大物习题册答案全套
大学物理习题册标准答案
大学物理习题册标准答案大学物理习题册答案————————————————————————————————作者:————————————————————————————————日期:2练习十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为(根据理想气体分子模型和统计假设讨论) ( )(A )183πx kTmυ=;(B )83πx kT mυ=;(C )m kTx 23=υ;(D )0=x υ。
解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为()(A )pV /m ;(B )pV /(kT );(C )pV /(RT );(D )pV /(mT )。
解: (B)理想气体状态方程NkT T N R N RT m N Nm RT M M pV AA mol ====3.根据气体动理论,单原子理想气体的温度正比于()(A )气体的体积;(B )气体的压强;(C )气体分子的平均动量;(D )气体分子的平均平动动能。
解: (D)kT v m k 23212==ε (分子的质量为m )4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是()(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高;(C )两种气体的温度相同;(D )两种气体的压强相同。
解:(A) kT v m k 23212==ε,2222H O H O T T m m =(分子的质量为m ) 5.如果在一固定容器内,理想气体分子速率都提高为原来的2倍,那么()(A )温度和压强都升高为原来的2倍;(B )温度升高为原来的2倍,压强升高为原来的4倍;(C )温度升高为原来的4倍,压强升高为原来的2倍;(D )温度与压强都升高为原来的4倍。
湖南大学大学物理练习册答案(一、二两册全)
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B), 二、填空题(1). sin 2t A ωω,()π+1221n (n = 0,1,… ),(2). 8 m ,10 m. (3). 23 m/s.(4). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R .(7). 2.24 m/s 2,104o(8). )5cos 5sin (50j t i t+-m/s ,0,圆. (9). h 1v /(h 1-h 2) (10). 0321=++v v v三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;(3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt t v = 2t 2v d =x /d t 2=t 2t t x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI)3. 质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2(SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v() 2 213 x x +=v4. 一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt yy t a d d d d d d d d vvv v===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C kyy ky 222121, d d vv v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cb cR t -=6. 如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//sRttk ===v ω24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=n t a a a m/s 27. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i、j 表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2)由(1)导出速度 v与加速度 a的矢量表示式; (3)试证加速度指向圆心.解:(1) j t r i t r j y i x rs i n c o s ωω+=+=(2) j t r i t r t rc o s s i nd d ωωωω+-==v j t r i t r tas i n c o s d d 22ωωωω--==v (3) ()r j t r i t r a s i n c o s 22ωωωω-=+-=这说明 a 与 r 方向相反,即a指向圆心8. 