第八章数量性状的遗传

合集下载

遗传学数量性状的遗传分析

遗传学数量性状的遗传分析

遗传学数量性状的遗传分析
目录
• 引言 • 数量性状遗传基础 • 数量性状遗传分析方法 • 数量性状基因定位 • 数量性状基因组关联分析 • 数量性状基因组编辑与优化
01
引言
研究背景
01
遗传学数量性状是生物体表型特 征中受多个基因和环境因素共同 影响的性状,如身高、体重等。
02
随着分子生物学和基因组学的发 展,遗传学数量性状的遗传分析 已成为遗传学研究的重要领域。
关联分析的软件工具
01
Plink
一款常用的关联分析软件,提供 多种统计分析和可视化工具,用 于处理和分析大规模遗传数据。
02
03
GAPIT
Tassel
基于R语言的关联分析工具包, 提供了丰富的统计方法和可视化 功能,适用于复杂数据分析。
主要用于基因组关联分析的软件, 支持多种数据格式和多种统计模 型,可进行大规模数据分析。
QTL定位的软件工具
QTL Cartographer
基于区间作图法的QTL定位软件,适用于大样本数据 集。
Tassel
综合关联分析和区间作图法的QTL定位软件,具有强 大的数据处理和分析能力。
R/qtl
基于R语言的QTL定位软件,提供了多种统计模型和 可视化工具。
05
数量性状基因组关联分析
关联分析的基本原理
广义遗传力
广义遗传力用于描述数量性状在遗传和环境变异中的贡献,计算公式为加性方差和显性方差占表型方差的比值。
狭义遗传力
狭义遗传力仅考虑基因型对表型变异的贡献,计算公式为加性方差占表型方差的比值。
遗传相关分析
遗传相关系数
用于描述两个数量性状之间的遗传关系,计算公式为两个数量性状的加性方差和显性方差之间的比值 。

遗传学A名词解释(下)

遗传学A名词解释(下)

第八章数量性状的遗传(4学时)主(效)基因:效应明显的基因。

微效基因:效应微小的基因。

修饰基因:增强或削弱其他主基因对表现型的作用。

★超亲遗传:在数量性状的遗传中,杂种第二代及以后的分离世代群体中,出现超越双亲性状的的新表型的现象。

★★★★狭义遗传率(力):指基因加性方差占总方差的比值。

★★遗传率(力):指遗传方差在总方差(表型方差)中所占的比例。

★★QTL:控制数量性状的基因座(控制数量性状的基因在基因组中的位置)第九章近亲繁殖和杂种优势(2学时)★★★杂种优势:两个遗传组成不同的亲本杂交产生的杂种F1在生长势、生活力、繁殖力、抗逆性、产量、品质等上优越于双亲的现象。

(大都为数量性状)★近交系数:用来描述双亲亲缘关系的远近。

★纯系:从一个基因型纯合个体自交产生的后代。

(自交系)第十章细菌和病毒的遗传(4学时)转化:某些细菌(或其他生物)通过其细胞膜摄取周围供体的染色体片段,并将此外源DNA片段通过重组整合到自己染色体组的过程。

★接合:在原核生物中,是指遗传物质从供体“雄性”转移到受体“雌性”的过程。

★性导:是指接合时有F’因子所携带的外源DNA转移到细菌染色体的过程。

★★★★★转导:指以噬菌体为媒介所进行的细菌遗传物质重组的过程。

★普遍性转导:转导噬菌体可以转移细菌染色体组的任何不同部分的转导。

第十一章细胞质遗传(4学时)★细胞质遗传:由细胞质内的基因所决定的遗传现象和遗传规律。

★★★孢子体不育:指花粉的育性受孢子体(植株)基因型所控制,而与花粉本身所含基因无关★★配子体不育:指花粉育性直接受雄配子体(花粉)本身的基因所决定第十二章遗传工程(3学时)基因组文库:使用与切割质粒相同的限制性内切酶,将供体生物体的基因组DNA切成许多片段,然后将其连接到载体上构成的一个重组DNA群体。

cDNA文库:以mRNA为模板,在反转录酶作用下,合成cDNA,将其与适当载体连接并转化到宿主细胞内进行扩增构建成的基因库。

数量性状的遗传

数量性状的遗传

第四章数量性状的遗传目的要求掌握数量性状与质量性状的区分、特征,多基因假说的要点,数量性状表现值的分解,遗传力的概念;了解通径系数概念与意义,基因的非加性效应与加性效应的意义,遗传力公式的推导及计算方法;掌握遗传力的应用。

第一节数量性状的遗传基础生物的性状基本上可分为两大类:质量性状(qualitative trait):变异可以截然区分为几种明显不同的类型,一般用语言来描述;数量性状(quantitative trait):个体间性状表现的差异只能用数量来区别,变异是连续的。

阈性状(threshold trait):表现型呈非连续变异,与质量性状类似,但不是由单基因决定,性状具有一个潜在的连续型变量分布,遗传基础是多基因控制的,与数量性状类似。

一、数量性状的一般特征数量性状的特点:①数量性状是可以度量的;②数量性状呈连续性变异;③数量性状的表现容易受到环境的影响;④控制数量性状的遗传基础是多基因系统。

学习数量性状的方法①统计学思想贯穿数量性状遗传的全部内容;②确定性与不确定性的矛盾时时体现;③研究对象在个体与群体间的相互转换;④遗传与变异的矛盾。

二、数量性状的遗传基础1.多基因假说瑞典遗传学家尼尔迩·埃尔(Nilsson-Ehle)通过对小麦籽粒颜色的遗传研究,提出了数量性状遗传的多基因假说。

多基因假说的要点(1)数量性状是由许多微效基因决定的,每个基因的作用的微效的;(2)基因的作用是相等的,且可以累加、呈现剂量效应,等位基因间通常无显隐关系;(3)基因在世代相传中服从孟德尔定律,即分离规律和自由组合规律,以及连锁交换规律2.基因的非加性效应基因的非加性效应包括显性效应和上位效应。

