上海高考数学压轴题50道(有答案-精品).
2020届上海市高三高考压轴卷数学试题(解析版)
![2020届上海市高三高考压轴卷数学试题(解析版)](https://img.taocdn.com/s3/m/3e676e580242a8956bece4e9.png)
2020届上海市高三高考压轴卷数学试题一、单选题1.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,122CC =,则异面直线1AC 与11A B 所成的角为( ) A .30︒ B .45︒C .60︒D .90︒【答案】C【解析】由条件可看出11AB A B ,则1BAC ∠为异面直线1AC 与11A B 所成的角,可证得三角形1BAC 中,1AB BC ⊥,解得1tan BAC ∠,从而得出异面直线1AC 与11A B 所成的角. 【详解】连接1AC ,1BC ,如图:又11AB A B ,则1BAC ∠为异面直线1AC 与11A B 所成的角.因为AB BC ⊥,且三棱柱为直三棱柱,∴1AB CC ⊥,∴AB ⊥面11BCC B , ∴1AB BC ⊥,又2AB BC ==,122CC =()22122223BC =+=∴1tan 3BAC ∠=160BAC ∠=︒. 故选C 【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.2.已知函数()3sin 2,6f x x π⎛⎫=+ ⎪⎝⎭130,6x π⎡⎤∈⎢⎥⎣⎦,若函数()()2F x f x =-的所有零点依次记为1,x 2,x ,⋅⋅⋅n x ,且12n x x x <<⋅⋅⋅<,则12122n n x x x x -++⋅⋅⋅++=( ) A .2π B .113π C .4π D .223π 【答案】D【解析】根据()f x 的对称轴方程为k ,62x ππ=+k ∈Z .得到()f x 在130,6x π⎡⎤∈⎢⎥⎣⎦上有5条对称轴,将原式变形()()()1211223122n n n n x x x x x x x x x x --++⋅⋅⋅++=+++⋅⋅⋅++,利用零点关于对称轴对称求解. 【详解】 令262x k πππ+=+得,62k x ππ=+k ∈Z , 即()f x 的对称轴方程为k ,62x ππ=+k ∈Z . ()f x 的最小正周期为,T π=130,6x π⎡⎤∈⎢⎥⎣⎦,()f x ∴在130,6x π⎡⎤∈⎢⎥⎣⎦上有5条对称轴, 第一条是6π,最后一条是:136π; 1,x 2x 关于6π对称,2,x 3x 关于46π对称…4,x 5x 关于106π对称 122,6x x π∴+=⨯2342,6x x π+=⨯3472,6x x π+=⨯,⋅⋅⋅451026x x π+=⨯, 将以上各式相加得:1231471022222266663n n x x x x x πππππ-⎛⎫+++⋯++=⨯+++=⎪ ⎭⎝. 故选:D. 【点睛】本题主要考查三角函数的图象和性质的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.3.若实数x ,y 满足22201y x x y y ≤⎧⎪+-≤⎨⎪≥-⎩,则2z x y =-的最大值是( )A .9B .12C .3D .6【答案】A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【详解】作出不等式组对应的平面区域如图(阴影部分):由2z x y =-得2y x z =-, 平移直线2y x z =-,由图像可知当直线2y x z =-经过点A 时, 直线2y x z =-的截距最小, 此时z 最大,由1220y x y =-⎧⎨+-=⎩,解得41x y =⎧⎨=-⎩,即()4,1-A , max 2419z =⨯+=.故选:A 【点睛】本题主要考查了简单的线性规划问题,考查了数形结合的思想,解题的关键是理解目标函数的几何意义,属于基础题.4.对于全集U 的子集A 定义函数()()()1A U x A f x x A ⎧∈⎪=⎨∈⎪⎩为A 的特征函数,设,A B 为全集U 的子集,下列结论中错误的是( ) A .若,A B ⊆则()()A B f x f x ≤ B .()()1R A A f x f x =- C .()()()ABA B f x f x f x =⋅D .()()()ABA B f x f x f x =+【答案】D【解析】根据()()()1A U x A f x x A ⎧∈⎪=⎨∈⎪⎩,逐项分析,即可求得答案.【详解】()()()1A U x A f x x A ⎧∈⎪=⎨∈⎪⎩对于A,A B ⊆,分类讨论:①当x A ∈,则,x B ∈此时()()1A B f x f x == ②当x A ∉且x B ∉,即Ux B ∈,此时()()0A B f x f x ==,③当x A ∉且x B ∈, 即()Ux A B ∈⋂时,()0,()1A B f x f x ==,此时()()A B f x f x ≤综合所述,有()()A B f x f x ≤,故A 正确;对于B ,1, ()1()0,A U U A x A f x f x x A ∈⎧==-⎨∈⎩,故(2)正确; 对于C ,1,()0,()A B U x A Bf x x C A B ⋂∈⋂⎧=⎨∈⋂⎩()1,0,U U x A B x C A C B ∈⋂⎧=⎨∈⋃⎩1,1,0,0,U U x A x B x C A x C B ⎧∈∈⎧⎪=⋅⎨⎨∈∈⎪⎩⎩ ()()A B f x f x =⋅,故C 正确;对于D ,0,()()()1,()A B A B U x A Bf x f x f x x C A B ⋃∈⋃⎧=≠+⎨∈⋃⎩,故D 错误.故选:D. 【点睛】本题主要考查了函数新定义和集合运算,解题关键是充分理解新定义和掌握函数,集合基础知识,考查了分析能力和计算能力,属于难题.二、填空题5.若集合{}|A x y x R ==∈,{}|1,B x x x R =≤∈,则A B =________.【答案】{}1【解析】求出A 中x 的范围确定出A ,求出B 中不等式的解集确定出B ,找出两集合的交集即可. 【详解】 解:由A中y =10x -,解得:1x ,即{|1}A x x ,由B 中不等式变形得:11x -,即{|11}B x x =-, 则{1}A B ⋂=, 故答案为:{1}. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题. 6.函数()lg 2cos 21y x =-的定义域是______. 【答案】553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦【解析】根据负数不能开偶次方根和对数的真数大于零求解. 【详解】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331 cos22xx-≤≤⎧⎪⎨>⎪⎩,所以33,66xk x k k Zππππ-≤≤⎧⎪⎨-<<+∈⎪⎩,解得536xπ-≤<-或66xππ-<<或536xπ<≤.故答案为:55 3,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦【点睛】本题主要考查函数定义域的求法以及一元二次不等式,三角不等式的解法,还考查了运算求解的能力,属于中档题.7.已知i为虚数单位,复数z满足11ziz-=+,则z________.【答案】1【解析】利用复数的四则运算求出z,再求其模.【详解】因为11ziz-=+,所以21(1)1(1)1(1)(1)i iz z i z ii i i---=+⇒===-++-,则||1z==.故答案为:1.【点睛】本题考查复数的四则运算,考查复数模的运算,属于基础题.8.设数列{}n a的前n项和为n S,且对任意正整数n,都有01011012nnan S-=-,则1a=___【答案】1-【解析】利用行列式定义,得到n a与n S的关系,赋值1n=,即可求出结果。
上海高考数学函数压轴题解析详解
![上海高考数学函数压轴题解析详解](https://img.taocdn.com/s3/m/4219a84bbd64783e08122b18.png)
,
化简得 .