一飞机驾驶员想往正北方向航行,而风以60 km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h ,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.解:设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知v AE 大小未知, 正北方向由相对速度关系有: FE AF AE v v v +=AE v 、 AF v 、EE v 构成直角三角形,可得 ()()k m /h 17022v v v =-=FEAFAE() 4.19/tg1==-AEFEv v θ(飞机应取向北偏东19.4︒的航向).西北θFEv vAF v vAEvv四 研讨题1. 在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?参考解答:(1)、(3)、(4)是不可能的.(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心; (4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为)(t x x =,)(t y y =在计算质点的速度和加速度时: 第一种方法是,先求出22yx r +=,然后根据 td d r =v 及 22d d tr a =而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即 22)d d ()d d (ty t x +=v 和 222222)d d ()d d (ty tx a +=.你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。
大学物理学练习册参考答案全
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
(完整版)大学物理学上下册习题与答案
习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
(完整版)大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理练习册习题及答案
习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
大物练习册答案
大物练习册答案一、选择题1. 根据牛顿第三定律,作用力和反作用力的大小相等,方向相反。
以下哪个选项正确描述了这一定律?A. 作用力和反作用力可以是不同性质的力B. 作用力和反作用力作用在同一个物体上C. 作用力和反作用力总是作用在两个不同的物体上D. 作用力和反作用力可以同时消失答案:C2. 一个物体从静止开始自由下落,其下落的距离与时间的关系可以用以下哪个公式表示?A. s = 1/2gtB. s = gtC. s = 1/2gt^2D. s = gt^2答案:C3. 根据能量守恒定律,以下哪个选项是正确的?A. 能量可以被创造或消灭B. 能量可以在不同形式之间转换,但总量保持不变C. 能量总是从高能状态向低能状态转移D. 能量守恒定律只适用于封闭系统答案:B二、填空题4. 根据牛顿第二定律,力等于_________。
答案:质量乘以加速度5. 一个物体的动能可以通过公式_________来计算。
答案:1/2mv^26. 根据万有引力定律,两个物体之间的引力与它们的质量的乘积成正比,与它们之间的距离的平方成反比。
这个定律的公式是_________。
答案:F = G * (m1 * m2) / r^2三、简答题7. 描述什么是第一宇宙速度,并解释它的重要性。
答案:第一宇宙速度是指一个物体在地球表面以足够的速度发射,使其绕地球做圆周运动而不落回地球表面所需的最小速度。
它的重要性在于,它是人造卫星进入稳定轨道的最低速度要求。
8. 解释什么是角动量守恒定律,并给出一个实际应用的例子。
答案:角动量守恒定律指的是,如果一个系统不受外力矩的作用,那么这个系统的总角动量保持不变。
例如,花样滑冰运动员在旋转时,当他们将手臂收紧时,由于半径减小,角速度增加,从而保持角动量不变。
四、计算题9. 一个质量为5kg的物体在水平面上以2m/s^2的加速度加速。
求作用在物体上的力。
答案:根据牛顿第二定律,F = ma = 5kg * 2m/s^2 = 10N。
大学物理学课后习题答案
习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理课后习题答案(高教版共三册)
