线,12AME AMF ∴∠=∠, 12MEN ∠=∠+∠,12MEN AMF CNE ∴∠=∠+∠, 同理可得,12F AMF CNE ∠=∠+∠, 22F AMF CNE ∴∠=∠+∠,322F MEN AMF ∴∠-∠=∠, 602MEN F ∠+︒=∠,即260F MEN ∠-∠=︒,∴3602AMF ∠=︒, 40AMF ∴∠=︒,故答案为:40︒.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,合理作辅助线和把一般结论推广是解决问题的关键.29.如图,//AB CD ,2P E 平分1PEB ∠,2P F 平分1PFD ∠,若设1PEB x ∠=︒,1PFD y ∠=︒则1P ∠=______度(用x ,y 的代数式表示),若3PE 平分2P EB ∠,3PF 平分2P FD ∠,可得3P ∠,4P E 平分3P EB ∠,4P F 平分3P FD ∠,可得4P ∠…,依次平分下去,则n P ∠=_____度.答案:【分析】过点P1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得.【详解】解:过点作∥AB ,可得∥CD ,设,,∴,,解析:()x y + 12n x y -+⎛⎫⎪⎝⎭【分析】过点P 1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得1E x PF y ︒=∠︒+,再根据角平分线的定义总结规律可得n P ∠. 【详解】解:过点1P 作1PG ∥AB ,可得1PG ∥CD ,设1PEB x ∠=︒,1PFD y ∠=︒, ∴11G x PEB EP =︒∠=∠,11G y PFD FP =︒∠=∠,∴11111P EP FP PEB P E F G G x y FD ∠=+=︒∠∠∠=︒++∠;同理可得:222P P EB P FD ∠+∠∠=,333P P EB P FD ∠+∠∠=,...,∵2P E 平分1PEB ∠,2P F 平分1PFD ∠, ∴()22212P P EB P FD x y ∠+∠=︒+︒∠=,()33314P P EB P FD x y ∠+∠=︒+︒∠=, ..., ∴12n n n n x y P P EB P FD -∠︒+︒∠+∠==, 故答案为:()x y +,12n x y -+⎛⎫ ⎪⎝⎭.【点睛】本题考查了平行线性质的应用和角平分线的定义,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题,属于中考常考题型.30.若()2210a b-+=.则a b=______.答案:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()2210a b-+,∴()2210a b-=+=,∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2(1)1-=,故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性.31.已知关于x、y的方程组343x y ax y a+=-⎧-=⎨⎩,其中31a-≤≤,有以下结论:①当2a=-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)答案:①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组,得,,,,当时,,,x ,y 的值互为相反数,结论正确;当时,,,方程两解析:①②③【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,再逐一判断即可.【详解】解方程组343x y ax y a +=-⎧-=⎨⎩,得{121x a y a =+=-, 31a -≤≤,53x ∴-≤≤,04y ≤≤,①当2a =-时,123x a =+=-,13y a =-=,x ,y 的值互为相反数,结论正确; ②当1a =时,23x y a +=+=,43a -=,方程4x y a +=-两边相等,结论正确; ③当1x ≤时,121a +≤,解得0a ≤,且31a -≤≤,30a ∴-≤≤,114a ∴≤-≤,14y ∴≤≤结论正确,故答案为①②③.【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.关键是根据条件,求出x 、y 的表达式及x 、y 的取值范围.32.定义运算22a b a ab ⊗=-,下列给出了关于这种运算的几个结论:(1)2516⊗=-;(23)方程0x y ⊗=不是二元一次方程;(4)不等式组(3)10250x x -⊗+>⎧⎨⊗->⎩的解集是5134x -<<-.其中正确的是________(填序号). 答案:(1)(3)(4)。
安阳市人教版七年级下册数学全册单元期末试卷及答案-百度文库
安阳市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c2.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .3.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 34.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .2 5.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 6.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-7.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=108.计算23x x 的结果是( )A .5xB .6xC .8xD .23x 9.计算12x a a a a ⋅⋅=,则x 等于( ) A .10 B .9 C .8D .4 10..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .12.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 13.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.14.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.15.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.16.计算:23()a =____________.17.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.18.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .19.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩. 23.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.24.