当 时,上式恒成立.
因此,在 轴上存在定点 ,使 .(12分)
9.(本小题满分14分)
已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .
(1)求 ;
(2)试比较 与 的大小( );
(3)求证: ,( ).
解:(1)∵ ,①
∴ .②
②-①,得
,
即 .(3分)
∴ .(当且仅当 时取等号).
综上所述, ,( ).(14分)
在①中令 ,可得 .
∴ 是首项为 ,公比为 的等比数列, .(4分)
(2)由(1)可得 .
.
∴ ,(5分)
.
而 ,且 ,
∴ , .
∴ ,( ).(8分)
(3)由(2)知 , ,( ).
∴当 时, .
∴
,(10分)
(当且仅当 时取等号).
另一方面,当 , 时,
.
∵ ,∴ .
∴ ,(当且仅当 时取等号).(13分)
又MN⊥MQ, 所以
直线QN的方程为 ,又直线PT的方程为 ……10分
从而得 所以
代入(1)可得 此即为所求的轨迹方程.………………13分
6.(本小题满分12分)
过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数 使得 若存在,求出 的值,若不存在,请说明理由.
40若u[0,1],v[–1,0],同理可证满足题设条件.
综合上述得g(x)满足条件.
3. (本小题满分14分)
已知点P( t , y )在函数f ( x ) = (x –1)的图象上,且有t2– c2at + 4c2= 0 ( c 0 ).
精选上海市高考冲刺压轴数学模拟试卷(有答案)
![精选上海市高考冲刺压轴数学模拟试卷(有答案)](https://img.taocdn.com/s3/m/e6bba3ebf242336c1fb95e29.png)
上海高考压轴卷 数 学I1.1.若集合A={﹣1,0,1,2},B={x|x+1>0},则A∩B= .2.若(x+a )7的二项展开式中,含x 6项的系数为7,则实数a= . 3.不等式2x 2﹣x ﹣1>0的解集是________.4.如图是某一几何体的三视图,则这个几何体的体积为 .5.设i 为虚数单位,复数,则|z|= .6.已知P 是抛物线y 2=4x 上的动点,F 是抛物线的焦点,则线段PF 的中点轨迹方程是 . 7.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为。
8.若f (x )=(x ﹣1)2(x ≤1),则其反函数f ﹣1(x )= .9.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .10.已知首项为1公差为2的等差数列{a n },其前n 项和为S n ,则= .11.已知函数y=Asin (ωx +φ),其中A >0,ω>0,|φ|≤π,在一个周期内,当时,函数取得最小值﹣2;当时,函数取得最大值2,由上面的条件可知,该函数的解析式为 .12.数列{2n﹣1}的前n 项1,3,7, (2)﹣1组成集合(n ∈N *),从集合A n 中任取k (k=1,2,3,…,n )个数,其所有可能的k 个数的乘积的和为T k (若只取一个数,规定乘积为此数本身),记S n =T 1+T 2+…+T n ,例如当n=1时,A 1={1},T 1=1,S 1=1;当n=2时,A 2={1,3},T 1=1+3,T 2=1×3,S 2=1+3+1×3=7,试写出S n = .13.关于x、y的二元一次方程组的系数行列式D=0是该方程组有解的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分也非必要条件14.数列{a n}满足:a1=,a2=,且a1a2+a2a3+…+a n a n+1=na1a n+1对任何的正整数n都成立,则的值为()A.5032 B.5044 C.5048 D.505015.某工厂今年年初贷款a万元,年利率为r(按复利计算),从今年末起,每年年末偿还固定数量金额,5年内还清,则每年应还金额为()万元.A.B.C.D.16.设双曲线﹣=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B、C两点,过B作AC的垂线交x轴于点D,若点D到直线BC的距离小于a+,则的取值范围为()A.(0,1) B.(1,+∞)C.(0,)D.(,+∞)三.解答题(解答应写出文字说明、证明过程或演算步骤。
历届高考数学压轴题汇总及答案(上海卷2019-2020)
![历届高考数学压轴题汇总及答案(上海卷2019-2020)](https://img.taocdn.com/s3/m/36a5c5be3c1ec5da51e2709d.png)
历届高考数学压轴题汇总及答案(上海卷2019-2020)一.填空题1.(上海2019.12题) 已知集合[,1]U[4,9]A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 .2.(上海2020.12题) 已知1a ,2a ,1b ,2b ,……,()*k b k N ∈是平面内两两互不相等的向量,满足121a a -=,且{1,2}j i a b -∈(其中1,2i =,1,2,...j =,k ),则K 的最大值为______. 二.选择题3.(上海2019.16题) 以()1,0a ,()20,a 为圆心的两圆均过(1,0),与y 轴正半轴分别交于()1,0y ,()2,0y ,且满足12ln ln 0y y +=,则点1211,a a ⎛⎫⎪⎝⎭的轨迹是 ( )A .直线B .圆C .椭圆D .双曲线4.(上海2020.16题) 若存在a R ∈且a 0≠,对任意的x R ∈,均有()()()f x a f x f a ++<恒成立,则称函数()f x 具有性质P ,已知:1q :()f x 单调递减,且()0f x >恒成立;2q :()f x 单调递增,存在00x <使得()00f x =,则是()f x 具有性质P 的充分条件是( ) A .只有1q B .只有2q C .1q 和2qD .1q 和2q 都不是三.解答题5.(上海2019.20题) 已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =. (1)当81,3P ⎛⎫-- ⎪⎝⎭时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断()()13d P d P +与()22d P 的关系.6.(上海2020.20题) 双曲线1C :22214x y b-=,圆2C :()22240x y b b +=+>在第一象限交点为A ,(),A A A x y ,曲线22222241,44,A x y x x b x y b x x⎧-=⎪Γ⎨⎪+=+⎩>>。
上海高考数学经典压轴题解析详解
![上海高考数学经典压轴题解析详解](https://img.taocdn.com/s3/m/7895d9ed67ec102de3bd89a7.png)
上海高考数学经典压轴题解析详解(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除上海高考数学压轴题系列训练含答案及解析详解1. (本小题满分12分)已知常数a > 0, n为正整数,fn( x ) = x n– ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数fn( x )的单调性,并证明你的结论.(2) 对任意n a , 证明f`n + 1 ( n + 1 ) < ( n + 1 )fn`(n)解: (1) fn`( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n –1 ] ,∵a > 0 , x > 0, ∴ fn `( x ) < 0 , ∴ fn( x )在(0,+∞)单调递减. 4分(2)由上知:当x > a>0时, fn( x ) = x n– ( x + a)n是关于x的减函数,∴当n a时, 有:(n + 1 )n– ( n + 1 + a)n n n– ( n + a)n.2分又∴f`n + 1(x ) = ( n + 1 ) [x n –( x+ a )n ] ,∴f`n + 1( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n+ 1 )[ n n– ( n + a)n] = ( n + 1 )[ n n– ( n + a )( n + a)n – 1 ] 2分( n + 1 )fn`(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n +1 )[n n – n( n + a)n – 1 ], 2分∵( n + a ) > n ,∴f`n + 1 ( n + 1 ) < ( n + 1 )fn`(n) .2分2. (本小题满分12分)已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) =0 ,对任意u ,v[–1,1],都有|f (u) – f (v) | ≤ | u –v | .