非线性光纤光学 第五章光孤子 ppt课件

合集下载

非线性光纤光学 第五章光孤子 ppt课件

非线性光纤光学 第五章光孤子 ppt课件
线性稳定性分析
✓ 稳态解 忽略损耗,考虑稳态情况下连续波在光纤中的传输情况:
iA z122T 2A2|A|2 A
对于连续波,入射端振幅与T无关,并认为在光纤内传输时仍保 持与时间无关,可以得到方程的稳态解为
A P0 exp(iNL)
入射功率 NL P0z SPM感应的非线性相移
上式表明,连续波在光纤中传输时除了获得一个与功率有关的相移 (和由于光纤损耗引起的功率减小)外,其他参量保持不变。 ✓ 微扰的影响
➢ 孤子的物理理解: ✓ 光孤子由色度色散和自相位调制的结合而形成。 ✓ 通过选择适当的波长和脉冲形状,激光产生孤子波形, 孤子波形通过
自相位调制抵消掉色度色散,从而保持波形不变。 ✓ 色度色散和啁啾(chirp)彼此抵消,从而产生孤子。
光孤子的数学描述
➢ 非线性薛定谔方程(NLS) 从数学上描述光孤子需要用到前面介绍的NLS,
N2 LD
P0T02
LNL
2
±1,取决于GVD的正负 孤子阶数,无量纲的量
通过引入 uNU LDA,可以消去方程中的参量N,
并取GVD为负的情况,sgn=-1,得到非线性薛定谔方程的标
准化形式:
i
u
1 2u
22
u2u0
该方程可以用逆散射方法求解,主要的结果如下:
设入射脉冲的初始形式满足 u(0, )N seh(c)
将实部和虚部分离,可以得到关于V和φ的两个方程,
V 1 2 2V 21 2V 2V30
V1V2 0 2 2
可以设相位φ与τ无关,因此式中∂φ/∂τ有关的项为零,且∂φ/∂τ变成dV/ dτ 。从第一个式子看出,要满足V与ξ无关的条件,∂φ/∂ξ必须等于常数, 因此φ=Kξ的形式,式中K是常数。因此V满足

非线性光学PPT课件

非线性光学PPT课件

生耦合作用,并在新频率处产生混频辐射,麦氏方程
E 组是非线性微分方程组,包含
的高次方项。
(3)光与物质相互作用的现象
二次、三次谐波;光参量放大与振荡。 自聚焦。 受激散射,饱和吸收。
第5页/共51页
3、非线性光学学科定义
在强光场与物质相互作用时,出现了非线性电 极化效应和它引起的一些新的光学现象和光学效 应。如,倍频、和频、差频、光放大,受激散射、 多光子吸收、自聚焦、光学双稳态等,这些统称 为非线性光学效应,研究这些效应的学科称为非 线性光学。
光波为单色平面波,稳态: 光波的振幅不随时间变化。
设:三束光波为:
E1z,t
1 2
E1zexpik1z 1t c.c .
E2 z,t
1 2
E2 zexpik2 z 2t c.c .
(2.2-16)
E3z,t
1 2
E3 zexpik3z 3t c.c .
P 电极化强度: (2) 0 (2)E2 (2) (E1 E2 E3)2
第16页/共51页
二次非线性效应
P E 由(2.1-2)式中第二项引起的:
(2)
(2) 2 0
1、一束单色光波入射到介质中时
设单色平面波: E E0 cos(t kz)

P
(2)
0
2
E0 cos(t kz)
2
1 2
0
2E02
1
cos
2(t
kz)
(2.1-3)
P 2 讨论:(1)从(2.1-3)式中可以看出,电极化强度
单一频率的光入射到非线性介质中 ,其 频率不发生任何变化 , 不同频率的光同时入 射时,彼此不发生耦合作用,也不会产生任何 新的频率,麦氏方程组是线性微分方程组,只