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5(3)x (x+7)-(x-3)(x+2)(4)(a-2b-c )(a+2b-c )25.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .27.某口罩加工厂有,A B两组工人共150人,A组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B两组工人每小时一共可加工口罩9300只.(1)求A B、两组工人各有多少人?(2)由于疫情加重,A B、两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共可生产口罩200只,若A B、两组工人每小时至少加工15000只口罩,那么A组工人每人每小时至少加工多少只口罩?28.解不等数组:3(2)41213x xxx--≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A错误;B. 没把一个多项式转化成几个整式积,故B错误;C. 把一个多项式转化成几个整式积,故C正确;D. 没把一个多项式转化成几个整式积,故D错误;故选C.2.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.3.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.4.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 5.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A 、(﹣a )2(﹣a )3=(﹣a )5,故A 错误;B 、(﹣a )(﹣a )4=(﹣a )5,故B 错误;C 、(﹣a 2)a 3=﹣a 5,故C 错误;D 、(﹣a 3)(﹣a 2)=a 5,故D 正确;故选:D .【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.6.D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.8.A解析:A【分析】根据同底数幂相乘,底数不变,指数相加即可求解.解:∵23235x x x x +==,故选A .【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.9.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.10.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题11.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.12.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b )4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b )4的结果.【详解】解:根据题意得:(a-b )4=解析:a 4-4a 3b+6a 2b 2-4ab 3+b 4【分析】原式变形后,利用(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4,即可得到(a-b )4的结果.【详解】解:根据题意得:(a-b )4=[a+(-b )]4=a 4-4a 3b+6a 2b 2-4ab 3+b 4,故答案为:a 4-4a 3b+6a 2b 2-4ab 3+b 4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.14.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.16..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a.-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.17.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.18.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.19.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.20.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.三、解答题21.70°【分析】由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD∥EF,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG∥BC,利用“两直线平行,同位角相等”可得出∠ADG的度数,在△ADG中,利用三角形内角和定理即可求出∠AGD的度数.解:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF,∴∠DCB=∠1.∵∠1=∠2,∴∠DCB=∠2,∴DG∥BC,∴∠ADG=∠B=45°.又∵在△ADG中,∠A=65°,∠ADG=45°,∴∠AGD=180°﹣∠A﹣∠ADG=70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG的度数是解题的关键.22.(1)12xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53 xy=⎧⎨=⎩.本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.23.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.24.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.25.(1)89;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.28.解集为1≤x ﹤4,数轴表示见解析【分析】分别解两个不等式的解集,它们的公共部分即为不等式组的解集,然后把解集表示在数轴上即可.【详解】3(2)41213x x x x --≤-⎧⎪⎨+>-⎪⎩①② 解不等式①得:x ≥1,解不等式②得:x ﹤4,∴不等式组的解集为1≤x ﹤4,在数轴上表示为:.【点睛】本题考查一元一次不等式组和在数轴上表示不等式的解集,正确求出每个不等式的解集是解答的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河南省安阳市林州市七年级第二学期期末数学试卷一、选择题(共10小题).1. 8的立方根是( )A. 2B. ±2C. 2D. 42. 