(1) 判断函数p ( x ) = x2– 1 是否满足题设条件?(2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +∈-⎧⎨-∈⎩,是否满足题设条件?解: (1) 若u ,v [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u +v )(u – v) |,取u =43[–1,1],v =21[–1,1],则 |p (u) – p (v)| = | (u + v )(u – v) | = 45| u – v | > | u – v |,所以p( x)不满足题设条件. (2)分三种情况讨论: 10. 若u ,v[–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u –v |,满足题设条件; 20. 若u ,v[0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v–u|,满足题设条件; 30. 若u[–1,0],v[0,1],则:|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件; 40 若u[0,1],v[–1,0], 同理可证满足题设条件.综合上述得g(x)满足条件. 3. (本小题满分14分)已知点P ( t , y )在函数f ( x ) = 1x x+(x –1)的图象上,且有t 2– c 2at + 4c 2 = 0 ( c 0 ). (1) 求证:| ac |4;(2) 求证:在(–1,+∞)上f ( x )单调递增.(3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ tR, t–1,∴ ⊿ = (–c 2a)2 – 16c 2 = c 4a 2 – 16c 2 0 , ∵ c0, ∴c 2a 216 , ∴| ac |4.(2) 由 f ( x ) = 1 –1x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1–1x 12+–1 + 1x 11+= )1x )(1x (x x 1221++-.∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 , ∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x 0时,f( x )单调递增.法2. 由f ` ( x ) =2)1x (1+> 0 得x –1,∴x > –1时,f ( x )单调递增.(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c ||a |4> 0 , ∴f (| c | )f (|a |4) = 1|a |4|a |4+= 4|a |4+f ( | a | ) + f ( | c | ) =1|a ||a |++ 4|a |4+> 4|a ||a |++4|a |4+=1. 即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x= -1时,f (x)取得极大值23,并且函数y=f (x+1)的图象关于点(-1,0)对称.(1) 求f (x)的表达式;(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间2,2⎡-⎣上;(3) 若+212(13),(N )23n n n n n nx y n --==∈,求证:4()().3n n f x f y -<解:(1)31().3f x x x =-…………………………5分(2)()0,0,⎭或()0,0,.⎛ ⎝⎭…………10分 (3)用导数求最值,可证得4()()(1)(1).3n n f x f y f f -<--<……15分5.(本小题满分13分)设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………………………………………………………3分由(1)-(2)可得1.3MN QN k k •=-………………………………6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x = 直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-……10分 从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.………………13分6.(本小题满分12分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅(1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅λ若存在,求出λ的值,若不存在,请说明理由.解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ≠由,42y x =得:2'x y =2,221x k x k PB PA ==∴ 4,,021-=∴⊥∴=⋅x x PB PA PB PA ………………………………3分直线PA 的方程是:)(241121x x x x y -=-即42211x x x y -= ① 同理,直线PB 的方程是:42222x x x y -= ② 由①②得:⎪⎩⎪⎨⎧∈-==+=),(,142212121R x x x x y x x x ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x ),14,(222-=x x )1,2(21-+xx P4),2,2(2121-=-+=x x x x 42)14)(14(2221222121x x x x x x +--=--+=⋅ …………………………10分2444)()(22212212++=++=x x x x FP所以0)(2=+⋅故存在λ=1使得0)(2=+⋅λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅ ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y由⎩⎨⎧=+=yx m kx y 42得:0442=--m kx x 016162=+=∆∴m k 即2k m -=…………………………3分即直线PA 的方程是:2k kx y -=同理可得直线PB 的方程是:211kx k y --=由⎪⎩⎪⎨⎧--=-=2211k x k y k kx y 得:⎪⎩⎪⎨⎧-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A)11,2(),1,2(22--=-=kk FB k k FA)2,1(--=kk FP)1(2)11)(1(42222kk k k +--=--+-=⋅………………………………10分)1(24)1()(2222k k k k ++=+-=故存在λ=1使得0)(2=+⋅λ…………………………………………12分 7.(本小题满分14分)设函数x axxx f ln 1)(+-=在),1[+∞上是增函数. (1) 求正实数a 的取值范围; (2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立,xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分 (2)取b b a x +=,1,0,1>+∴>>bba b a ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f b b a f0ln 1>+++⋅+-∴b b a b b a a b b a 即ba b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G∴x x ln > 即bba b b a +>+ln综上所述,.ln 1b ba b b a b a +<+<+ (14)分8.(本小题满分12分)如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC 的周长为12.若一双曲线E以B 、C 为焦点,且经过A 、D 两点.