光孤子通信优秀PPT资料

光孤子通信优秀PPT资料

孤子的由来
孤子: 这个名词首先是在物理的流体力学中提出来的,1834 年, 科学家约翰斯科特罗素观察到这样一个现象,在一条很 窄的河道上,迅速拉动一条船前进,当船突然停下来大的时 候,在船头形成了一条孤立的水波迅速离开船头,以14-15 千米每小时的速度前进,而波的形状未发生改变,前进了两 三千米才消失,他称这个波为孤立波。 孤立波在相互碰撞后,仍能保持各自的形状和速度不变, 好像粒子一样,故人们把孤立波又称为孤立子,简称孤子,恢复光孤子所承载的信息。
2光.孤误子码源率产低生、一抗系干列扰脉能冲力宽强度脉很窄冲的源光脉冲(即光孤子流),作为信E息DF载A体进入光调制ED器F,A 使信息对光ED孤F子A 进行调制。
非线性效应——在入射光功率较强的条件下,光纤折射率随光强度变化的现象(这种折射率随光强变化的特性称为克尔效应)。
光孤子通信系统的构成框图
EDFA
光纤传输系统
有人把孤孤子定子义源为:孤子与其他调同制类孤立波相遇后,能维持其幅度、形状和速度不变。
光孤子通信目前仍处于探索和实验研究阶段
探测
为克服光纤损耗带来的光孤子减弱,在光纤线路上周期性地插入EDFA,向光孤子注入能量,以补偿光纤传输而引起的能量损耗,确保
光孤子稳定传输。
光孤子定义
• 孤子(Soliton)——又称孤立波(Solitary wave),
是一种特殊形式的超短脉冲,或者说是一种在传播过 程中形状、幅度和速度都维持不变的脉冲状行波。有 人把孤子定义为:孤子与其他同类孤立波相遇后,能 维持其幅度、形状和速度不变。
• 光孤子——是经光纤长距离传输之后,其幅度和波
THANK YOU !
—光孤子组
光孤子通信的优点及应用前景
光孤子通信优点

非线性光学及其现象课件

非线性光学及其现象课件

详细描述
当化。这种变化与光强 有关,因此是一种非线性效应。克尔效应在光学通信、光学存储和光学控制等领域有重
要应用。
双光子吸收和双光子荧光
总结词
双光子吸收和双光子荧光是两种重要的非线性光学现象 。
详细描述
双光子吸收是指一个材料在两个光子的共同作用下吸收 能量的过程。这种过程在激光医学、光刻和光学存储等 领域有广泛应用。双光子荧光则是材料在双光子激发下 发射荧光的非线性光学现象,常用于生物成像和化学检 测等领域。
非线性光学与其他领域的交叉发展
非线性光学与信息光学的交叉 发展
随着信息光学的发展,非线性光学与信息光学的交叉 领域不断涌现,如量子通信、光计算、光存储等,这 些领域的发展有助于推动非线性光学的发展和应用。
非线性光学与生物医学光学的 交叉发展
非线性光学在生物医学领域的应用不断拓展,如光学成 像、光热治疗、光动力治疗等,这些领域的发展有助于 推动非线性光学在生物医学领域的应用和发展。
VS
详细描述
在强激光作用下,非线性介质中的电子在 吸收一个光子的能量后,可能会发生多个 电子跃迁,这种现象称为多光子吸收。这 种现象通常发生在高强度激光脉冲通过物 质时,对物质的高频特性有重要影响。
光学参量放大和振荡
总结词
光学参量放大和振荡是指利用非线性介质的 参量效应,实现光的放大或振荡的现象。
随着新材料技术的不断发展,新型非线性光 学材料不断涌现,如有机非线性光学材料、 复合非线性光学材料等,这些新材料具有更 高的非线性光学系数和更宽的响应范围,为 非线性光学的发展提供了新的可能性。
新材料对非线性光学性能 的提升
新型非线性光学材料不仅具有更高的非线性 光学系数,而且具有更快的响应速度和更低 的阈值,有助于提高非线性光学的转换效率

非线性光学PPT课件

非线性光学PPT课件
光折象是介质的参量与光强有关的现象
对于各向同性介质,可将矢量式改写为标量形式
P 0 (1) E 0 (2) EE 0 (3) EEE
0 ( (1) (2) E (3) E 2 )E 0(E)E
讲课为主讲课为主每次每次学时学时每个学生需各自针对目前非线性光学的一个前沿性问题进行资料每个学生需各自针对目前非线性光学的一个前沿性问题进行资料收集整理写出不低于收集整理写出不低于50005000字的书面报告要求至少阅读字的书面报告要求至少阅读1515篇文献篇文献再完成该综述论文所选主要参考文献应能代表该领域的前沿技术和再完成该综述论文所选主要参考文献应能代表该领域的前沿技术和发展趋势其中发展趋势其中20122012年以后的文献不少于年以后的文献不少于1010量子信息技术量子信息技术量子计算量子通信量子密匙量子计算量子通信量子密匙光子晶体光纤光子晶体光纤有机分子的光学非线性有机分子的光学非线性纳米材料中的非线性纳米材料中的非线性光速的调控技术光速的调控技术超短脉冲产生技术超短脉冲产生技术光网络中的非线性光网络中的非线性半导体材料及器件中的非线性半导体材料及器件中的非线性高功率下光纤中的非线性及抑制高功率下光纤中的非线性及抑制34主要参考书
23
由激光与物质的非线性相互作用产生的压缩态效应,由于其 量子起伏的降低,在通信系统中有应用的潜力,在受到人们 的关注。
寻求新的非线性材料一直贯穿于非线性光学的发展。除了寻 求新的非线性效应外,寻求非线性极化率更大、光学稳定性 更好的材料是非线性光学工作者一直关注的方向。
24
1.3.2 非线性光学研究的发展趋势
Nonlinear Optics 非线性光学
2019/11/23
1
第1章 绪 论