⼤学物理课后习题答案(⾼教版共三册)第⼆章动量及其守恒定律1、⼀质点的运动轨迹如图所⽰,已知质点的质量为20g ,在A 、B ⼆位置处的速率都为20m/s ,A v与 x 轴成045⾓,B v垂直于 y 轴,求质点由A 点到B 点这段时间内,作⽤在质点上外⼒的总冲量?解:由动量定理知质点所受外⼒的总冲量I =12v v v m m m )(由A →B A B Ax Bx x m m m m I v v v v cos45°=-0.683 kg·m·s 1 1分I y =0m v Ay = m v A sin45°= 0.283 kg·m·s 1I =s N 739.022y x I I 3分⽅向: 11/tg x y I I 202.5° ( 1为与x 轴正向夹⾓) 1分2、质量为m 的物体,以初速0v 从地⾯抛出,抛射⾓030 ,如忽略空⽓阻⼒,则从抛出到刚要接触地⾯的过程中,物体动量增量的⼤⼩为多少?物体动量增量的⽅向如何?解:由斜⾯运动可知,落地速度⼤⼩与抛出速度⼤⼩相等,⽅向斜向下,与X 轴正向夹⾓为300,所以,动量增量⼤⼩:0030sin 2mv mv mv动量增量的⽅向竖直向下3、设作⽤在质量为1kg 的物体上的⼒F =6t +3(SI ).如果物体在这⼀⼒的作⽤下,由静⽌开始沿直线运动,在0到2.0 s 的时间间隔内,这个⼒作⽤在物体上的冲量⼤⼩为多少? 解:I=Fdt =.20)36(dt t =(3t 2+3t)0.20=3 2.02+3 2.0=18(S N )A vxyOBA4、⼀个质量为m 的质点,沿x 轴作直线运动,受到的作⽤⼒为i F Ft cos 0 (SI),0t 时刻,质点的位置坐标为0x ,初速度00 v,求质点的位置坐标和时间的关系式?解:由⽜顿第⼆定律tm F dt dx v tdtm F dv dtdv mt F dt v d m a m F t vsin cos cos 00000 ⼜有故tdt m F dx txx sin 000则: t m Fx xcos 1005、电动列车⾏驶时每千克质量所受的阻⼒N v F 2210)5.05.2( ,式中,v 为列车速度,以s m /计。
大物习题册上答案
洛伦兹力
洛伦兹力是描述带电粒子在磁场 中受到的力的物理量,其大小等 于带电粒子速度与磁感应强度的 乘积,方向垂直于粒子运动方向
和磁场方向。
电磁感应
法拉第电磁感应定律
法拉第电磁感应定律是描述磁场变化产生电场的物理定律,它指 出在磁场变化时会在导体中产生电动势。
楞次定律
楞次定律是描述电流在磁场中受到的力的物理定律,它指出电流在 磁场中受到的力总是阻碍磁场的变化。
麦克斯韦方程组
麦克斯韦方程组是描述电磁场的数学模型,它包括高斯定理、安培 环路定律、法拉第电磁感应定律和楞次定律等。
03
光学部分
光的干涉
干涉现象
光波在空间相遇时,会因为相位差而产生加强或减弱的现象,形 成明暗相间的干涉条纹。
干涉条件
两束光波的频率相同、振动方向相同、相位差恒定是产生干涉的必 要条件。
感谢观看
THANKS
干涉公式
干涉加强的条件是 Δφ = 2πn (n为整数),干涉减弱的条件是 Δφ = (2n+1)π。
光的衍射
衍射现象
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续传播的 现象。
衍射分类
根据障碍物的形状,衍射可分为菲涅尔衍射和夫琅禾费衍射。
衍射公式
衍射角θ与波长λ、障碍物尺寸D和观察距离f有关,具体公式为 θ = arcsin(λ/D) + arcsin(D/f)。
波粒二象性
总结词
描述微观粒子无法同时精确测量其位置和动量的原因。
详细描述
根据量子力学的不确定性原理,我们无法同时精确测量微观粒子的位置和动量。 测量其中一个量会干扰另一个量的测量结果,使得它们都存在一定的不确定性。 这一原理限制了我们对微观世界的认识,是量子力学的一个重要特征。
大物习题册答案全套
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
《新编大学物理》(上、下册)教材习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理练习册答案
第十章练习一一、选择题1、以下四种运动〔忽略阻力〕中哪一种是简谐振动?〔〕(A)小球在地面上作完全弹性的上下跳动(B)细线悬挂一小球在竖直平面上作大角度的来回摆动(C)浮在水里的一均匀矩形木块,将它局部按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它局部按入水中,然后松开,使木块上下浮动2、质点作简谐振动,距平衡位置时,加速度a=/s 2,则该质点从一端运动到另一端的时间为〔 〕3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,假设从松手时开场计时,则该弹簧振子的初相位为〔〕(A) 0 (B) 2π (C) 2π-(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。
