金红石型二氧化钛的价带电子结构表征(110)-(1 - 2)
Materials Studio在材料模拟中的应用——以TiO2晶体为例
广东化工2019年第19期·34·第46卷总第405期Materials Studio在材料模拟中的应用——以TiO2晶体为例贾涛,张佳媛,罗柔,张晋梅,白雪(成都师范学院化学与生命科学学院,四川成都611130)[摘要]二氧化钛具有三种主要的晶型,金红石型,锐钛矿型和板钛矿型,三种晶型的结构不同,因此性质也不同。
本文将使用Materials Studio 中的CASTEP程序对二氧化钛三种晶型进行模拟,并测量不同晶型中体系的能带结构和态密度。
[关键词]Materials Studio;二氧化钛;能带结构;态密度[中图分类号]TQ[文献标识码]A[文章编号]1007-1865(2019)19-0034-02Materials Studio Application in Material Simulation—Take TiO2Crystal As anExampleJia Tao,Zhang Jiayuan,Luo Rou,Zhang Jinmei,Bai Xue(College of Chemistry and Life Science,Chengdu Normal University,Chengdu611130,China)Abstract:Titanium dioxide has three main crystal types,rutile type,anatase type and plate-titanium type.The three crystal types have different structures and therefore different properties.CASTEP in this article will use the Materials Studio program of titanium dioxide,to simulate the three kinds of crystal and measuring different crystal type system in the band structure and density of states.Keywords:materials studio;titanium dioxide;band structure;density of states随着材料科学的不断发展与进步,研究者们对材料的探索程度更加深入,但传统的研究方法难以高效地对材料进行分析研究,而且传统的研究方法误差更大,难以及时的向研究者反馈实验数据。
金红石化学分析方法-1
Q/YSJC-FX.1 -2008金红石化学分析方法二氧化钛量的测定硫酸铁铵滴定法1 范围本标准规定了金红石中二氧化钛量的测定方法。
本标准适用于金红石中二氧化钛量的测定。
测定范围:≥70%。
本标准适用于含铬、钒量不大于3mg,钼、钨量不大于2mg,锡、铜量不大于1mg的试液中二氧化钛量的测定。
2 方法提要试样以过氧化钠熔融,用稀盐酸浸取。
在硫酸和盐酸介质中用铝箔将钛(Ⅳ)还原为三价,在二氧化碳气体保护下,以硫氰酸铵溶液为指示剂。
用硫酸铁铵标准滴定溶液滴定至终点。
3 试剂分析用水均为一次蒸馏水或相应纯度的水,试剂除特殊注明外均为分析纯。
3.1过氧化钠。
3.2碳酸氢钠。
3.3二氧化钛(≥99.99%)。
3.4铝箔(≥99.5%)。
使用时,将铝箔剪成长3~4cm、宽约1cm的长方形。
3.5盐酸(ρ1.19g/mL)。
3.6盐酸(1+1)。
3.7硫酸(1+1)。
3.8盐酸(5+95)。
3.9 碳酸氢钠饱和溶液。
3.10 硫氰酸铵溶液(300g/L)。
3.11 硫酸铁铵标准滴定溶液:3.11.1配置:称取24g硫酸铁铵[NH4Fe(SO4)2·12H2O],置于1000mL锥形瓶中,加入500mL水、100mL硫酸(3.7),加热溶解,取下,滴加0.1g/L高锰酸钾溶液至呈现微红色,加热煮沸分解过量的高锰酸钾。
冷却,移入1000mL容量瓶中,用水稀释至刻度,混匀。
3.11.2 标定:称取0.1000g二氧化钛(3.3)3份,置于预先盛有2g过氧化钠(3.1)的50mL刚玉坩埚中,再覆盖1g过氧化钠(3.1),盖上坩埚盖,并稍留缝隙。
在电炉上烘烤至熔剂呈焦黄色,然后将坩埚置于高温炉中,在750℃~780℃熔融5min~10min。
取出,冷却。
用滤纸擦净坩埚外壁,连同坩埚盖置于300mL烧杯Q/YSJC-FX.1 -2008中,加入50~60 mL 水,盖上表皿,加热浸出熔融物,取下,稍冷,沿杯壁缓缓加入30 mL 硫酸(3.7)、30 mL 盐酸(3.5),加热使熔融物全部溶解,取下,用盐酸(3.8)洗出坩埚及盖,将溶液煮沸使红色褪去。
光催化产氢测试
光催化产氢测试1972年,著名学术期刊Nature上刊登了日本学者藤岛昭、本田健一等的重要研究成果:TiO2电极在紫外光照射下可以将水分解成氢气和氧气。