《光纤的非线性》课件

《光纤的非线性》课件
超快光纤非线性现象的研究
随着超快激光技术的发展,超快光纤非线性现象成为新的研究领域,如飞秒脉冲在光纤 中的传输和演化等。
光纤非线性的多物理场耦合研究
光纤中的非线性效应与温度、压力、电磁场等多种物理场存在耦合作用,深入研究这些 耦合作用有助于更好地理解和应用光纤非线性效应。
05
光纤非线性的实验研究
实验设备与环境
光纤非线性在光传感中的应用案例
光纤传感器
光纤的非线性效应可以用于实现光纤传感,通过测量光纤中光的非线性效应来 检测温度、压力、磁场等物理量,提高光纤传感器的灵敏度和精度。
光干涉仪
利用光纤的非线性效应,可以实现光干涉仪的干涉条纹移动和调制,提高光干 涉仪的测量精度和稳定性。
感谢观看
THANKS
02
当光在光纤中传输时,如果光强度足够高,会使光 纤的折射率发生变化,从而产生非线性效应。
03
光纤非线性是光纤通信系统中的重要问题,它会对 信号传输产生影响。
光纤非线性的产生原因
光强度的变化
当光强度足够高时,光纤中的电子受到激发,导 致折射率发生变化,从而产生非线性效应。
光纤结构
光纤的结构也会影响非线性效应的产生,例如光 纤的芯径、折射率等参数。
四波混频
总结词
四波混频是一种光纤非线性现象,它发生在多个不同频率的光波在光纤中传播时相互作用的情况。
详细描述
当多个不同频率的光波在光纤中传播时,它们之间会发生相互作用,导致光波的频率发生变化。这种 频率变化通常表现为产生新的频率分量,即四波混频。这种现象在强光作用下尤为明显,对光纤通信 系统性能产生重要影响。
光纤非线性机制的研究
研究者们通过理论和实验研究,深入了解了光纤 中非线性机制的物理本质,包括非线性折射率、 非线性耦合等。

光纤的非线性

光纤的非线性

Optical fiber communications 1-2
2019/3/10
Copyright Wang Yan
二阶非线性系数d导致产生二次谐波及和频等一系列非 线性效应。但它仅缺乏分子量级反转对称的介质才不 为0。对 SiO2 对称分子石英玻璃的d±0,所以光 纤通常不表现出二阶非线性效应,主要讨论其三阶非 线性效应。 A.非线性折射:折射率佼核与光强(弹性效应) 2 2 总折射率:n ( , E ) n( ) n E
Optical fiber communications 1-1
2019/3/10
4.光纤的非线性
Copyright Wang Yan
一、非线性效应 线性介质: P 0 E 非线性介质(强场):
P 0 E 2dE 4
2
( 3)
E
d:二阶非线性系数,对半导体、介质晶体等中的典型 值为 d 10 24 ~ 10 21 ( 3) 三阶非线性系数,对半导体、介质晶体等中的典 ( 3) 10 34 ~ 10 29 型值为
弹性:自相关调制(SPM:self phase modulation) 交叉相关调制(XPM:Cross phase Modulation)
Optical fiber communications 1-3
2019/3/10
Copyright Wang Yan
B、受激非弹性散射:非线性介质有能量交换 1.受激拉曼散射:Stimulated Raman Scattering—— SRS 2.受激布里渊散射: Stimulated Brillouin Scattering——SBS C参量过程: 四波混频:FWM-Four Wave Mixing

最新光孤子PPT

最新光孤子PPT
• 由武汉邮电科学研究院研制的EDFA,具有增益高、噪声低、增益特性 与光偏振状态无关。达到世界先进水平。在光端机的发送端加后置式 掺饵光纤放大器,在接收端加低噪声前置掺饵光纤放大器,则可以使 2.488Gbit/s系统具有跨越100~250km无中继距离的能力。可大大降低
中继成本。
光孤子
发展前景
接叫KdV方程)。关于实自变量x 和t的函数φ所满足的KdV方程形式如 下:
• KdV方程的解为簇集的孤立子(又称孤子,孤波)。
光孤子
研发历程
• 1)1973~1980年为第一阶段:首先将光孤子应用于光通信的设想 是由美国贝尔实验室的A.Hasegawa于1973年提出的,他经过严格的数 学推导,大胆地预言了在光纤地负色散区可以观察到光孤子的存在,
光孤子
形成机理
• 一束光脉冲包含许多不同的频率成分,频率不同,在介质中的传播速 度也不同,因此,光脉冲在光纤中将发生色散,使得脉宽变宽。但当 具有高强度的极窄单色光脉冲入射到光纤中时,将产生克尔效应,即 介质的折射率随光强度而变化,由此导致在光脉冲中产生自相位调制, 使脉冲前沿产生的相位变化引起频率降低,脉冲后沿产生的相位变化 引起频率升高,于是脉冲前沿比其后沿传播得慢,从而使脉宽变窄。 当脉冲具有适当的幅度时,以上两种作用可以恰好抵消,则脉冲可以 保持波形稳定不变地在光纤中传输,即形成了光孤子,也称为基阶光 孤子。若脉冲幅度继续增大时,变窄效应将超过变宽效应,则形成高 阶光孤子,它在光纤中传输的脉冲形状将发生连续变化,首先压缩变 窄,然后分裂,在特定距离处脉冲周期性地复原。
光孤子
Thank you
光孤子
• (3)可以不用中继站:只要对光纤损耗进行增益补偿,即可将光信 号无畸变地传输极远距离,从而免去了光电转换、重新整形放大、检 查误码、电光转换、再重新发送等复杂过程。