(1)显性效应由等位基因间相互作用产生的效应。

例1:有两对基因,A1、A2的效应各为20cm,a1、a2的效应名为10cm,基因型A1A1a2a2按加性效应计算其总效应为60cm 。

而在杂合状态下,即A 1a 1A 2a 2同样为两个A 和两个a ,其总效应可能是75cm(2)上位效应或互作效应 由非等位基因之间相互作用产生的效应。

遗传学数量性状的遗传分析86习题

遗传学数量性状的遗传分析86习题

第八章数量性状的遗传分析一、填空题H=0.91、在某一养鸡场饲养的某种鸡中,已知鸡蛋产量的遗传力2,那么该性状的遗传主要因素决定的。

是由于2因那么该性状的遗传主要是由___已知来航鸡的产卵量的遗传力是H=0.05,2、在来航鸡中, 素决定的。

类型。

、数量性状呈变异,不同表型之间有很多3作用。

和4、在数量性状遗传中,多基因对表现型的作用方式主要有。

,控制数量性状的基因称为5、数量性状的遗传变异表现为作为环境方差的估计。

6、广义遗传率的估算是利用三部分。

,7、数量性状遗传中,遗传方差可分解为,质量性状的遗传率。

8、数量性状的遗传率一般97%代自交,才能达到大约为由杂合开始,需要经过9、一个连续自交的群体,的纯合子。

)它是由( 一类叫( ),10、根据生物性状表现的性质和特点,我们把生物的性状分成两大类。

( )所决定。

所控制的;另一类称( ),它是由),说明这个性状受环境的影、遗传方差占总方差的比重愈大,求得的遗传率数值愈( 11 )。

响(,),每个基因对表现型影响()控制的,由于基因数量()12、数量性状一向被认为是由(所以不能把它们个别的作用区别开来。

的百分数。

( )占( )和13、遗传方差的组成可分为( )( )两个主要成分,而狭义遗传力是指高AABB和Bb,以累加效应的方式决定植株的高度,纯合子14、二对独立遗传的基因Aa40cm代中株高表现 cm,在F2。

这两个纯合子杂交,F1高度为()50cm,aabb 高30cm )。

的植株所占的比例为( 2的基因型有()等三种,F中株高40cm)三个组成部)和(15、在数量性状遗传研究中,基因型方差可进一步分解为()、()方差是可以固定的遗传变量。

分,其中(的种子在相同21、B1、F2、B16、一个早熟小麦品种与一个晚熟品种杂交,先后获得F30、V6、VF2=p2=p1=7、V5、VF1=的试验条件下,得到各世代的表现型方差为:V),狭义((),广义遗传率h2B=B1=21、VB2=19,试估计该性状的环境方差VE= )。

数量性状

数量性状

第八章数量性状遗传呈连续变异的性状叫做数量性状(quantitative character or trait QT )第一节数量性状的遗传学分析一、数量性状的多基因假说1909年,瑞典遗传学家Hermann Nilsson-Ehle对小麦和燕麦中籽粒颜色的遗传进行了研究他进一步观察后发现:F1红粒,红色的程度不如亲本那么红。

F2 红粒有不同程度的红,具有一定的梯度。

杂交A,B,C各包括一对,两对,三对基因的差异。

所以,在小麦和燕麦中,存在着3 对与种皮颜色有关的种类不同但作用相同的基因,即重叠基因。

A P 红粒×白粒↓F1 红粒↓F2 3/4红粒:1/4白粒B P 红粒×白粒↓F1 红粒↓F2 15/16 红粒:1/16 白粒C P 红粒×白粒↓F1 红粒↓F2 63/64红粒:1/64白粒设:3对基因为:R1, r1 R2, r2 R3, r3R对r 不完全显性,R 使红色增加,且具有累加效应。

三组杂交的可作如下解释:A R 1 R1 (r2 r2 r3 r3) ×r1 r1 (r2 r2 r3 r3)B R 1 R1 R 2 R2 (r3 r3) ×r1 r1 r2 r2 ( r3 r3)↓R 1 r1 R2 r2↓C R 1 R 1 R 2 R2 R 3R3 ×r1 r1r2 r2 r3r3↓R 1 r1 R 2 r2R3r3↓6R 5R 4R 3R 2R 1R 0R1/64 6/64 15/64 20/64 15/64 6/64 1/64( 1/2 R + 1/2 r)nn 涉及到的等位基因数目符合二项分布P (X=k) = Cnkpkq n-kCnk = n! / (n-k)! k !实验说明:红色深浅的梯度变化与差异基因的对数有关。

若差异基因的对数更多时,变异会逐渐由梯度变化向连续变化转变。

Nilsson-Ehle (1909)总结了上述实验分析的结果,提出了数量性状遗传的多基因假说。

数量性状的遗传—数量性状遗传的特征(遗传学课件)