假设将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等〔〕(A)2A (B) 4A(C)2A (D)A 二、填空题1、简谐振动A x =)cos(0ϕω+t 的周期为T ,在2Tt =时的质点速度为,加速度为。
2、月球上的重力加速度是地球的1/6,假设一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为。
3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均一样,再经过2秒,从另一方向以一样速率反向通过B 点。
该振动的振幅为,周期为。
4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E =,P E E =,当xA=时,k P E E =。
三、计算题1、一振动质点的振动曲线如右图所示, 试求:(l)运动学方程; (2)点P 对应的相位;(3)从振动开场到达点P 相应位置所需的时间。
2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学物理学练习册答案
大物练习册参考答案二、判断题01. × 02. × 03. × 04. √ 05. √ 06. × 07. × 08. √ 09. √ 10. √ 11. √ 12. √ 13. √ 14. × 15. √三、计算题1. 解:根据连续性原理可知,出口处流速为:112221120.16)010.0()020.0(0.4--•=•⨯==s m s m S S v v 选流入处为参考平面,即令01=h ,根据伯努利方程可求的高处的压强为:22222112121gh v p v p ρρρ++=+ Pa gh v v p p 52222112103.22121⨯=--+=ρρρ2. 解:以油滴为研究对象, 设油滴的半径为r ,不存在竖直向下的匀强电场时,其受力情况为:竖直向下的重力:g r mg G ρπ334== 竖直向上的浮力:g r F 0334ρπ=竖直向上的黏滞阻力:rv f πη6= 三力达到平衡时,即:G=F+f,油滴以最大速度0v 下降。
由受力平衡:003363434rv g r g r πηρπρπ+=(1) 当存在竖直向下的匀强电场时,仍然以油滴为研究对象, 其受力情况为:竖直向下的重力:g r mg G ρπ334== 竖直向上的浮力:g r F 0334ρπ=竖直向上的黏滞阻力:rv f πη6= 竖直向上的电场力:qE F =1四力达到平衡时,即:f F F G ++=1时,油滴以最大速度v 下降。
由受力平衡:rv qE g r g r πηρπρπ63434033++=(2) 由方程(1)和(2)可以求出q 为:E v v v g q 210021023)((1)29(34-⎥⎦⎤⎢⎣⎡-=ρρηπ 3. 解:设总的水滴数目为N 个,根据融合前后水的体积不变,可得: 6333420105010(1.010)3N π--⨯⨯⨯=⨯g(1) 则融合前后水的表面积改变量为:3264(1.010)2010S N π-∆=⨯-⨯g (2) 释放出的能量为E S α∆=∆ (3) 根据(1),(2),(3)方程可得 82.1810E J ∆=⨯4. 解:将虹吸管取为一流管。
大学物理课后习题答案
大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
大学物理课后习题答案(高教版 共三册)
第四章 角动量守恒与刚体的定轴转动1、一水平的匀质圆盘,可绕通过盘心的铅直光滑固定轴自由转动,圆盘质量为M ,半径为R ,对轴的转动惯量2/2mRI =,当圆盘以角速度0ω转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上,子弹射入后,圆盘的角速度为多少? 解:子弹与圆盘组成的系统所受合外力矩为零,系统角动量守恒,有mM M :mR MR MR RmvI I 2212102202+=+=+=ωωωωωωω故2、如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为210kgmI A =和220kgm I B =,开始时,A 轮转速为min /600rev ,B 轮静止,C 为摩擦啮合器,其转动惯量可忽略不计,A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮加速而A 轮减速,直到两轮的转速相等为止。
设轴光滑,求:(1)两轮啮合后的转速n 。
(2)两轮各自所受的冲量矩。