非线性光学--光孤子通信

非线性光学--光孤子通信

非线性光学在光通信方面的应用陈全胜1302110202 光科1102班非线性光学是研究相干光与物质相互作用时出现的各种新现象的产生机制、过程规律及应用途径, 是在激光出现后迅速发展起来的光学的一个新分支。

非线性光学的研究在激光技术、光通信、信息和图像的处理与存储、光计算等方面有着重要的应用, 具有重大的应用价值和深远的科学意义。

本文着重介绍非线性光学效应在光孤子通信方面的应用。

光孤子(soliton)是能在光纤中传播的长时间保持形态、幅度和速度不变的光脉冲。

光纤通信中,限制传输距离和传输容量的主要原因是光信号在传输过程中能量不断损耗和光脉冲在传输过程中色散效应。

不同频率的光波以不同的速度传播,这样,同时出发的光脉冲,由于频率不同,传输速度就不同,到达终点的时间也就不同,这便形成脉冲展宽,使得信号畸变失真。

现在随着光纤制造技术的发展,光纤的损耗已经降低到接近理论极限值的程度,色散问题就成为实现超长距离和超大容量光纤通信的主要问题。

由于非线性特性,光的强度变化使频率发生变化,从而使传播速度变化。

在光纤中这种变化使光脉冲后沿的频率变高、传播速度变快;而前沿的频率变低、传播速度变慢。

这就造成脉冲后沿比前沿运动快,从而使脉冲受到压缩变窄,产生光信号的脉冲的压缩效应。

光孤子通信基本原理是光纤折射率的非线性(自相位调制)效应导致对光脉冲的压缩可以与群速色散引起的光脉冲展宽相平衡,在一定条件(光纤的反常色散区及脉冲光功率密度足够大)下,光孤子能够长距离不变形地在光纤中传输。

它完全摆脱了光纤色散对传输速率和通信容量的限制,其传输容量比当今最好的通信系统高出1~2个数量级,中继距离可达几百千米。

从光孤子传输理论分析,光孤子是理想的光脉冲,因为它很窄,其脉冲宽度在皮秒级。

这样,就可使邻近光脉冲间隔很小而不至于发生脉冲重叠,产生干扰。

利用光孤子进行通信,其传输容量极大,可以说是几乎没有限制。

传输速率将可能高达每秒兆比特。

光孤子

光孤子

光孤子的相互作用
时间孤子相互作用: 与初始间距,初始相位差和孤子振幅有关
空间孤子的相互作用
空间孤子的相互作用
Science 286, 1518 (1999).
Thank you !
m n
w
群延时差
多模色散
光纤材料色散
光纤波导结构色散引起
m n w
克尔效 克尔效 应 应
n n0 n2 I
n0 n2
线性折射率
克尔系数
设光脉冲在光纤中传播长度为 l ,则由克尔效应引起的相位移动为 2 n2 Il
0
自相位调制 附加相位引起的频移
dk 1 k d 0 vg
0
d 2k k d 2
0
d 1 ( ) d vg
0
1 dvg 2 vg d
0
d 2k k d 2
0
1 dvg 2 vg d
0
d 2k k d 2
光孤子的分类及形成机理
光孤子:时间孤子和空间孤子
时间光孤子形成机理:
群速度色散
克尔效应 强光
脉冲展宽 自相位调制 脉冲压缩 前沿传播慢, 后沿传播快
反常色散区:频率前沿 红移、后沿蓝移
脉冲展宽与脉冲压展宽
k n

c
1 k k0 k ( 0 ) k ( 0 ) 2 L 2
2 I n2l t 0 t
附加相位引起的频移 2 I n2l t 0 t I 0 0 脉冲前沿 t 脉冲后沿 反常色散
I 0 t
dvg 0
0
d 脉冲前沿速度变小,脉冲后沿速度变大