(1) 求双曲线E 的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且MP PN λ=,问在x 轴上是否存在定点Gx,使()BC GM GN λ⊥-若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b -=>>, 则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=.(5分)(2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y .由MP PN λ=,得120y y λ+=.即12yy λ=-①(6分)∵(4,0)BC =,1212(,)GM GN x t x t y y λλλλ-=--+-,∴()BC GM GN λ⊥-12()x t x t λ⇔-=-. 即12()ky m t ky m t λ+-=+-. ② (8分)把①代入②,得12122()()0ky y m t y y +-+=③ (9分)xx把x m ky -=代入2213y x -=并整理得222(31)63(1)0k y kmy m -++-=其中2310k -≠且0∆>,即213k ≠且2231k m +>.212122263(1),3131km m y y y y k k --+==--.(10分)代入③,得2226(1)6()03131k m km m t k k ---=--,化简得 kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-.(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),记12121C C C ()2n n n n nn na a a f n S ++++=.(1) 求n a ; (2) 试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); (3) 求证:2111(21)()(1)(2)(21)112n p p n f n f f f n p p -⎡⎤⎛⎫++-+++--⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦,(*n ∈N ).解:(1) ∵(1)n n p S p pa -=-,① ∴11(1)n n p S p pa ++-=-.②②-①,得11(1)n n n p a pa pa ++-=-+,即1n n a pa +=.(3分)在①中令1n =,可得1a p =.∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =.(4分)(2) 由(1)可得(1)(1)11n n n p p p p S p p --==--. 12121C C C n n n n n a a a ++++1221C C C (1)(1)n nn n n n n p p p p p =++++=+=+.∴12121C C C ()2n n n n nn na a a f n S ++++=1(1)2(1)nn n p p p p -+=⋅-, (5分)(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p+1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->. ∴(1)f n +<1()2p f n p+,(*n ∈N ).(8分)(3) 由(2)知 1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n 时,211111()(1)()(2)()(1)()2222n np p p p f n f n f n f p pp p-++++<-<-<<=. ∴221111(1)(2)(21)222n p p p f f f n p p p -⎛⎫⎛⎫++++++-+++ ⎪ ⎪⎝⎭⎝⎭2111112n p p p p -⎡⎤⎛⎫++=-⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦,(10分)(当且仅当1n =时取等号).另一方面,当2n ,1,2,,21k n =-时,2221(1)(1)()(2)2(1)2(1)k n k k k n k n k p p p f k f n k p p p ---⎡⎤-+++-=+⎢⎥--⎣⎦1p p -⋅1p p -=1p p -=.∵22k n k n p p p -+,∴2222121(1)n k n k n n n p p p p p p ---+-+=-.∴12(1)()(2)2()2(1)nn n p p f k f n k f n p p -++-⋅=-,(当且仅当k n =时取等号).(13分) ∴2121211111()[()(2)]()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑∑∑.(当且仅当1n =时取等号). 综上所述,2121111(21)()()112n n k p p n f n f k p p --=⎡⎤⎛⎫++--⎢⎥∑ ⎪-⎢⎥⎝⎭⎣⎦,(*n ∈N ).(14分)。
完整)上海高中数学三角函数大题压轴题练习
![完整)上海高中数学三角函数大题压轴题练习](https://img.taocdn.com/s3/m/72dfdb226ad97f192279168884868762cbaebb41.png)
完整)上海高中数学三角函数大题压轴题练习三角函数大题压轴题练1.已知函数$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$。
Ⅰ)求函数$f(x)$的最小正周期和图象的对称轴方程。
解:(1)$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$frac{1}{3}\cos(2x-\frac{\pi}{3})+\frac{4}{3}\sin x\cos x$frac{1}{3}(\cos^2x-\sin^2x-\frac{1}{2})+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x-1)+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x+2\sin x\cos x-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin(2x-\frac{\pi}{3})-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin2x\cos\frac{\pi}{3}-\cos2x\sin\frac{\pi}{3}-\frac{2}{3})$frac{1}{6}(2\cos2x+\sqrt{3}\sin2x-\frac{2}{3})$frac{1}{3}(\cos2x+\frac{\sqrt{3}}{2}\sin2x)-\frac{1}{3}$frac{2}{3}\sin(2x+\frac{\pi}{3})-\frac{1}{3}$所以,函数$f(x)$的最小正周期为$\pi$,图象的对称轴方程为$x=k\pi+\frac{\pi}{3}$($k\in Z$)。
2)在区间$[-\frac{5\pi}{6},\frac{\pi}{2}]$上,$f(x)$单调递增,而在区间$[\frac{\pi}{2},\frac{7\pi}{6}]$上单调递减。
上海中学2025届高三压轴卷数学试卷含解析
![上海中学2025届高三压轴卷数学试卷含解析](https://img.taocdn.com/s3/m/d3f5fc2e7ed5360cba1aa8114431b90d6c8589e5.png)