解:选A 、B 两轮为系统,合外力矩为零,系统角动量守恒:()分转/2002/9.200===+==+=+πωωωωωωωn s rad I II I II I BAAA BB ABB AAA 轮所受的冲量矩:()()()()方向相同方向与轮所受的冲量矩方向相反负号表示与A BB B A AAAs m N I dt MB s m N I dt Mωωωωωω⋅⋅⨯=-=⋅⋅⨯-=-=⎰⎰221019.41019.43、质量分别为m和2m的两物体(都可视为质点),用一长为L的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O转动,已知O 轴离质量为2m的质点的距离为3/L ,质量为m的质点的线速度为v为多少?解:m作圆周运动,有LvLv2332==ωω系统角动量大小为mvLLmLm=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛ωω22312324、质量为m的质点以速度v 沿一直线运动,则它对直线上任一点的角动量为多少?对直线外垂直距离为 d 的一点的角动量大小是多少?解:对直线上任一点的角动量:sinrmvLvmrL=⨯=对直线外一点的角动量:mvdrmvLvmrL==⨯=θsin5、一根长为L的细绳的一端固定于光滑水平面上的O点,另一端系一质量为m的小球,开始时绳子是松弛的,小球与O点的距离为h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理 0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n =t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o s a m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
4. m ω ab ; 提示:0 ; 提示:由于算出角动量是个常矢量,即角动量守恒,故质点所受对原点的力矩为零。
4.L76v 提示: 角动量守恒5.解:(1)由转动定律M=J β,有(2)由机械能守恒定律,有6.解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒.设I 0和ω 0、I 和ω 分别为收缩前后球体的转动惯量和角速度, 则有I 0ω 0 = I ω ① 由已知条件知: I 0 = 2mR 2 / 5, I = 2m (R / 2)2 / 5代入①式得ω = 4ω 0 即收缩后球体转快了,其周期442200T T =π=π=ωω周期减小为原来的1 / 4.β)31(22ml l mg =l g23=⇒β22)ml 31(21sin 2l mg ω=θl g θωsin 3=⇒B B A A R Mv R Mv =• o vm r L ;v dt r d v ⨯=⇒=再由ω++=+)mL 31mL mL (Lmv Lmv 2221. (B)2. (C)3.4. 6.23×10 3 ; 6.21×10 - 21 ; 1.035×10 - 21. .5. 解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21J .且 ()()483/22/12/12==m w vm/s(2) ()k w T 3/2==300 K . SI)6. 解:根据kT m 23212=v , 可得 N k T m N 23212=v , 即 ()m N R T N mm N d /23212=v = ()RT M M mol /23 =()V M RT ρmol /23=7.31×106 J .又 ()T iR M M E ∆=∆21/mol =()T iR M V ∆21/mol ρ=4.16×104 J .及 ()()()2/1212/1222/12v v v -=∆= ()()122/1mol /3T TM R -=0.856 m/s .PV i21.(D )2.(B )3. 24. >;<5. 解:根据气体分子速率分布函数的意义, (1)⎰∞=)(dv v mvf mv(2)dv v f mv mv )(212122⎰∞=6. 解:(1)由图可知,氢气分子的最概然速率为2000m/s ,又因为温度相同时,最概然速率之比等于摩尔质量的平方根之反比,所以氧气分子的最概然速率为(2/32)1/2*v pH2=500m/s ; (2)由molp M RTv 2=,T=481K练习五 热 力 学 (练习一) 参 考 解 答1. (B)2. (D)3. >0, >04. ||1W -||2W -5.解:由图,p A =300 Pa ,p B = p C =100 Pa ;V A =V C =1 m 3,V B =3 m 3。