非线性光学课件

非线性光学课件

光参量放大器: 利用非线性光 学效应,通过 控制输入光的 参量如振幅、 相位、偏振态 等实现光信号
的放大。
光参量振荡器: 利用非线性晶 体产生特定波 长的激光输出, 具有频率稳定、 波长可调谐等
优点。低频率的光输
出。
非线性光学应用
光通信领域应用
添加副标题
非线性光学课件
汇报人:
目录
PART One
添加目录标题
PART Three
非线性光学原理
PART Two
非线性光学概述
PART Four
非线性光学材料
PART Five
非线性光学器件
PART Six
非线性光学应用
单击添加章节标题
非线性光学概述
定义与性质
非线性光学的定 义
非线性光学的性 质
光孤子通信
光纤放大器
光纤激光器
光纤传感技术
生物医学领域应用
光学显微镜:利用非线性光学效应提高显微镜的成像质量,能够观察更细 微的结构。
光镊技术:通过非线性光学效应产生的光场束缚和操控细胞、病毒等生物 微粒,为生物医学研究提供新的工具。
光学成像:利用非线性光学成像技术可以对生物组织进行高分辨率、高对 比度的成像,提高医学诊断的准确性和效率。
非线性折射率
定义:非线性折射 率是指材料在强光 作用下折射率随光 强的变化而变化的 现象
产生原因:与材 料中的微观结构 和分子排列有关
表现形式:在强光 作用下,材料折射 率会发生变化,导 致光的传播方向发 生改变
应用领域:在光 学通信、光学成 像等领域有着广 泛的应用前景
非线性吸收系数
定义:非线性吸收系数是描述物质在强光作用下非线性吸收特性的参数 影响因素:包括光强、光束宽度、物质浓度等 计算方法:通过实验测量或理论计算得到 应用领域:在光学通信、光学传感等领域有着广泛的应用

《光纤的非线性》PPT课件_OK

《光纤的非线性》PPT课件_OK

Optical fiber commu nications
Copyright Wang Yan
1-9
C、基波另外的分量会引起频率的啁啾,并且改变其色散
D、忽略3次谐波
PNL
(r1
,
t
)
(
3 4
0
(3)
E
3
)
E
cos3
(
0t
0
z)
0
0
c
1 2(1) 3 (3) E 2
4
n
1 2(1)
0
4、The dleadEdti2nged0ge:i 0 红移
d E 2 0 蓝移i 0
dt
d E2 0
dt
i 0
2021/9/2
Optical fiber commu nications
Copyright Wang Yan
1-15
五、Cross phase Modulation XPM
当两个或每个不同波长的光波在光钎中同时传播时他 们将通过光纤的非线形而相互作用。此时有效折射率 不仅与该波的强度有关,也与其他波的强度有关。XP M就是指光纤中某波长的广场E由同时输出另一波长 的光场E2所引出的非线性相移。
PNL (r1, t ) 0 E (3) 3 cos3 (0t 0 z)
0
(3) E 3[ 3 4
cos(0t
0z)
1 4
30t
30t ]
B、新的频率成份 3似0 忽略
reason:其频率在感兴趣的频段以外
其强度弱因为有设有同基波进行任相
匹配 ( (30 ) 3(0 ) )
2021/9/2
值为 (3) 1034 ~ 1029

第五章 非线性光学

第五章 非线性光学

对于P , E均为矢量的情况有:
(2) (2) P 0 : EE
其中:
E E1 (1 ) E2 (2 )
则有:
1 P E x x 1 2 P Py 0 ijk E y Ex 1 P E z z
16
经典力学方法

介电晶体的光极化绝大部分由于外围弱束缚价电子受到光 频电场作用发生位移造成。设价电子密度为N,价电子偏 离平衡位置的距离为x,则极化强度表示为
P Nex(t )

电子发生位移x,相应的位能为
1 1 2 2 m0 x mDx 3 2 3 2 , D 其中m为电子质量, 0 为比例常数,且 0 D U ( x)

Ey
2
Ez
2

1 xxx xxy xxz xyx xyy xyz xzx xzy xzz E x 1 2 2 2 0 yxx yxy yxz yyx yyy yyz yzx yzy yzz E y E x E y E z zxx zxy zxz zyx zyy zyz zzx zzy zzz E 1z
其中:
r 1
n r 1
折射率与光强无关。

D E 0 E P
并设
J 0
则麦氏方程第三式变为: D E P H J 0 t t t 2 则得时谐方程: E 2 E 0
2
线性极化率和线性光学



光与物质相互作用:介质极化使其中的原子(分子、离子 )成为电偶极子,并随时间作周期振动,且受迫振动的频 率与光波场的频率相同。偶极子的振动形成电磁波辐射, 即形成次波发射。 次波频率和入射光波频率相同,大量受迫振动的偶极子发 射的次波相互叠加,彼此干涉,形成宏观光与物质相互作 用规律。 极化理论: P 0 E 极化系数