数量性状的遗传—数量性状遗传的特征(遗传学课件)
动物(畜禽)的大多数经济性状都是数量性状,例如产 蛋量、增重速度、产奶量、饲料报酬、胴体瘦肉率,及毛 皮动物的毛长、细度和密度等。
所以数量性状在农业中显得特别重要。 (三)人类
人的身高、体重、胖瘦、寿命……
三、认识数量性状
特点:变异不容易分为截然不同的组别,其间有 一系列的过渡类型,只有数量的不同,没有质的 差别。
10
0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
《遗传学》
知识目标
学习目标
一、 二、 三、
知道 清楚 数量 数量
熟悉 数量 性状
性状 性状 与质
的概 的遗 量性
念 传特 状的

区别
能力目标
能用分析 数量性状 的方法分 析育种与 生产中的 实际问题
Gregor Mendel 1822-1884
(一)数量性状与质量性状的区别
五、数量性状与质量性状的关系 (二)数量性状与质量性状的相对性 1、数量性状与质量性状的区别不是绝对的; 2、生物的性状都有其质和量两个方面,只是在一 定条件下质和量表现出主次关系。 3、在不易区分一个性状是质量性状或数量性状时, 就必须根据F1或F2遗传动态特征来作出判断。
30
亲 本 25
20
玉米穗长遗传的柱形图
15
10
5
0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
18
16
F 14 1 12
10
8 6 4
2 0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21

遗传学第八章数量遗传课件.ppt

遗传学第八章数量遗传课件.ppt

F3的表现型方差:
33 VF3 4VA16VDVE
F4代的表现型方差:
77 VFr 8VA64VDVE
随着自交代数的增加,群体基因型方差中的可固
定遗传变异加性效应方差比重逐渐加大,而 不可固定的显性效应方差比重逐渐减小。
4. 回交世代的方差
B1群体: F1P 1 A aAA
其群体遗传组成: 1 AA 1 Aa 22
15
6
1
红粒有效基 6R 5R 4R 3R 2R 1R 0R 因数
红粒:白粒
63:1
小麦籽粒颜色生化基础:红粒基因R编码一种红色素合成 酶。R基因份数越多,酶和色素的量也就越多,籽粒的颜 色就越深。
当某性状由1对基因决定时,由于F1能够产生 具有等数R和等数r的雌配子和雄配子,所以
F1产生的雌配子与雄配子都各为,
两个方差加在一起 1 a 2 1 d 2 1 a 1 d a 2 1 d 2 1 a 1 d a 2 1 d 2 44 244 222
11 VB 1VB22VA2VD2VE
第四节 遗传率的估算及其应用
一、遗传率的概念
1、广义遗传率 遗传方差占总方差(表型方差)的比值
hB2
遗传方差 总方差
100 %
VG 100% VG VE
2、狭义遗传率:基因加性方差占总方差的比值
V P V A V D V I V E
h
2 N
基因加性方差 总方差
100 %
V A 100% VP
V A
VA VD VI
VE
100 %
二、遗传率的估算
•广义遗传率的估算
VE1 4VP11 2VF11 4VP2
第一节 数量性状的特征

遗传学-数量性状的遗传分析

遗传学-数量性状的遗传分析

三、微效基因表型值的推算
累加作用(每个显性基因的作用以一定的数值与纯隐性亲本 的表型值相加) 纯显性亲本表型值=每个显性基因表型值X纯显性亲本基因数+ 纯隐性亲本表型值 如短穗玉米x=6.6,长穗玉米x=16.8,F2中长、短穗各占群体 的1/16 4n=16,n=2 控制长穗玉米穗长的显性基因为2对(4个). 每个显性基因表型值=纯显亲本表型值-纯隐亲本表型值/纯显 亲本基因数=16.8-6.6/4=2.55 所以,含一个显性基因的玉米穗长:6.6+2.55=9.15cm 含2个显性基因的玉米穗长:6.6+(2×2.55)=11.7cm 依此类推。
狭义遗传率
计算基因的相加效应的方差VA在总的表型方差中所占的百分率。
Aa同AA回交的子代个体为B1,同aa回交的子代个体为B2。 B1的遗传方差的计算 f x fx fx2 AA 1/2 a 1/2a 1/2a2 Aa 1/2 d 1/2d 1/2d2 合计 1 1/2(a+d) 1/2(a2+d2) B1的遗传方差:VB1=1/2(a2+d2) -1/4(a+d)2=1/4(a-d)2 B2的遗传方差的计算 f x fx fx2 Aa 1/2 d 1/2d 1/2d2 aa 1/2 -a -1/2a 1/2a2 合计 1 1/2(d-a) 1/2(a2+d2) B2的遗传方差:VB2=1/2(a2+d2)- 1/4(d-a)2=1/4(a+d)2
例如小麦籽粒颜色两对基因控制的遗传动态 P 红R1R1R2R2 白r1r1r2r2 R1r1R2r2 红 1 4 6 4
F1
F2
1
4R
深红
3R
中深红