(1) C →A 为等体过程,据方程p A /T A = p C /T C 得:T C = T A p C / p A =100 KB →C 为等压过程,据方程V B /T B =V C /T C 得:T B =T C V B /V C =300 K(2) 各过程中气体所作的功分别为:A →B :=400 JB →C :W 2 = p B (V C -V B ) =-200 J C →A : W 3 =0(3) 整个循环过程中气体所作总功为:W = W 1 +W 2 +W 3 =200 J 因为循环过程气体内能增量为ΔU =0,因此该循环中气体总吸热:Q =W +ΔU =200 J----3分6. 解:(1) 312111035.5)/ln(⨯==V V RT Q J(2) 25.0112=-=T T η. 311034.1⨯==Q W η J (3) 3121001.4⨯=-=W Q Q J))((211C B B A V V p p W -+=练 习 六 热 力 学 (二) 参 考 解 答1. (D)2. (D)3. 等压等压等压4. 一点一曲线封闭曲线5. 解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知 )(12T T C M ME Q V m o l-=∆==623 J (2) 定压过程,p = 常量, )(12T T C M MQ p m o l-==1.04×103 J ∆E 与(1) 相同. W = Q - ∆E =417 J(3) Q =0,∆E 与(1) 同 W = -∆E=-623 J (负号表示外界作功) 6. 解:(1) J(2) ;J(3) J312111035.5)/ln(⨯==V V RT Q 25.0112=-=T Tη311034.1⨯==Q W η3121001.4⨯=-=W Q Q3. (B). ( 提示:将)41cos(π+=t A x ω对时间两次求导,并将t = T /4代入即可.)4. (B). (提示:利用旋转矢量法 )5. 2.09s; 9.17cm. (提示:根据机械能守恒222111222kx mv kA +=及2m T kπ=) 4. 1:1;me e m R M R M .(提示:利用2lT gπ=及万有引力公式2Mm F G r =) 5. 解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/m11s 7s 25.025.12/--===m k ω 5cm )721(4/2222020=+=+=ωv x A cm4/3)74/()21()/(tg 00=⨯--=-=ωφx v , φ = 0.64 rad)64.07cos(05.0+=t x (SI)6. 解: (1)单摆角频率及周期分别为3.13/;2 2.01grad s l T sωπω==== (2)由0t =时max 5θθ==可得振动初相0ϕ=, 则以角量表示的简谐振动方程为max cos()cos(3.13)36t t πθθω==O x1.(D) . (提示:振动总能量212E kA =) 2. (C).(提示:利用旋转矢量法,矢量合成)3. )21cos(04.0π-πt ;(提示:两个相位相反的振动合成)4. 1cos(/2)x A t ωϕπ=+-; (提示:利用旋转矢量法确定初始位相)5. 解:(1) 势能 221kx W P =总能量 221kA E = 由题意,4/2122kA kx =, 21024.42-⨯±=±=A x m(2) 周期 T = 2π/ω = 6 s从平衡位置运动到2A x ±= ∆t 为 T /8.∴ ∆t = 0.75 s .6. 分析:可采用解析法或旋转矢量法求解解: (1) 作简谐振动合成的旋转矢量图(略),因为21/2ϕϕϕπ∆=-=-,故合振动振幅为22212122cos(/2)7.810A A A A A m π-=++-=⨯合振动初相位11221122sin sin arctanarctan11 1.48cos cos A A rad A A ϕϕϕϕϕ+===+(2)要使12x x +振幅最大,即两振动同相,则由2k ϕπ∆=得31220.75,0,1,2,...k k k ϕϕπππ=+=+=±±要使23x x +的振幅最小,即两振动反相,则由(21)k ϕπ∆=+得31(21)2 1.25,0,1,2,...k k k ϕϕπππ=++=+=±±1.(D ). (提示:与波动方程2cos()y A t x πωϕλ=+±对比)2. (D). (提示:依据dx v dt=) 3. /2π. (提示:2;ux πϕλλν∆=∆=)4. 0.24m; 0.12m/s; 0.05cos(/0.12/2)()y t x m πππ=-+. (提示:同上题)5. 解:(1) 由P 点的运动方向,可判定该波向左传播.画原点O 处质点t = 0 时的旋转矢量图, 得4/0π=φ.O 处振动方程为 )41500c o s (0π+π=t A y (SI) . 由图可判定波长λ = 200 m ,故波动表达式为 ]41)200250(2cos[π++π=x t A y (SI) . (2) 距O 点100 m 处质点的振动方程是 )45500c o s (1π+π=t A y . 振动速度表达式是 )45500s i n (500v πππ+-=t A (SI) . 6. 解: 有图可知质点的振动振幅A=0.4m, 0t =时位于 1.0x m =处的质点在A/2处并向Oy 轴正向移动.据此作出相应的旋转矢量图,0'/3ϕπ=-. 