非线性光纤光学-第五章-光孤子

非线性光纤光学-第五章-光孤子
增益谱的特点:
✓ 增益谱关于Ω=0对称,并在Ω=0处为零。增益在由下式给出的两频 率处具有最大值
max
c 2
22P0
12
最大值为 gm axg( m ax)1 2 2 c 22P 0
✓ 峰值增益与GVD参量β2无关,随入射功率线性增加; ✓ 光纤损耗的主要影响是,由于功率沿光纤逐渐减小,增益也逐渐减小; ✓ 三阶色散(或任意奇数阶色散项)并不影响调制不稳定性的增益谱; ✓ 自陡峭的主要影响是减小增长率并使产生增益的频率范围减小。
如何从物理上理解调制不稳定性?
➢ 调制不稳定性可以解释为由SPM实现相位匹配的四波混频过程。如果 一束频率为ω1=ω0+Ω的探测波与频率为的连续波同时在光纤中传输, 只要 c ,探测波将获得一个净功率增益。从物理上讲,由频率为 ω0的强泵浦波的两个光子产生另外两个不同的光子,其中一个是频率 为ω1=ω0+Ω的探测光子,另一个是频率为2 ω0 -ω1=ω0-Ω的闲频光子。 这种探测波与强泵浦波一起入射的情形有时称为感应调制不稳定性。
➢ 即使只有泵浦波本身在光纤中传输时,调制不稳定性也能导致连续波 自发分裂成周期性的脉冲序列。在这种情况下,噪声光子(真空涨落) 起到探测波的作用,并被调制不稳定性提供的增益放大。由于最大的 增益发生在频率ω0±Ωmax处,由式(5.1.9)给出,这些频率分量得到 最大的放大,所以自发调制不稳定性的一个明显的特征是,在中心频 率ω0两边的±Ωmax处产生两个对称的频谱边带。在时域中,连续波转 变为一个周期性的脉冲序列,其周期为T=2π/Ωmax。
第五章 光孤子
1.调制不稳定性 2.光孤子 3.其他类型孤子 4.孤子微扰 5.高阶效应
1.调制不稳定性
➢ 许多非线性系统都表现出一种不稳定性,它是由非线性和色散效应之 间的互作用导致的对稳态的调制。这种现象被称为调制不稳定性,在 流体力学、非线性光学和等离子体物理学等领域已早有研究。