上海中学2025届高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线()220y px p =>经过点(M ,焦点为F ,则直线MF 的斜率为( )A .B .4C .2D .-2.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( ) A .45B .42C .25D .363.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=4.已知(),A A A x y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B B x y ,则2AB yy +的最大值为( )A .3B .2CD5.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .256.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .87.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||PM 的最小值为( )A .3B .2(51)-C .45D .48.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .1639.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .182D .10810.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭11.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( ) A .1B .1或12C .32D .32±12.设实数满足条件则的最大值为( ) A .1B .2C .3D .413.抛物线2112y x =的焦点坐标为______. 14.如图,在正四棱柱1111ABCD A B C D -中,P 是侧棱1CC 上一点,且12C P PC =.设三棱锥1P D DB -的体积为1V ,正四棱柱1111ABCD A B C D -的体积为V ,则1V V的值为________.15.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线方程为20x y -=,则该双曲线的离心率为_______.16.已知()f x 是定义在R 上的偶函数,其导函数为()f x '.若0x >时,()2f x x '<,则不等式2(2)(1)321f x f x x x -->+-的解集是___________.三、解答题:共70分。
历届高考数学压轴题汇总及答案
![历届高考数学压轴题汇总及答案](https://img.taocdn.com/s3/m/4897afebcf2f0066f5335a8102d276a200296099.png)
历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
2023-2024学年高考数学专项复习——压轴题(附答案)
![2023-2024学年高考数学专项复习——压轴题(附答案)](https://img.taocdn.com/s3/m/28c4e191a48da0116c175f0e7cd184254a351b67.png)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
历届高考数学压轴题汇总及答案(上海卷)
![历届高考数学压轴题汇总及答案(上海卷)](https://img.taocdn.com/s3/m/4d7d01e54a7302768f993977.png)
历届高考数学压轴题汇总及答案(上海卷2017-2018)一.填空题1.(上海2017.12题)如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“▲”的点在正方形的顶点处,设集合1234{P ,P ,P ,P }Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1D (P l )和2D (P l )分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足1D (P l )2D =(P l ),则Ω中所有这样的P 为 .2.(上海2018.12题已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 。
二.选择题3、(上海2017.16题)在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ 的最大值.记{(,)}P Q Ω=,P 在1C 上,Q 在2C 上,且OP OQ w =,则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个4.(上海2018.16题)设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,的可能取值只能是( )D.01f ()三.解答题5、(上海2017.20题)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P在第一象限,且||OP =P 的坐标;(2)设83,55P ⎛⎫⎪⎝⎭,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.6.(上海2018.20题)(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点0(2)F ,,直线:l x t =,曲线:(0,y 0)x t ≤≤≥,l 与x 轴交于点A ,与τ交于点B P Q ,、分别是曲线τ与线段AB 上的动点。
高考数学压轴题100题汇总(含答案)
![高考数学压轴题100题汇总(含答案)](https://img.taocdn.com/s3/m/cccbe98d48649b6648d7c1c708a1284ac85005fa.png)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
上海市第一中学2023届高考压轴卷数学试卷含解析
![上海市第一中学2023届高考压轴卷数学试卷含解析](https://img.taocdn.com/s3/m/b924895903768e9951e79b89680203d8ce2f6a02.png)
2023年高考数学模拟试卷 注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b ca b +++=+,若c 为最大边,则a b c +的取值范围是( )A.1⎛ ⎝⎭ B.( C.1⎛ ⎝⎦ D. 2.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .43.已知非零向量a ,b 满足||a b |=|,则“22a b a b+=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:4.已知命题:p 若1a <,则21a <,则下列说法正确的是( )A .命题p 是真命题B .命题p 的逆命题是真命题C .命题p 的否命题是“若1a <,则21a ≥” D .命题p 的逆否命题是“若21a ≥,则1a <”5.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A .35B .710C .45D .9106.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2e B .4e CD7.已知R 为实数集,{}2|10A x x =-≤,1|1B x x ⎧⎫=≥⎨⎬⎩⎭,则()A B =R( )A .{|10}x x -<≤B .{|01}x x <≤C .{|10}x x -≤≤D .{|101}x x x -≤≤=或8.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C、圆2C 上的动点,P为x 轴上的动点,则PN PM-的最大值是( )A .254+B .9C .7D .252+9.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( ) A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦ B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭ C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦ D .9,2ln 2⎛⎫+∞ ⎪⎝⎭ 10.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .111.设点(,0)A t ,P 为曲线xy e =上动点,若点A ,P 间距离的最小值为6,则实数t 的值为( )A .5B .52C .ln 222+ D .ln 322+12.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]二、填空题:本题共4小题,每小题5分,共20分。
上海高考数学压轴题50道(有答案-精品)
![上海高考数学压轴题50道(有答案-精品)](https://img.taocdn.com/s3/m/eba60c61524de518964b7dfa.png)
2 0 11高考压轴题目选(5 0题)1 .(函数)设/(x) = ^ + log2(x+^?+i),则对任意实数。
力,膈+论0”是5o)+y0)NO” 的M件。