已知第二象限的点2()2P a b --,,那么点P 到y 轴的距离为( ) A. 2a - B. 2a - C. 2b - D. 2b -3. 不等式组2411x x >-⎧⎨-≤⎩的解集,在数轴上表示正确的是( ) A. B.C. D.4. 171+的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5. 下列命题是假命题的是( )A. 在同一平面内,过一点有且只有一条直线与已知直线垂直;B. 负数没有立方根;C. 在同一平面内,若a b ⊥,b c ⊥,则//a cD. 同旁内角互补,两直线平行6. 为了解某市七年级2800名学生的视力情况,从中抽查了100名学生的视力进行统计分析,下列四个判断正确的是( )A. 2800名学生是总体B. 样本容量是100 名学生C. 100名学生的视力是总体的一个样本D. 每名学生是总体的一个样本7. 如图,已知//AB CD ,AF 与CD 交于点E ,BE AF ⊥,50B ∠=︒则DEF ∠得度数是( )A. 10︒B. 20︒C. 30D. 40︒ 8. 已知236a x +=,要使x 是负数,则a 的取值范围是( )A. 3a >B. 3a <C. 3a <-D. 33a -<<9. 已知点P (3m-6,m-4)在第四象限,化简|m+2|+|8-m|的结果为( )A. 10B. -10C. 2m-6D. 6-2m10. 把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费的情况下,共有几种截法()A . 4种 B. 3种 C. 2种 D. 1种二.填空题(每小题3分,共15分)11. 如果4x -是16的算术平方根,那么1x +的立方根为________.12. 10 4.5(填“>”或“<”).13. 若 x 的一半与 1 的和为非负数,且 x <0,则 x 可取的所有整数解的和是_____.14. 已知∠A 的两边与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,那么∠A=______°.15. 若|x ﹣2y -,则xy+1的值为_____.三、解答题(解答题要有必要的文字说明,证明过程或计算步骤)16. 计算:(1)5+|﹣1|4327+(﹣1)2019;(2)3)2()24-327-+|12|.17. 解方程组:(1)3 2316x yx y-=⎧⎨+=⎩;(2)25 528 x yx y-=⎧⎨+=⎩.18. 如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.19. 按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知),∴∠1+=90°().∵∠1+∠2=90°(已知),∴=∠2().∴DE∥BC().20. 解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.21. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1) 点A 的坐标为 ,点C 的坐标为 ;(2) 将△ABC 先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△A 1B 1C 1;(3) 连接A 1B ,A 1 C ,△A 1BC 的面积= .22. 每年5月20日是中国学生营养日,按时吃早餐是一种健康的饮食习惯.为了解本校七年级学生饮食习惯,李明和同学们在七年级随机调查了一部分学生每天吃早餐的情况.并将统计结果绘制成如图统计图(不完整).图中A表示不吃早餐,B表示偶尔吃早餐,C表示经常吃早餐,D表示每天吃早餐.请根据统计图解答以下问题:(1)这次共调查了多少名学生?(2)请补全条形统计图;(3)这个学校七年级共有学生1200名.请估计这个学校七年级每天约有多少名学生不吃早餐?23. 某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)采购方案;若不能,请说明理由.的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的2019-2020学年河南省安阳市林州市七年级第二学期期末数学试卷参考答案一、选择题1-5:ABBDB 6-10:CDAAB二.填空题11.12. <13. -314. 20°或125°15. 5三、解答题(解答题要有必要的文字说明,证明过程或计算步骤)16. (1)原式=5+1﹣2+3﹣1=6;(2)原式=﹣1=17. (1)32316x yx y-=⎧⎨+=⎩①②,①×3+②得:5x=25,解得:x=5,把x=5代入①得:y=2,则方程组的解为52=⎧⎨=⎩xy;(2)25528x yx y-=⎧⎨+=⎩①②,①×2+②得:9x=18,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩.18. ∵AB∥CD,∠1=50°,∴∠CFE=∠1=50°.∵∠CFE+∠EFD=180°,∴∠EFD=180°﹣∠CEF=130°.∵FG平分∠EFD,∴∠DFG=12∠EFD=65°.∵AB∥CD,∴∠BGF+∠DFG=180°,∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.19. 证明:∵CD⊥AB(已知),∴∠1+∠EDC=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠EDC=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).故答案为:∠EDC;垂直定义;∠EDC;同角的余角相等;内错角相等,两直线平行.20.()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.21. (1)如图所示:A(2,7),C(6,5);故答案为(2,7),(6,5);(2)如图所示:△A 1B 1C 1,即所求; (3)△A 1BC的面积为:12×6×4=12.22. (1)这次共调查的学生有:42÷56%=75(名); (2)C 等级的人数有:75﹣9﹣6﹣42=18(名),补全统计图如下:(3)根据题意得:1200×975=144(名), 答:这个学校七年级每天约有144名学生不吃早餐.23. (1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=⎧⎨+=⎩①②, ①5⨯-②3⨯得:2300,y =150,y ∴=把150y =代入①得:200,x =解得:200150x y =⎧⎨=⎩,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,401500,a∴≤解得:a≤1 372.因为:a为非负整数,所以:a的最大整数值是37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,10a∴>350,解得:a>35,∵a≤1 372,35∴<a1 372≤,a为非负整数,36a=或37.a=∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.。