他们的成果奠定了光催化产氢技术的理论基础,揭示了氢能源取代化石燃料的可能性。
因此迅速引起了全球科学界的研究热潮。
藤岛等发现的反应可表示为:目前认为,半导体的能带结构常由一个充满电子的低能价带(VB)和一个空的高能导带(CB)构成,价带与导带之间区域称为禁带,区域的大小称为禁带宽度。
半导体禁带宽度一般为0.2-3.0eV,是一个不连续区域。
半导体的特殊能带结构决定了它的光催化特性。
当用能量等于或大于禁带宽度(Eg)的光照射时,半导体价带上的电子受光激发跃迁到导带,形成带负电的高活性电子,价带上则相应地产生带正电的空穴,组成电子-空穴对。
光生空穴能够与吸附在催化剂表面的OH-或H2O发生反应生成·OH,羟基自由基的氧化活性比空穴更高,能够氧化多种有机物并使其矿化;空穴本身也能夺取吸附在半导体表面的有机物中的电子,使原本不吸收光的物质被直接氧化分解。
光催化过程实际上包含光生空穴的氧化反应和光生电子的还原反应两个过程,二者又相互影响、相互制约。
光生电子和空穴在体相和表面复合时,被吸收的光子能量以热的形式被释放。
一、半导体光催化半导体光催化材料在光照射下,能够被光子所激活,实现电子或空穴流动,并在其表面上发生很强的氧化或还原作用(即反应体系在光催化下将吸收的光能直接转化为化学能),使许多通常情况下难以实现的反应在比较温和的条件下能够顺利进行。
半导体反应前后不发生变化。
二、费米能级如果一个能带中的某一个能级的能量为E,则该能级被电子占据的概率符合费米函数f(E)。
f(E)=1/2时,E所对应的能级为费米能级,记作EF。
导体的费米能级以下的能级都被电子所填充,高于EF的能级全空。
即费米能级EF是0K时电子所能占据的最高能级。
三、影响半导体产氢光催化剂性能的主要因素1.光催化剂的能带结构和能级位置在热力学上,此因素既可决定光催化产氢反应能否进行,也可以确定光催化剂对太阳光谱的吸收范围。
(整理)阳极氧化法制备二氧化钛纳米管
摘要一维二氧化钛纳米管由于其特殊的结构和优异的性能,在很多领域有重要的应用前景。
二氧化钛纳米管的制备方法主要包括阳极氧化法、模板合成法以及水热合成等方法,其中阳极氧化法是一种简单制备高度有序二氧化钛纳米管阵列的重要方法。
本文在含氟的乙二醇电解液中采用恒压阳极氧化法在钛箔表面直接生成一层结构高度有序的高密度TiO2纳米管阵列。
主要研究了阳极氧化条件(阳极氧化电压、反应时间、电解液组成)对制备TiO2纳米管阵列尺寸和形貌的影响, 探讨了多次氧化对纳米管形貌的改善。
利用扫描电子显微镜(SEM)和X射线衍射(XRD)对所得TiO2纳米管阵列的性能进行了测试分析。
结果表明,TiO2纳米管为非晶态,在空气中经400℃退火处理转变为锐钛矿型,550℃退火开始出现金红石相态;TiO2纳米管的孔径主要由氧化电压决定,随阳极氧化电压的升高纳米管的孔径变大, 纳米管的长度随反应时间延长而增长;多次氧化可明显改善纳米管尺寸规整性, 孔径大小更均一。
最后,根据测试结果对TiO2纳米管阵列的形成机理进行了简单分析。
关键词:二氧化钛纳米管阳极氧化稳压有机电解质AbstractOne-dimensional titania nanotubes have special structures and excellent performances, which have important application in many fields.Nanotubes of titania have been fabricated by many different methods such as hydrothermal treatment, template-assistant deposition, anodic oxidation etc. Anodic oxidization is one of the most important methods to fabricate titania nanotubes.Here,High density, well ordered and uniform titania oxide nanotube arrays were fabricated through an anodization process in glycol electrolytes containing F on a pure titanium sheet. The influences of several synthesis parameters for the preparation of titania oxide nanotube such as anodizing potential, anodizing time and composition of the electrolyte on the micrograph of the material have been