2.(函数)设/(X,y)=G/2x-41y,41x+ 72y)为定义在平面上的函数,且以={(歪),)尸+ y2<Kx>0t y>0},令5 = {/(x,y)|(x,y)e 则3所覆盖的面积为3.(函数)老师在黑板上写出了若干个慕函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数3 (2)在(T»,+oo)上是增函数;<3)函数图像经过原点。
小明统计了一T,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幕函数共有个。
4 .(函数)已知定义在R上的奇函数,(对,满足/(x-4)= -/(x)且在区间[0,2止是増函数,若方程f(x>m(m>0)在区间[-8,8]上有四个不同的根如巧,与,则+ X4 = .5.(函数)已知函数/(对=吏三3*1).在区间(0』上是诚函数,则实数a的a —1取值范围是6.(函数)方程2*-1=0的解可视为函数年"的图像与函数尸地图像交点的X 横坐标,若*4=0的各个实根药,z, 3W4)所对应的点("勻(2-X' 1,2,•••,*)均在直线尸*的同侧,则实数a的取值范围是(函数)如图放置的边长为1的正方形PABC 沿x 轴滚 动。
设顶点P (x, y )的轨迹方程是y = /(x ),则/(x ) 的最小正周期为 ; V = /(X )在其两个相邻零 点间的图像与X 轴所围区域的面积为 O(三角函数)已知 /(x) = sinLx+^(®>0), 有最小值,无最大值,则9.(三角函数)已知函数/(x ) = sin^tyx+^j + sin^<yx-^j-2cos 2^, xeR (其 中刃>0),若对任意的a&R,函数v = /(x ), xe (a t 。
2025届上海市市西中学高三压轴卷数学试卷含解析
![2025届上海市市西中学高三压轴卷数学试卷含解析](https://img.taocdn.com/s3/m/f42d691926284b73f242336c1eb91a37f1113239.png)
2025届上海市市西中学高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2] 2.已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点与圆M :22(2)5x y -+=的圆心重合,且圆M 被双曲线的一条渐近线截得的弦长为22,则双曲线的离心率为( )A .2B .2C .3D .3 3.函数的图象可能是下列哪一个?( )A .B .C .D .4.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅的最小值为( )A .-14B .-12C .-lD .15.数列{}n a 满足:21n n n a a a +++=,11a =,22a =,n S 为其前n 项和,则2019S =( )A .0B .1C .3D .46.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( )A .12B .12-C .12iD .12i - 7.231+=-i i ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 8.复数的()12z i i =--为虚数单位在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 9.若复数z 满足i 2i z -=,则z =( )A B C .2 D10.“”αβ≠是”cos cos αβ≠的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知非零向量a ,b 满足||a b |=|,则“22a b a b +=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:12.双曲线22:21C x y -=的渐近线方程为( )A .0x ±=B .20x y ±=C 0y ±=D .20x y ±= 二、填空题:本题共4小题,每小题5分,共20分。
上海高考数学(函数)经典压轴习题解析详解
![上海高考数学(函数)经典压轴习题解析详解](https://img.taocdn.com/s3/m/758f1223ba1aa8114431d98c.png)
欢迎阅读上海高考数学压轴题系列训练含答案及解析详解1.(本小题满分12分)已知常数a>0,n 为正整数,f n (x)=x n –(x+a)n (x>0)是关于x 的函数. (1)判定函数f n (x)的单调性,并证明你的结论. (2)对任意n ?a,证明f`n+1(n+1)<(n+1)f n `(n) n –1n –1n –1n –1解:(1)若u,v ?[–1,1],|p(u)–p(v)|=|u 2–v 2|=|(u+v)(u –v)|,取u=43?[–1,1],v=21?[–1,1],则|p(u)–p(v)|=|(u+v)(u –v)|=45|u –v|>|u –v|, 所以p(x)不满足题设条件. (2)分三种情况讨论:10.若u,v ?[–1,0],则|g(u)–g(v)|=|(1+u)–(1+v)|=|u –v|,满足题设条件; 20.若u,v ?[0,1],则|g(u)–g(v)|=|(1–u)–(1–v)|=|v –u|,满足题设条件; 30.若u ?[–1,0],v ?[0,1],则:|g(u)–g(v)|=|(1–u)–(1+v)|=|–u –v|=|v+u|≤|v –u|=|u –v|,满足题设条件; 40若u ?[0,1],v ?[–1,0],同理可证满足题设条件.综合上述得g(x)满足条件. 3.(本小题满分14分)(3)(仅理科做)∵f(x)在x>–1时单调递增,|c|?|a |>0, ∴f(|c|)?f(|a |4)=1|a |4|a |4+=4|a |4+f(|a|)+f(|c|)=1|a ||a |++4|a |4+>4|a ||a |++4|a |4+=1. 即f(|a|)+f(|c|)>1.4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x=-1时,f(x)取得极大值23,并且函数y=f(x+1)的图象关于点(-1,0)对称.(1) 求f(x)的表达式;221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………………………………………………………3分由(1)-(2)可得1.3MN QN k k ∙=-………………………………6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-……10分从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.………………13分由①②得:⎪⎩⎨∈-==),(,142121R x x x x y ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x ),14,(222-=x x )1,2(21-+xx P42)14)(14(2221222121x x x x x x FB FA +--=--+=⋅…………………………10分所以0)(2=+⋅故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y(1) 求正实数a 的取值范围; (2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分(2)取b b a x +=,1,0,1>+∴>>bba b a , 一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,即b a b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G求出所有这样定点的坐标;若不存在,请说明理由.解:(1)设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)xx解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=.(5分)(2)设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.1y λ=-GM GN λ-(BC GM GN λ⊥-12(ky m t ky m λ+-=+-2226(1)6()03131k m km m t k k ---=--,化简得kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-.(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),记12121C C C ()2n n n n nn na a a f n S ++++=.(1)求n a ; (2)试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); 2C na a ++(1)np +(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p+1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->.∴(1)f n +<1()2p f n p+,(*n ∈N ).(8分) (3)由(2)知1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n …时,211111()(1)()(2)()(1)(2222n np p p p f n f n f n f p pp p-++++<-<-<<=. 111(21)222p p p f n p p p ⎛⎫⎛⎫+++++-+++ ⎪ ⎪⎝⎭⎝⎭…2,,21n -时,1)n+⎣⎦分)。