第八章数量性状遗传-(2)ppt课件

第八章数量性状遗传-(2)ppt课件
数量性状呈连续变异,受微效多基因控制;
质量性状呈现不连续变异,受主基因控制(对 性状起主要决定作用的基因较主基因)。
无论那种基因都位于染色体上,所以,对性状 的控制就有某些必然联系,同时又有区别
1、区分性状的方法不同,有些性状既有 数量性状的特点又有质量性状的特点
例如:小麦粒色 两对基因 F2 15:1 为质量性状
遗传率
因为方差可用来测量变异的程度,所以 各种变异可用方差来表示。表型变异用 表型方差(Vp)来表示,遗传变异用遗 传方差(VG)来表示,环境变异用环境 方差(VE)来表示。表型方差可以分为 遗传方差和环境方差两部分,写成公式 就成为
Vp=VG+VE
所谓遗传率(heritability,以h2表示)就 是遗传方差在总的表型方差中所占的比 例,用公式表示是
几种经济性状的遗传力:
鸡卵重 60%
体重 30%
产卵数 60%
乳牛 一年泌乳量 50%
乳脂率 50%
玉米株高 70%
穗直径
70%
第三节 近亲繁殖和杂种优势 (interbreeding and heterosis)
一、
近亲繁殖interbreeding
1近交(interbreeding)和杂交(crossbreeding) 的概念
一般生物学资料中,单注明平均数往往 是不够的,应该加上标准误,表明平均 数的可能变异范围,所以短穗玉米穗长 的例子可写作
第三节 遗传变异和遗传率
遗传变异来自分离中的基因以及它们跟 其他基因的相互作用。遗传变异是总的 表型变异的一部分,表型变异的其余部 分是环境变异。环境变异是由环境对基 因型的作用造成的。
P ♂红粒 ╳ ♀白粒
A1A1A2A2

遗传学————刘祖洞chapter8

遗传学————刘祖洞chapter8

第八章数量性状遗传1.数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传产质量性状遗传有什么主要区别?2.什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度?3.自然界中杂交繁殖的生物强制进行自义或其它方式近交时生活力降低,为什么自然界中自交的生物继续自交没有不良影响呢?4.约翰逊用菜豆做实验,得出纯系学说。

这个学说的重要意义在哪里?它有什么局限性?5.纯种或自交系的维持比较困难,那末,制造单交种或双交种时,为什么要用纯种或自交种呢?6、如果给有下标0的基因以5个单位,给有下标1的基因以10个单位,计算A0A0B1B1C1C1和A1A1B0B0C0C0两个亲本和它们F1杂种的计量数值。

设⑴没有显性;⑵ A1对A0是显性;⑶ A1对A0是显性,B1对B0是显性。

解:亲本A0A0B1B1C1C1的计量数值:亲本A1A1B0B0C0C0的计量数值:F1杂种A1A0B1B0C1C0的计量数值分3种情况讨论:⑴没有显性,⑵A1对A0为显性时,A1A0的计量数值等于A1A1的计量数值,故杂种F1的计量数值为:⑶ A1对A0是显性,B1对B0是显性时,杂种F1的计量数值为:7、根据上题的假定,导出下列的F2频率分布,并作图。

解:F2群体的遗传组成见下表:F2群体的遗传组成A1B1C1A1B1C0A1B0C1A1B0C0A0B1C1A A1B1C1A1A1B1B1C1C1A1AB1B1C1C0A1A1B1B0C1C1A1A1B1B0C1C0A1A0B1B1C1C1A1A0A1B1C0A1A1B1B1C1C0A1A1B1B1C0C0A1A1B1B0C1C0A1A1B1B0C0C0A1A0B1B1C1C0A1A0 A1B0C1A1A1B1B0C1C1A1A1B1B0C1C0A1A1B0B0C1C1A1A1B0B0C1C0A1A0B1B0C1C1A1A0 A1B0C0A1A1B1B0C1C0A1A1B1B0C0C0A1A1B0B0C1C0A1A1B0B0C0C0A1A0B1B0C1C0A1A0 A0B1C1A1A0B1B1C1C1A1A0B1B1C1C0A1A0B1B0C1C1A1A0B1B0C1C0A0A0B1B1C1C1A0A0 A0B1C0A1A0B1B1C1C0A1A0B1B1C0C0A1A0B1B0C1C0A1A0B1B0C0C0A0A0B1B1C1C0A0A0 A0B0C1A1A0B1B0C1C1A1A0B1B0C1C0A1A0B0B0C1C1A1A0B0B0C1C0A0A0B1B0C1C1A0A0 A0B0C0A1A0B1B0C1C0A1A0B1B0C0C0A1A0B0B0C1C0A1A0B0B0C0C0A0A0B1B0C1C0A0A0⑴基因之间没有显隐性关系时:F2群体的遗传组成A1B1C1A1B1C0A1B0C1A1B0C0A0B1C1A0B1C0A0B0C1A0B0C0A1B1C16055555055505045A1B1C05550504550454540A1B0C15550504550454540A1B0C05045454045404035A0B1C15550504550454540A0B1C05045454045404035A0B0C15045454045404035A0B0C04540403540353530⑵ A1对A0是显性时:F2群体的遗传组成A1B1C1A1B1C0A1B0C1A1B0C0A0B1C1A0B1C0A0B0C1A0B0C0A1B1C16055555060555550A1B1C05550504555505045A1B0C15550504555505045A1B0C05045454050454540A0B1C16055555050454540A0B1C05550504545404035A0B0C15550504545404035A0B0C05045454040353530⑶ A1对A0是显性,B1对B0是显性:F2群体的遗传组成A1B1C1A1B1C0A1B0C1A1B0C0A0B1C1A0B1C0A0B0C1A0B0C0A1B1C16055605560556055A1B1C05550555055505550A1B0C16055504560555045A1B0C05550454055504540A0B1C16055605550455045A0B1C05550555045404540A0B0C16055504550454035A0B0C055504540454035303种情况下F2的频率分布分别是:计量数⑴⑵⑶值303540455055608、上海奶牛的泌乳量比根赛(Guernseys)牛高12%,而根赛牛的奶油含量比上海奶牛高30%。