又t=5s 时,质点第一次回到平衡位置,则有5/2/35/6t ωωπππ==+=,因而得/6/rad s ωπ=,于是可写出x=1.0m 处质点的运动方程为0.40cos(/6/3)()y t m ππ=-. 将波速/1.0/2u T m s ωλλπ===及 1.0x m =代入波动方程的一般形式0cos[(/)]y A t x u ωϕ=++中,并与上述 1.0x m =处的运动方程比较,可得0/2ϕπ=-,则波动方程为0.40cos[()]()62y t x m ππ=+-.XO1.(B) . (提示:旋转矢量法)2. (D) . (提示:波动过程是一个能量传递的过程,能量不守恒,质元的动能和势能在任一时刻大小相等、相位相同.在平衡位置都达到最大值,在波峰和波谷处能量为零. )3. 04I ; 0.(提示:利用两列波叠加原理及相位差2010212()()r r πϕϕϕλ∆=--- )★4. c o s [2(/)A t x νλ-+ππ ; cos[2(/)]A t x νλ-π. (提示:利用入射波与反射波的关系.若反射点为固定端则存在半波损失,若为自由端则不存在半波损失.) 5.解:(1) 如图A ,取波线上任一点P ,其坐标设为x ,由波的传播特性,P 点的振动超前于 λ /4处质点的振动.该波的表达式为 )]4(22cos[λλλ-+=x utA y ππ)222c o s (x ut A λλπππ+-= (SI) t = T 时的波形和 t = 0时波形一样. t = 0时)22cos(x A y λπ+π-=)22cos(π-π=x A λ按上述方程画的波形图见图B .6.解:由题设可知:2Hz ν= ; 20102um λν=== (1) 在x 轴上任取一点P ,坐标为x ,波由左向右传播,所以P 点相位超前于A ,且相差为 22210xPA x πππϕλλ∆===P 点振动方程,亦即波函数为0.03cos(4)0.03cos(42/10)y t t x ππϕπππ=-+∆=-+(SI )x = - 9 m 处的D 质点,振动方程为0.03cos(429/10)0.03cos(414/5)y t t πππππ=--⨯=-.(2) 在x 轴上任取一点P ,坐标为x ,其相位落后于A ,相位差为22'(5)AP x ππϕλλ∆==-P 点的振动方程,亦即波函数为0.03cos(4')0.03cos(42/10)y t t x ππϕππ=--∆=-(SI).把D 点坐标x =5+9=14 m 代入波函数,即可得D 质点振动方程0.03cos(4214/10)0.03cos(414/5)y t t ππππ=-⨯=-(SI ).x (m)t = T图B.A u O λy (m)-A 43λ-4λ- 4λ43λO xPx λ/ 4u图A练习十一 光的干涉 (一) 参考解答1. (B )2. (A )3.32nλ4. (1)条纹变宽;(2)条纹变宽;(3)条纹变窄;(4)出现衍射条纹5. 解:解:加强, 2ne+21λ = k λ, 123000124212-=-=-=k k ne k ne λnm k = 1, λ1 = 3000 nm , k = 2, λ2 = 1000 nm , k = 3, λ3 = 600 nm , k = 4, λ4 = 428.6 nm ,k = 5, λ5 = 333.3 nm . ∴ 在可见光范围内,干涉加强的光的波长是λ=600 nm 和λ=428.6 nm .6. 解:(1) ∵ dx / D ≈ k λx ≈Dk λ / d = (1200×5×500×10-6 / 0.50)mm= 6.0 mm (2) 从几何关系,近似有r 2-r 1≈ D /x d ' 有透明薄膜时,两相干光线的光程差 δ = r 2 – ( r 1 –l +nl ) = r 2 – r 1 –(n -1)l ()l n D x 1/d --'=对零级明条纹上方的第k 级明纹有 λδk =零级上方的第五级明条纹坐标()[]d /k l 1n D x λ+-='=1200[(1.58-1)×0.01+5×5×10-4] / 0.50mm =19.9 mmO P r 1 r 2 dλs 1s 2d nl x 'D练习十二 光的干涉 (二) 参考解答1. B2. D3.22n λ4. 19595. 解:设某暗环半径为r ,由图中几何关系可知 2(2)e r R ≈ (1) 再根据干涉减弱的条件有022(21)22e e k λλ++=+ (2)式中k 为大于0的我整数.把式(1)代入式(2)可得 0(2)r R k e λ=- (k 为整数,且02ek λ>)6. 解:空气劈形膜时,间距 θλθλ2s i n 21≈=n l液体劈形膜时,间距 θλθλn 2s i n n 2l 2≈=()()θλ2//1121n l l l -=-=∆∴ θ = λ ( 1 – 1 / n ) / ( 2∆l )=1.7×10-4 rad1. (D)2. (B) 3.3mm 4. 480nm5.答案:(1)最多可以看到第5级,共11条明纹;(2)0.25mm 。