上海市嘉定、长宁区2025届高三压轴卷数学试卷含解析
![上海市嘉定、长宁区2025届高三压轴卷数学试卷含解析](https://img.taocdn.com/s3/m/e104281d30b765ce0508763231126edb6f1a762b.png)
上海市嘉定、长宁区2025届高三压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722+πB .(1022+πC .(1042+πD .(1142+π 2.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .b a c >> B .b c a >> C .c b a >> D .c a b >>3.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .24.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( )A .i -B .iC .1D .1-5.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( ) A 2?B 10C 10D .226.若()12n x -的二项展开式中2x 的系数是40,则正整数n 的值为( )A .4B .5C .6D .77.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116 D .15168.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( )A .2i -B .2iC .1i -+D .0 9.函数的图象可能是下面的图象( )A .B .C .D . 10.已知向量()1,2a =,()2,2b =-,(),1c λ=-,若()//2c a b +,则λ=( )A .2-B .1-C .12-D .1211.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为A .171.25cmB .172.75cmC .173.75cmD .175cm12.函数()sin 2sin 3f x x m x x =++在[,]63ππ上单调递减的充要条件是( ) A .3m ≤- B .4m ≤- C .833m ≤- D .4m ≤二、填空题:本题共4小题,每小题5分,共20分。
上海市南汇第一中学2025届高考数学押题试卷含解析
![上海市南汇第一中学2025届高考数学押题试卷含解析](https://img.taocdn.com/s3/m/72c0f3856e1aff00bed5b9f3f90f76c660374c61.png)
上海市南汇第一中学2025届高考数学押题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( ) A .35B .710C .45D .9102.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件3.已知直线22y x a =-是曲线ln y x a =-的切线,则a =( ) A .2-或1B .1-或2C .1-或12D .12-或1 4.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( ) A .49B .49- C .43D .43-5.若,则( ) A .B .C .D .6.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种B .15种C .16种D .18种7.已知12,F F 分别为双曲线2222:1x y C a b-=的左、右焦点,点P 是其一条渐近线上一点,且以12F F 为直径的圆经过点P ,若PF F ∆223,则双曲线的离心率为( )A .3B .2C .5D .38.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .9.已知集合|03x A x Z x ⎧⎫=∈≤⎨⎬+⎩⎭,则集合A 真子集的个数为( ) A .3B .4C .7D .810.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .6001011.已知函数1()2x f x e x -=+-的零点为m ,若存在实数n 使230x ax a --+=且||1m n -≤,则实数a 的取值范围是( ) A .[2,4]B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[2,3]12.在直角坐标系中,已知A (1,0),B (4,0),若直线x +my ﹣1=0上存在点P ,使得|PA |=2|PB |,则正实数m 的最小值是( ) A .13B .3C 3D 3二、填空题:本题共4小题,每小题5分,共20分。
上海市高考数学压轴试题 文
![上海市高考数学压轴试题 文](https://img.taocdn.com/s3/m/2bb44ed748649b6648d7c1c708a1284ac8500568.png)
上海市高三下学期高考压轴卷数学文试题考生注意: 1.答卷前,考生务必在答题纸上将姓名、考试号填写清楚,并在规定的区域贴上条形码. 2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数2log (1)y x =-的定义域为 .2.复数z 满足2)1(=-i z (其中i 为虚单位),则=z .3.已知||1a =,||2b =,向量a 与b 的夹角为60︒,则||a b += .4.直线0x y +=被圆2240x x y ++=截得的弦长为 .5.在等差数列{}n a 中,若11a =,前5项的和525S =,则2013a = .6.若函数2log ,0()(),0x x f x g x x >⎧=⎨<⎩是奇函数,则(8)g -= .7.已知某算法的流程图如图所示,则程序运行结束时输出的结果为 .8.不等式组201x y y x ≤⎧⎪≥⎨⎪≤-⎩表示的平面区域的面积是 . 9.直线l 的参数方程是222422x ty t ⎧=⎪⎪⎨⎪=+⎪⎩(其中t 为参数),圆C 的极坐标方程为)4cos(2πθρ+=,过直线上的点向圆引切线,则切线长的最小值是 .10.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是 . 11.在ABC ∆中,若2,60,7a B b ︒=∠==,则c = .12.设1111221010)2()2()2()32)(2(+++++++=++x a x a x a a x x ,则+++210a a a11a + 的值为 ..13.平行四边形ABCD 中,E 为CD 的中点.若在平行四边形ABCD 内部随机取一点M ,则点M 取自ABE ∆内部的概率为 .14.给出定义:若1122m x m -<≤+ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}x m =.在此基础上给出下列关于函数(){}f x x x =-的四个命题:①()y f x =的定义域是R ,值域是11(,]22-;②点(,0)k 是()y f x =的图像的对称中心,其中k Z ∈;③函数()y f x =的最小正周期为1;④ 函数()y f x =在13(,]22-上是增函数.则上述命题中真命题的序号是 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≥⎧=⎨<⎩ 则下面结论中正确的是( )A.()f x 是奇函数B.()f x 的值域是[1,1]-C.