《非线性光学》PPT课件

《非线性光学》PPT课件
非线性光学
ppt课件
1
内容提要
线性与非线性光学 非线性光学的发展史 本课程的主要内容与大纲 本课程的教学安排 参考书
ppt课件
2
线性光学与非线性光学
激光问世之前,光学研究的基本前提是:
介质的极化强度与光波的电场强度成正比;
P=cE
光束在介质中传播时,介质光学性质的极化率 /折射率是与光强无关的常量;
上世纪60年代初及中期,在上述非线性现象发现的同时 以Bloembergen及他的学生为主
基本建立了以介质极化和耦合方程为基础的非线性光学理论
ppt课件
15
非线性光学的发展历史
布隆姆贝根是非线性光学理论的奠基人。 他提出了一个能够描述液体、半导体和金 属等物质的许多非线性光学现象的一般理 论框架。他和他的学派在以下三个方面为 非线性光学奠定了理论基础:
滤光片
红宝石
694.3nm
石英晶体 347.15nm 底片
非线性光学这个新学科的出现!ppt课件源自8非线性光学的发展历史
非线性光学的发展大致经历了三个不同的时期
1961~1965年:非线性光学效应大量而迅速地出现:
光学谐波、光学和频与差频、光学参量放大与振荡、多光子吸 收、光束自聚焦以及受激光散射等。
I out 光学双稳态
ppt课件
21
非线性光学的发展历史
70年代中期发现利用四波混频可以实现相 位共轭,这是非线性光学中一个重要的发 现。
70年代初,光学克尔效应得到实验验证。
1976年,观察到由于折射率随光强变化产生的光学 双稳态效应,从而开始了无论在物理上还是在应用 上都是十分重要的非线性光学研究的一个分支:光 学双稳态的研究。
ppt课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d2V 2V(KV2).
d2
在方程两边乘以2(dV/dτ),并对τ积分可得
dVd22K V2V4C
积分常数
最终可以得到利用逆散射方法得出的同样的解,即
u (,) se ch ()e x p (i2 )
✓可以看出,输入脉冲在光纤的传输过程中得到了ξ/2的相移,但是其振 幅保持不变。正是基态孤子的这个特性,使它成为光通信系统的理想脉 冲。 ✓当输入脉冲为sech形时光纤色散被光纤非线性精确补偿,其脉宽和峰值 功率由N=1时的关系给出。
增益谱的特点:
✓ 增益谱关于Ω=0对称,并在Ω=0处为零。增益在由下式给出的两频 率处具有最大值
max
c 2
22P0
12
最大值为 gm axg( m ax)1 2 2 c 22P 0
✓ 峰值增益与GVD参量β2无关,随入射功率线性增加; ✓ 光纤损耗的主要影响是,由于功率沿光纤逐渐减小,增益也逐渐减小; ✓ 三阶色散(或任意奇数阶色散项)并不影响调制不稳定性的增益谱; ✓ 自陡峭的主要影响是减小增长率并使产生增益的频率范围减小。
一个轮廓清晰又光滑的水堆,犹如一个大鼓包,沿着运河一直向前推进 在行进过程中其形状与速度没有明显变化。
我骑马跟踪注视,发现它保持着起始时约 30 英尺长,1-1.5 英尺高的浪头 ,约以每小时8-9英里的速度前进后来,在运河的拐弯处消失了”。
罗素称之为 孤立波 - Solitary wave。
✓ 1895年柯特维格(D. J. Koteweg)和德弗累斯(G. DeVries)罗素观察 到的孤立波是波动过程中 非线性效应与色散现象互相平衡 的结果,他 们建立了KdV方程,并给出孤立波解,从理论上说明了孤立波的存在。
2.光孤子
光孤子概述
➢ 孤子的历史 ✓ 一个奇特的水波
约170年前,苏格兰海军工程师罗素 (J.Scott Russell)在一次偶然中观察 到一种奇特的水波。
1844年,他的报告:“我看到两匹骏马拉着一条船沿运河迅速前进。 当船突然停止时,随船一起运动的船头处的水堆并没有停止下来。它激烈 地在船头翻动起来,随即突然离开船头,并以巨大的速度向前推进。
由图可见频谱因脉冲内喇曼散射发生红移。
调制不稳定性对光波系统的影响
✓ 调制不稳定性会影响用光放大器对光纤损耗进行周期性补偿的光通信系统的性 能。物理上讲,放大器的自发辐射能提供种子光,进而通过感应调制不稳定性 形成频谱边带,结果信号频谱被充分展宽,由于GVD感应的光脉冲展宽与其带宽 有关,这种效应将使系统性能劣化。当利用色散补偿光纤(DCF)对GVD进行部 分补偿时,系统性能得到了改善。
将实部和虚部分离,可以得到关于V和φ的两个方程,
V 1 2 2V 21 2V 2V30
V1V2 0 2 2
可以设相位φ与τ无关,因此式中∂φ/∂τ有关的项为零,且∂φ/∂τ变成dV/ dτ 。从第一个式子看出,要满足V与ξ无关的条件,∂φ/∂ξ必须等于常数, 因此φ=Kξ的形式,式中K是常数。因此V满足
线性稳定性分析
✓ 稳态解 忽略损耗,考虑稳态情况下连续波在光纤中的传输情况:
iA z122T 2A2|A|2 A
对于连续波,入射端振幅与T无关,并认为在光纤内传输时仍保 持与时间无关,可以得到方程的稳态解为
A P0 exp(iБайду номын сангаасL)
入射功率 NL P0z SPM感应的非线性相移
上式表明,连续波在光纤中传输时除了获得一个与功率有关的相移 (和由于光纤损耗引起的功率减小)外,其他参量保持不变。 ✓ 微扰的影响
✓ 调制不稳定性还可以用来推算非线性参量的值。
✓ 下图给出了色散补偿对调制不稳定性增益谱的影响。在每段链路的末端 用放大器补偿该段链路的总损耗,当未对色散进行补偿时,频谱呈现出 多条边带;当在每段链路后对95%的色散进行补偿时(曲线(a)), 链路平均色散为0.8ps/(nm·km),此时这些边带得到抑制,而且峰值 增益显著减小,如曲线(b)所示;当光波系统链路由=0.8ps/(nm·km) 的均匀色散光纤构成时,调制不稳定性增益要大得多。