第八章 数量性状的遗传 (共66张PPT)

第八章  数量性状的遗传 (共66张PPT)
第八章 数量性状的遗传
23.04.2020
第一节 数量性状的特征 第二节 数量性状遗传研究的基本统计方法 第三节 数量性状的遗传模型和方差分析 第四节 遗传率的估算及其应用 第五节 数量性状基因定位(自学)
23.04.2020
遗传性状: 质 量 性 状 (qualitative character) : 表 现 型 具 有不连续(discontinuous)变异的性状。
33 VF3 4VA16VDVE
F4代的表现型方差:
77 VF4 8VA64VDVE
随着自交代数的增加,群体基因型方差中的可固定遗传 变异加性效应方差比重逐渐加大,而不可固定的显性效应 方差比重逐渐减小。
23.04.2020
(四)回交世代的方差 ◆回交(back cross):杂种F1与两个亲本之一进行杂 交的交配方式。 ◆回交世代:回交获得的子代群体。通常将杂种F1 与两个亲本回交得到的两个群体可分别记为B1, B2 (回交一代 ) 。
加性-显性-上位性模型:
G=A+D+I VG = VA + VD + VI
P=A+D+I+E VP = VA+VD+VI+VE
23.04.2020
加性-显性模型
◆在一对基因(C, c)差异,有三种基因型:
CC/Cc/cc;
◆设a表示两个纯合体CC和cc之间的表型之差;
d表示杂合体Cc与表型CC和cc平均值 (m)的离差;
23.04.2020
◆也有一些性状虽然主要由少数主基因控制,但另外 还存在一些效应微小的修饰基因(modifying gene), 这些基因的作用是增强或削弱其它主基因对表现 型的作用。

第八章 数量性状遗传一、数量性状的概念及其基本特征 质

第八章 数量性状遗传一、数量性状的概念及其基本特征 质

超显性学说
• 1908,Shull;1936,East
杂种优 势来源 于双亲 基因型 的异质 结合所 引起的 基因间 的互作。
杂种优势的利用
• 1500年前我国古代记述了马驴杂交-骡子 • 植物生产,1760年,烟草 • 利用杂种优势时要注意: 1. 保持亲本的纯合性和典型性 2. 选择自身表现好,配合力高的优良亲本及
F2代VG的估算: ∵VF2=VG + VE ∴VG=VF2 –VE=VF2 – 1/3(VP1 + VP2 + V F1)或 VG=VF2 –VE=VF2 – 1/2(VP1 + VP2 + V F1)
或:
VG VF2 – VE VF2 – ½(VP1+VP2)
H= =
=
VP
VG + VE
VF2
VG VF2 – VF1 VF2 – VF1
VF2 – VF1
H= =
=
=
VP
VG + VE VF2-VE1+VE
VF2
当P1、P2、F1在相同的环境中时,则:
∵ VP1 = VG1+VE VP2= VG2+VE VF1=
VG+VE
∴ VE =1/3(VP1 + VP2 + V F1) 或VE = 1/2(VP1 + VP2 )
(二)数量性状遗传的实例 Nilsson-Ehle的小麦籽粒颜色的杂交实验。
分别用粉红、红色、深红与白色杂交:
A
浅红 x 白色
AAbbcc aabbcc 淡红Aabbcc
1浅红 2淡红 1白色
B
红色 x 白色
AABBcc aabbcc

数量性状的遗传

数量性状的遗传

数量性状的遗传数量性状指的是一个生物体的某种性状具有连续性质,在一个种群中表现出一定的变异程度,且受多种基因和环境因素的影响。

例如人体身高、体重等就是数量性状。

数量性状由多个基因的作用所决定,被称为多基因性状。

与单基因性状不同的是,多基因性状不符合孟德尔遗传定律。

数量性状的遗传规律经过长时间的探究,现已初步得出。

从基因层面探究数量性状的遗传数量性状的基因型及其表现形式比较复杂,同一基因型的个体之间也会存在表现形式的差异。

基因由两条相同或不同的基因座构成,分别来自父母亲。

在数量性状的遗传中,每个基因座所对应的基因影响数量性状的大小和表现型。

同时,多个基因座共同作用于数量性状,这种作用关系被称为加性效应(additive effect)。

数量性状的遗传规律主要有:性状值=基因值+环境值,基因型对数量性状的影响呈现正态分布,且受到染色体上多个基因的影响。

数量性状的遗传模式数量性状的遗传规律有三种模式:常染色体显性遗传、常染色体隐形遗传以及性联遗传。

常染色体显性遗传的表现形式是当一个自由基因突变,双等位基因后者扰动的时候,显性基因造成的表现现象。

例如,人体的眼睛颜色就是常染色体显性遗传的一种表现。

常染色体隐性遗传与常染色体显性遗传类似,不同的是表现基因是一种隐性基因。

这种遗传模式表现突变基因表现在两条染色体上都具有相同的表现现象。

例如,某些人患有系统性红狼疮就是常染色体隐性遗传的一种表现。

性联遗传指由X和Y染色体来遗传。

X染色体上的基因对于女性来说是双等位基因,由于女性有两个X染色体,所以会出现多种表现型。

而男性由于只有一个X 染色体,所以表型变化更加显著和恒定。

例如,红绿色盲就是一种典型的性连锁遗传疾病。

数量性状的计算分析数量性状的遗传变异分析可以通过基因型频度分析、亲权分析和遗传连锁分析来进行。

(1)基因型频度分析:由于每个基因座共有两个等位基因,因此可将一个种群中某一基因座的等位基因频率进行 PA+Pa=1,其中PA为某一基因座等位基因A 的频率,Pa为某一基因座等位基因a的频率。