()f x 是偶函数D.()f x 的值域是2[,1]2-16.已知ax x x x f +-=2331)(在区间]2,1[-上有反函数,则实数a 的取值范围为( ) A.]3,(--∞ B.),1[+∞ C.)1,3(- D.),1[]3,(+∞--∞ 17.已知锐角,A B 满足)tan(tan 2B A A +=,则B tan 的最大值为( )A.22B.2C.22 D.42 18.已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,双曲线12222=-y x 的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为( )A.12822=+y xB.161222=+y xC.141622=+y xD.152022=+y x三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第(Ⅰ)小题6分,第(Ⅱ)小题6分. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数a . ①22sin 13cos 17sin13cos17︒︒︒︒+-; ②22sin 15cos 15sin15cos15︒︒︒︒+-;③22sin 18cos 12sin18cos12︒︒︒︒+-; ④22sin (18)cos 48sin(18)cos 48︒︒︒︒-+--;⑤22sin (25)cos 55sin(25)cos55︒︒︒︒-+--.(Ⅰ)试从上述五个式子中选择一个,求出常数a ;(Ⅱ)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.20.(本题满分14分)本题共2小题,第(Ⅰ)小题6分,第(Ⅱ)小题8分. 如图,在长方体1111ABCD A B C D -中, 111,2AD A A AB ===,点E 在棱AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.21.(本题满分14分)本题共2小题,第(Ⅰ)小题6分,第(Ⅱ)小题8分.某药厂在动物体内进行新药试验.已知每投放剂量为m 的药剂后,经过x 小()y mf x =,其中时该药剂在动物体内释放的浓度y (毫克/升) 满足函数2125,(04)()2lg 10,(4)x x x f x x x x ⎧-++<≤⎪=⎨⎪--+>⎩.当药剂在动物体内中释放的浓度不低于4(毫克/升)时,称为该药剂达到有效.(Ⅰ)若2m =,试问该药达到有效时,一共可持续多少小时(取整数小时)?(Ⅱ)为了使在8小时之内(从投放药剂算起包括8小时)达到有效,求应该投放的药剂量m 的最小值(m取整数).22.(本题满分16分)本题共3小题,第(Ⅰ)小题4分,第(Ⅱ)小题6分,第(Ⅲ)小题6分.已知椭圆2214y x +=的左,右两个顶点分别为A 、B ,曲线C 是以A 、B 两点为顶点,焦距为25的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (Ⅰ)求曲线C 的方程;(Ⅱ)设P 、T 两点的横坐标分别为1x 、2x ,求证12x x ⋅为一定值;(Ⅲ)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且15PA PB ⋅≤,求2212S S - 的取值范围.23.(本题满分18分)本题共3小题,第(Ⅰ)小题4分,第(Ⅱ)小题6分,第(Ⅲ)小题8分.设正数数列{}n a 的前n 项和为n S ,且对任意的n N *∈,n S 是2n a 和n a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在集合{|2,,10001500}M m m k k Z k ==∈≤<且中,是否存在正整数m ,使得不等式210052nn aS ->对一切满足n m >的正整数n 都成立?若存在,则这样的正整数m 共有多少个?并求出满足条件的最小正整数m 的值;若不存在,请说明理由;(Ⅲ)请构造一个与数列{}n S 有关的数列{}n u ,使得()n n u u u +++∞→ 21lim 存在,并求出这个极限值.上海市 高考压轴卷 文科数学试题答案及解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.【答案】}1|{>x x . 【解析】由10x ->得1x >. 2.【答案】i +1【解析】i i i z +=+=-=12)1(212 3.【答案】7 4.【答案】22【解析】圆的标准方程为22(2)4x y ++=,圆心坐标为(2,0)-,半径为2,圆心到直线+0x y =的距离222d -==,所以弦长2222(2)22-=.5.【答案】4025【解析】在等差数列中,51542555102S a d d ⨯==+=+,解得2d =,所以2013120121201224025a a d =+=+⨯=.6.【答案】3-【解析】因为函数()f x 为奇函数,所以2(8)(8)(8)log 83f g f -=-=-=-=-,即(8)3g -=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20 11高考压轴题目选(5 0题)
1 .(函数)
设32(log (f x x x =++,则对任意实数,a b , “Oa b +艺是
“((Ofafb +扌的条件。
2.(函数)设22,22(,(yxyxyxf+2定义在平面上的函数,且
+=2,{(xyxA}0,0, 12*yxy,令) , (, ({Ay xy x fB €=,则 B 所覆盖的面积为
3.(函数)老师在黑板上写岀了若干个幕函数。
他们都至少具备一下三条性质中的一条:
(1)是奇函数;(2)在(,-妍8上是增函数;(3)函数图像经过原点。
小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写岀的幕函数共有个。
4.(函数)已知定义在R上的奇函数(xf,满足(4(fxfx=,且在区间[0,2] 上是増函数,若方程f(x=m(m>0在区间[]& 8-上有四个不同的根1234,..xxxx,则1234X xxx +++=
5.(函数)
已知函数(1. fxa =
\/x2+1
女在区间(KM上是减函数,则实数a的取值范围是
6.(函数)方程x22x-l = 0的解可视为函数y=x2的图像与函数ylx
横坐标,若x4+ax -4=0的各个实根xl, x2, xk (k <4所对应的点(xi,(i=12,“k)均在直线y=x的同侧,则实数a的取值范围是
7.(函数)如图放置的边长为1的正方形PABC沿x轴滚
动。
设顶点p (x , y )的轨迹方程是(y f x =,则(
fx的最小正周期为;(yfx地其两个相邻
零点间的图像与x轴所围区域的面积为O
8.(三角函数)已知(sin (0 363f x x f f ©coiunif
n 1(i =+>=i I I u u u
,,且(fx 在区间637mf ] I U
有最小值,无最大值,则3=9.(三角函数)已知函数271(sin sin 2cos 662x fxxxxococof
1 *
+-e I I U U R.(其中g>),若对任意的aER,函数(yfx=, (7i]xaae+,的图像与直线l=y交点个数的最大值为2,则co的取值范围为
1 0.(三角函数)已知方程x 2+3
x+4=0的两个实根分别是xl, x2,则
21arct anarc tanxx+ 1 1 .(数列)设定义在*N上的函数:(21(((22
nnkfnnfnk=-[ | =| =| [,其中*kN € ,记(1(2(3(4(2n naf ffff
=+++++ ,则In n a a +=
1 2.(数列)在m (m>2)个不同数的排列PlP2…Pn中,若<j <m 时Pi>Pj (即前面
某数大于后面某数),则称Pi与Pj构成一个逆序。
一个排列的全部逆序的
总数称为该排列的逆序数。
记排列321 1(1(-Hinn的逆序数为n a ,则na=1
3 .(数列)已知等差数列{}n a的公差不等于。
,且2a是la与4a
的等比巾项.数列
1213,,, s,nkkkaaaaa是等比数列,则nk =
1 4.(数列)已知数列{}na满足;12a =, 212nnnaaa+=+, 1,2, n =,记112nnnbaa=++,贝I擞列{}n b的前n项和nS=1 5.(数列)在数列{}na中,10a=,且对任意*
kN€, 21221,,kkkaaa-+成等差数列,其公差为2k。
则数列{}na的通项公式na=;记2
(2nn
nbna=>,则对于2心,23n b b b +++=
1 6.(数列)若数列{}na满足:对任意的nN*
€,只有有限个正整数m使得man<成立,记这样的m的个数为(na*,则得到一个新数列{}。