➢ 即使只有泵浦波本身在光纤中传输时,调制不稳定性也能导致连续波 自发分裂成周期性的脉冲序列。在这种情况下,噪声光子(真空涨落) 起到探测波的作用,并被调制不稳定性提供的增益放大。由于最大的 增益发生在频率ω0±Ωmax处,由式(5.1.9)给出,这些频率分量得到 最大的放大,所以自发调制不稳定性的一个明显的特征是,在中心频 率ω0两边的±Ωmax处产生两个对称的频谱边带。在时域中,连续波转 变为一个周期性的脉冲序列,其周期为T=2π/Ωmax。
此解的一个重要特征是,│u(ξ,τ)│2是以ξ=π/2为周期的周期性函数。 利用归一化关系ξ=z/LD,可以得到孤子周期z0为
z0
2LD2|T022
|
TF2WH.M
2|2|
所有高阶孤子都具有此周期性。
如何理解孤子的周期性?
SPM和GVD之间的互作用导致了脉冲在时域和频域的变化,SPM产生一 个正的频率啁啾,使孤子的前沿相对中心频率产生红移,孤子的后沿产 生蓝移。当不考虑GVD效应时,脉冲的形状保持不变。然而由于脉冲具 有正啁啾,反常GVD将压缩脉冲。因为啁啾仅仅在脉冲的中央部分近似 为线性的,所以仅脉冲的中央部分变窄。可是脉冲中央部分强度的迅速 增加,将导致频谱发生很大的变化,
P0
T202
3.112 T2
FWHM
高阶孤子
: 在ξ=0时初始孤子形式如下的孤子特别重要
u(0,)N seh(c)
孤子周期 N2 LD P0T02 利用逆散射方法可得二阶孤子场的分布L为NL | 2 |
u (,) 4 [[ cc 3 o ) 4 o s )3 e s h 4 c h x 4 ( i o ) ( p 2 c ) s (o 3 h c )s e ] ( o 4 h x i)s] ( 2 p ) ( (
N2 LD
P0T02
LNL
2
±1,取决于GVD的正负 孤子阶数,无量纲的量
通过引入 uNU LDA,可以消去方程中的参量N,
并取GVD为负的情况,sgn=-1,得到非线性薛定谔方程的标
准化形式:
i
u
1 2u
22
u2u0
该方程可以用逆散射方法求解,主要的结果如下:
设入射脉冲的初始形式满足 u(0, )N seh(c)
如何从物理上理解调制不稳定性?
➢ 调制不稳定性可以解释为由SPM实现相位匹配的四波混频过程。如果 一束频率为ω1=ω0+Ω的探测波与频率为的连续波同时在光纤中传输, 只要 c ,探测波将获得一个净功率增益。从物理上讲,由频率为 ω0的强泵浦波的两个光子产生另外两个不同的光子,其中一个是频率 为ω1=ω0+Ω的探测光子,另一个是频率为2 ω0 -ω1=ω0-Ω的闲频光子。 这种探测波与强泵浦波一起入射的情形有时称为感应调制不稳定性。
调制不稳定性用于超短脉冲产生
✓ 通过用时域方法求解NLS方程,发现当输入的连续波有周期调制时, 此连续波逐渐演化为以原有调制周期为间隔的短脉冲序列。从实用的 角度考虑,调制不稳定性可用于产生短光脉冲序列,其重复频率可由 外部控制。
✓ 早在1989年,利用调制不稳定性就产生了重复频率为2THz的的130fs 脉冲,从此,这项技术就用于产生周期性超短脉冲序列,其重复频率 比从锁模激光器所得脉冲的重复频率要高得多。
微扰的波数 微扰频率
仅当K和Ω满足下面的色散关系时,关于a1和a2的齐次方程才有 非平凡解:
K1 22 2sgn(2) c 2 12
sgn(β2)=±1,取决于β2的符 号
c2
4P0 2
4
2 LNL
✓ 稳态解的稳定性
➢ 色散关系表明,稳态的稳定性主要取决于光纤中传输的光波是处于光纤的 正常群速度色散区还是反常群速度色散区。
➢ 孤子的物理理解: ✓ 光孤子由色度色散和自相位调制的结合而形成。 ✓ 通过选择适当的波长和脉冲形状,激光产生孤子波形, 孤子波形通过
自相位调制抵消掉色度色散,从而保持波形不变。 ✓ 色度色散和啁啾(chirp)彼此抵消,从而产生孤子。
光孤子的数学描述
➢ 非线性薛定谔方程(NLS) 从数学上描述光孤子需要用到前面介绍的NLS,
A z2 i 2 T 2A 2 1 63 T 3A 3 i|A |2A 2A
为了简化孤子解,首先忽略光纤损耗和三阶色散,并引入归一化参量
U A , z ,T
P0
LD
T0
输入脉冲宽度
归一化的方程为:
峰值功率
LD
T
2 0
| 2
色散长度 |
iUsgn(
2)1 2 2U 2 N2U2U
✓在一个实验中,利用光纤放大器将由两
台DFB激光器得到的拍信号放大到约0.8W,
然后在1.6km长的DDF中传输,其中DDF
的 G V D 从 1 0 p s / ( k m ·n m ) 减 至 0 . 5
p s / ( k m ·n m ) 。 左 图 给 出 了 重 复 频 率 为
11 4 G H z 的 输 出 脉 冲 序 列 和 对 应 的 频 谱 ,
第五章 光孤子
1.调制不稳定性 2.光孤子 3.其他类型孤子 4.孤子微扰 5.高阶效应
1.调制不稳定性
➢ 许多非线性系统都表现出一种不稳定性,它是由非线性和色散效应之 间的互作用导致的对稳态的调制。这种现象被称为调制不稳定性,在 流体力学、非线性光学和等离子体物理学等领域已早有研究。
➢ 光纤中的调制不稳定性需要反常色散条件,这种不稳定性表现为将连 续或准连续的辐射分裂成一列超短脉冲。
✓ 随着波分复用技术的出现,色散管理技术被普遍采用,它通过周期性色散图从 总体上降低GVD,而在局部GVD则保持较高值。β2的周期性变化形成另一个光栅, 可以显著影响调制不稳定性。在强色散管理情况下(相对大的GVD变化),调制 不稳定性增益的峰值和带宽均减小。
相关文档
最新文档