医学生物学第八章-多基因遗传与多基因遗传病

医学生物学第八章-多基因遗传与多基因遗传病
第八章 多基因遗传与多基因病
第一节 多基因遗传的概念和特点
一、多基因遗传的概念
一种遗传性状或遗传病受两对或两对以上基因的控制,每对 基因彼此间没有显性和隐性的关系,每对基因对表型的效应 都很小,这种基因称微效基因.
遗传性状的形成除受微效基因影响外,也受环境因素的影响,
这种性状的遗传方式称为多基因遗传或多因子遗传。这种遗 传方式控制的疾病称多基因遗传病。
四、多基因遗传特点
01
两个纯合的极端个体杂交,F1都是中间型,但个体间也存 在一定的变异范围,这是环境因素的作用;
02
两个中间类型F1杂交,F2大部分为中间型,变异范围比F1 广泛,有时出现极端类型的个体,除环境因素外,微效基 因的分离组合也起作用;
03
在一个随机群体中,变异范围广泛,但大都接近平均值 (中间类型),呈连续分布,极端个体很少,这些变异受 多基因和环境因素的双重作用。
疾病与畸形
群体发病率(%)
患者一级亲属发病率 (%)
遗传度(%)
精神分裂症
0.5~1.0
10~15
80
哮喘
1~2
12
80
早发型糖尿病
0.2
2~5
75
强直性脊椎炎
0.2
男性先证者7 女性先证者2
70
冠心病
2.5
7
65
原发性高血压
4~10
15~30
62
无脑儿
0.5
4
60
脊柱裂
0.3
4
60
消化性溃疡
4
8
37
二、质量性状和数量性状
(一)质量性状:单基因遗传性状又称质量性状,表现为有或 无,相对性状之间的差异很明显,有质的区别,中间无过渡类型,

数量性状的遗传1ppt课件

数量性状的遗传1ppt课件
2.群体基因型值的平均值 μ=P2a+2pqd+q2(-a) =a(p-q)+2pqd, μ不代表绝对平均值,
而是对双亲基因型平均值的离差。 (Ⅰ) a(p-q)表示纯合体的累加效应; (Ⅱ) 2pqd表示杂合体的显性效应,d=0表示无显性效应. (Ⅲ)若p=q=1/2,且d=0, μ=0 (Ⅳ)n个基因座的联合效应
10/12/2024
16
第一节 数量性状的遗传学分析
上面两个杂交试验都表明,当基因的作 用为累加时,即每增加一个红粒有效基 因(R),子粒的颜色就要更红一些。由于 各个基因型所含的红粒有效基因数的不 同,就形成红色程度不同的许多中间类 型籽粒。
10/12/2024
17
第一节 数量性状的遗传学分析
基因控制 变异分布 表型 受环境 遗传 性状 研究 分布 影响 规律 特点 对象
————————————————————————————— 数量性状 多基因 正态分布 连续 大 非孟德 易度量 群体
尔遗传 质量性状 单基因 二项分布 分散 小 孟德尔 不易 个体
遗传 度量 和群体
—————————————————————————————
常归于环境效应. 用剩余值(R)表示: R=E+D+I, ∴P=A+R
2.表型方差及分量 VP=VG+VE ①G和E相关:VP=VG+VE+2covGE ②G和E无相关:VP=VG+VE=VA+VD+VI+VE
其中VA加性方差——可稳定遗传; VD显性方差,VI互作方差——不能稳定遗传。
10/12/2024
按照他的解释,数量性状是许多彼此独立的基因 作用的结果,每个基因对性状表现的效果较微, 但其遗传方式仍然服从孟德尔的遗传规律。而且 还假定:

《数量性状遗传》课件

《数量性状遗传》课件

遗传模型构建方法
遗传力模型
通过构建遗传力模型,分 析数量性状的遗传变异程 度,并估计遗传力和相关 参数。
遗传相关模型
通过构建遗传相关模型, 分析不同数量性状之间的 遗传相关控制的群体遗传现象, 通过混合模型进行基因型 和环境交互作用的分析。
数量性状遗传在自然界中广泛存在,如人的身高、 体重、智力等都属于数量性状。
数量性状遗传的特点
数量性状遗传具有连续变异的 特点,即在一个群体中,个体 的表现型值可以连续变化。
数量性状遗传受多个基因位点 的影响,这些基因位点通常具 有微效作用,即每个基因位点 对表现型的影响较小。
数量性状遗传还受到环境因素 的影响,环境因素可以影响个 体表现型值的变异范围和分布 。
数量性状遗传在动物育种中的应用
生长速度
通过研究动物生长速度的数量性 状遗传,育种家可以培育出生长 快速的动物品种,提高养殖效益

繁殖性能
通过选育具有优良繁殖性能的数 量性状基因,可以提高动物的繁
殖效率,加速品种改良进程。
抗病性
通过研究动物抗病性的数量性状 遗传,育种家可以培育出具有较 强抗病能力的动物品种,降低养
利用新一代测序技术和遗传资源发掘,精细定位和克隆控制数量性状的基因或基因组区域 。
解析数量性状基因的互作网络
研究基因之间的相互作用关系,解析数量性状形成的复杂网络调控机制。
探索表观遗传修饰对数量性状的影响
研究DNA甲基化、组蛋白修饰等表观遗传修饰对数量性状表达的调控作用。
加强数量性状遗传与其他学科的交叉研究
03
数量性状遗传分析方法
统计分析方法
01
02
03
方差分析
通过比较不同群体或处理 组之间的变异程度,确定 数量性状是否受遗传控制 。

第八章 数量性状的遗传

第八章 数量性状的遗传
● VB1=1/4a2-1/2ad+1/4d2 +VE
● VB2 = 1/4a2 +1/2ad+1/4d2 +VE
● VB1+VB2=1/2a2 +1/2d2 +2VE ②
● 2VF2-(VB1+VB2) =1/2a2 = VA
VA=2VF2-(VB1+VB2)
狭义遗传力的估算方法
HN2

加性方差 总方差
基因加性方差是可固定的遗传变异 量,可在上、下代间传递,所以, 凡是狭义遗传率高的性状,在杂种 的早期世代选择有效; 反之,则要在 晚期世代选择才有效。
育种值方差 理论上,在同一个试验中HN2 一定小于HB2。 狭义遗传力才真正表示以表现型值作为选择 指标的可靠性程度。
加性方差又称为育种值方差。
具有相对性状的两个亲本杂交,后代的性状表 现型值的差异取决于两方面的因素,一是基因
的分离造成的,一是环境条件的影响造成的。
遗传率:在一个群体中,遗传方差在总 方差(表现型方差)中所占的比值。
广义遗传率定义为:
H
2 B

遗传方差 总方差
100%= VG VG VE
100 %
遗传率衡量遗传因素和环境条件对所研究的性状的 表型总变异所起作用的相对重要性。
广义遗传率的估算 VP是可以从表现型值P计算获得的。 而VG是不能直接测得的。 知道了VP,若能得到VE,则也就有了VG。 估计环境方差是估算广义遗传力的关键。
二、几种常用群体的方差分析 P1、P2和F1是不分离世代,群体内个体 间无遗传差异,所表现出的不同都是 环境因素引起的。故:
VP1=VE VP2=VE VF1=VE
合计 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/14
2020/8/14
无显性 部分显性 完全显性
超显性
二、几种常用群体的方差分析 (一)不分离世代方差
P1、P2和F1是不分离世代,群体内个体间无遗传 差异,所表现出的不同都是环境因素引起的。故:
2020/8/14
(二)F2的方差 群体总基因型方差为各基因型值与群体平均值
的离差平方和的加权平均值。 F2基因型: F2群体平均 理论值:
2020/8/14
(三)多基因假说的发展
◆各个微效基因的遗传效应值不尽相等,效应的类 型包括等位基因的加性效应、显性效应,以及非等 位基因间的上位性效应,还包括这些基因主效应与 环境的互作效应。
2因控制,但另外 还存在一些效应微小的修饰基因(modifying gene) ,这些基因的作用是增强或削弱其它主基因对表 现型的作用。
2020/8/14
第一节 数量性状的特征
一、数量性状的特征 (1)连续性变异,不能明确分 组,用统计学方法分析。
2020/8/14
玉米穗长遗传
(2)易受环境条件的影响而发生变化。 • 由于环境条件的影响,亲本与F1的数量性状也会
出现连续变异的现象。 • 如玉米P1、P2和F1的穗长呈连续分布,而不是只
2020/8/14
三、遗传率的应用 ◆遗传率可作为杂种后代性状选择的指标,其高低反映 :性状传递给子代的能力、选择结果的可靠性、育种 选择的效率; ◆通常认为遗传率:
>50%高;=20~50%中;<20%低
2020/8/14
◆一般来说,狭义遗传率较高的性状,在杂种的早期 世代选择,收效比较显著;而狭义遗传率较低的性状 ,则要在杂种后期世代选择才能收到较好的效果。 ◆相关选择:对遗传率比较低的性状可以利用与之相 关程度高(相关系数高)且遗传率较高的性状进行间接 选择。
(5) 遗传率并不是一个固定数值,对自花授粉植物来 说,它因杂种世代推移而有逐渐升高的趋势。
2、基因型是离散 的,表现型是连 续的。
2020/8/14
不同基因数目及机误效应 的F2群体的表现型值频率分布
三、超亲遗传 (transgressive inheritance)
超亲遗传:在植物杂交时,杂种后代出现的一种 超越双亲的现象。
P 早熟a1a1a2a2A3A3 × 晚熟A1A1A2A2a3a3 ↓
2020/8/14
(一)小麦子粒颜色的遗传 两对基因差异
2020/8/14
三对基因差异
2020/8/14
由于F1产生1/2R和1/2r的♀、♂配子,则F2表现型为 :(1/2R+1/2r)2 当性状由n对独立基因决定时,则F2表现型频率: (1/2R+1/2r)2n
◆当n = 2时 (R/2+r/2)2×2 =1/16+4/16+6/16+4/16+1/16 4R 3R 2R 1R 0R
VG = VA + VD VP = VA+VD+VE
2020/8/14
上位性效应(epitasis effect,I ), I: 非等位基因之间 的相互作用, 属于非加性效应。
加性-显性-上位性模型:
G=A+D+I VG = VA + VD + VI
P=A+D+I+E VP = VA+VD+VI+VE
第八章数量性状的遗传
2020/8/14
第一节 数量性状的特征 第二节 数量性状遗传研究的基本统计方法 第三节 数量性状的遗传模型和方差分析 第四节 遗传率的估算及其应用 第五节 数量性状基因定位(自学)
2020/8/14
遗传性状: 质量性状(qualitative character):表现型具 有不连续(discontinuous)变异的性状。
有一个长度。但这种由环境引起的变异是不能遗 传的。
2020/8/14
(3)存在基因型与环境的互作。
图8-2 玉米4个品种在3个环境中的产量表现
2020/8/14
二、数量遗传的多基因假说 瑞典遗传学家Nilson-Ehle(尼尔逊·埃尔)于 1909年对小麦籽粒颜色的遗传进行研究后提出多基因 假说,经后人试验论证而得到公认。
质量性状和数量性状的区别
变异类型 变异表现方式
遗传基础 对环境的敏感性
分析方法
质量性状
种类上的变化 (如红花、白花)
间断型
少数主基因控制 遗传基础简单
不敏感 系谱和概率分析
数量性状
数量上的变化 (如穗长)
连续型
微效多基因系统控制 遗传基础复杂
敏感 统计分析
2020/8/14
第二节 数量性状遗传研究的基本统计方法
所以
2020/8/14
2020/8/14
3、遗传率估算的实际操作程序
◆第一年:(P1×P2)F1
◆第二年:(F1×P1)B1
(F1×P2)B2
F1
F2
◆第三年:将世代作为处理因素,设计试验,并考察各
世代性状表现。
◆种植F2与F1(或3个不分离世代),可估计广义遗传率 ;
◆同时种植B1、B2、F2,可估算狭义遗传率。
2020/8/14
2020/8/14
◆广义遗传率(Broad ~)(hB2):遗传方差占总方差(表型 方差)的比率;
hB2=VG / VP×100% = VG / (VG+VE )×100%
hB2对某些自花授粉和无性系的植物而言,很有意义 。
因为这时基因型效应不易剖分,而且所有的基因型效应都 可以稳定遗传。
2020/8/14
如果这一性状受k 对基因控制,效应相等,可累加, 基因间不连锁,无互作,那么F2基因型方差为:


,则
2020/8/14
(加上环境方差)
(三)F3、 F4的方差 F3的表现型方差:
F4代的表现型方差:
随着自交代数的增加,群体基因型方差中的可固定遗传 变异加性效应方差比重逐渐加大,而不可固定的显性效应 方差比重逐渐减小。
F1 A1a1A2a2A2a3熟期介于双亲之间 ↓
F2
27种基因型
(其中A1A1A2A2A3A3的个体将比晚熟亲本更晚, 而a1a1a2a2a3a3的个体比早熟亲本更早)
2020/8/14
例如:小麦籽粒颜色遗传
2020/8/14
人的身高也可产生超亲遗传
姚明高度2.26米
2020/8/14
穆铁柱身高2.28米
所以
2020/8/14
不同情况下F2代环境方差估算方法 :
(适用于无F1代数据) (适用于动物和异花授粉作物)
2020/8/14
结果表明,对穗长这个性状而言,其总变异约56%是遗传因 素所决定的。
2020/8/14
2、狭义遗传率的估算
两回交一代表现型方差之和是: F2表现型方差是: F2加性方差可由上述两式估计:
数量性状(quantitative character):表现型具 有连续(continuous)变异的性状。
如:人的身高、果实大小、种子产量 分析方法:借助于数理统计的分析方法
数量遗传学(quantitative genetics):研 究数量性状遗传规律的遗传学分支学科。
2020/8/14
1918年费希尔(Fisher R. A. )发表“根据孟德
(2)各基因的效应相等; (3)各个等位基因表现为不完全显性或无显性,或
增效和减效作用; (4)各基因作用是累加性的。
2020/8/14
微效多基因与主效基因 ◆微效多基因或微效基因: ➢控制数量性状遗传的一系列效应微小的基因; ➢效应微小,难以根据表型将微效基因间区别开来; ◆主效基因/主基因: ➢控制质量性状遗传的一对或少数几对效应明显的基因 ; ➢可以根据表型分类,并进行基因型推断。
◆当n = 3时 (R/2+r/2)2×3 =1/64+6/64+15/64+20/64+15/64+6/64+1/64
6R 5R 4R 3R 2R 1R 0R
2020/8/14
普通小麦籽粒色的遗传
2020/8/14
2020/8/14
(二)多基因假说要点
(1)数量性状受许多彼此独立的基因作用,每个基 因作用微小,但仍符合孟德尔遗传;
例如:标记辅助选择(MAS)
2020/8/14
性状遗传的几个特点: (1) 不易受环境影响的性状的遗传率比较高,易受
环境影响的性状则较低; (2) 变异系数小的性状遗传率高,变异系数大的则
较低; (3) 质量性状一般比数量性状有较高的遗传率;
2020/8/14
(4) 性状差距大的两个亲本的杂种后代,一般表现较 高的遗传率;
2020/8/14
基因型值可进一步剖分为3个部分:
加性效应(additive effect,缩写a) ,A:等位基因的 累加效应,可固定的分量。“育种值” 显性效应(dominance effect,缩写d) ,D:等位基因 之间的互作效应, 属于非加性效应。
2020/8/14
加性-显性模型:
G=A+D P=A+D+E
如小家鼠有一种引起白斑的显性基因,白斑的大小由 一组修饰基因所控制。
2020/8/14
◆借助于分子标记和数量性状位点(quantitative trait loci,QTL)作图技术,已经可以在分子标记连 锁图上标出单个基因位点的位置、并确定其基因效应 。
2020/8/14
1、多基因控制的性 状一般均表现数量 遗传的特征。
2020/8/14
加性-显性模型
◆在一对基因(C, c)差异,有三种基因型:
相关文档
最新文档