investigated. Multi-step anodization preparation procedure was also discussed.The microstructures and morphologies of the TiO2 nanotubes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the formation mechanism was also suggested. The results showed that the TiO2 nanotubes were amorphous.The titania nanotubes annealed at400℃in air shows anatase phase.After 550℃, the anatase phase transformed to rutile phase gradually. The average tubes diameter increases with anodizing voltage.The average tubes length increases with time extension.The deviation of the tubes diameter reduced after multi-step anodizing.Key words: TiO2nanotubes Anodic oxidation Regulators Organic electrolytes目录第一章绪论 (1)1.1 引言 (1)1.2 二氧化钛纳米管的结构、性能 (1)1.2.1纳米材料的概述 (1)1.2.2一维纳米材料 (2)1.2.3一维二氧化钛纳米管的结构、性能 (2)1.3 二氧化钛纳米管形成机理 (2)1.4 二氧化钛纳米管的制备 (3)1.4.1模板法 (3)1.4.2水热法 (4)1.4.2阳极氧化法 (5)1.5 二氧化钛纳米管的应用前景 (8)1.5.1传感器 (8)1.5.2光催化剂 (8)1.5.3电池 (8)1.5.4光催化剂载体 (9)1.6 本章小结 (9)第二章阳极氧化法制备二氧化钛纳米管阵列 (11)2.1 样品制备 (11)2.2 样品制备过程中的现象 (12)2.3 样品表征 (12)第三章实验结果与讨论 (13)3.1 二氧化钛纳米管阵列膜形貌表征 (13)3.2 多次氧化对二氧化钛纳米管形貌的影响 (15)3.3 阳极氧化电压对二氧化钛纳米管形貌的影响 (16)3.4 反应时间对二氧化钛纳米管形貌的影响 (16)3.5 有机电解液对二氧化钛纳米管形貌的影响 (18)3.6 二氧化钛纳米管晶型分析 (19)3.7 二氧化钛纳米管生成机理 (20)3.8 本章小结 (22)第四章结束语 (23)致谢 (25)参考文献 (26)第一章绪论1.1 引言二氧化钛(TiO2 )作为一种重要的无机功能材料,具有光敏、湿敏、气敏、光电等优越的性能,一直以来都是各领域研究的热点。
论文分类
金红石:
一、吸附
1.《光学气敏材料金红石相二氧化钛(110)面吸附CO分子的
微观特性机制研究》[朱红强,冯庆]
2.《金红石相二氧化钛(110)面对NH3吸附的微观机制和光
学气敏特性研究》[朱红强,冯庆]
3.《金红石相二氧化钛(110)面吸附H2S分子对光学气敏效
应的微观机制与特性》[朱红强,冯庆,岳远霞,周晴]
4.《sp3杂化的气体分子在金红石相二氧化钛(110)面吸附
规律与特性》[2015,中国科学,朱红强,冯庆,周晴,陈小
雨]
二、掺杂
1.《Fe-N共掺锐钛矿相二氧化钛电子性质与光学性质的第一
性原理研究》[冯庆,王渭华]
2.《Cr、Mn掺杂锐钛矿相二氧化钛的第一性原理研究》[王渭
华,冯庆]
3.《N-Cu共掺杂金红石相二氧化钛光催化剂的第一性原理》
[2015,中国激光;张菊花,冯庆,朱红强,]
4.《N-S共掺杂金红石相TiO2电子结构与光学性质的第一性原
理研究》[2012,计算物理;冯庆,王寅,王渭化,岳远霞]
5.《非金属杂质C,N,S共掺金红石相TiO2引起的光谱红
移效应》
锐钛矿:
一、吸附
1.《H2O分子在锐钛矿型TiO2(101)表面的吸附特性与微观
机理》[2015;原子与分子物理学报;杨英,冯庆,张菊花]
二、掺杂
1.《Mn与非金属元素N,C,S共掺锐钛矿TiO2电子性质和光
学性质研究》[2013;原子与分子物理学报;岳远霞,冯庆,
王寅]
2.《非金属元素C、N、F掺杂锐钛矿TiO2的缺陷形成能和
电子性质》[2013,功能材料,岳远霞,冯庆,王寅]。
二氧化钛作为光催化剂的研究
二氧化钛光催化剂的研究进展1972年,A.Fujishima 等首次发现在光电池中受辐射的TiO2,表面能持续发生水的氧化还原反应,这一发现揭开了光催化材料研究和应用的序幕。
1976年J.H.Carey等报道了TiO2水浊液在近紫外光的照射下可使多氯联苯脱氯。
S.N.Frank等也于1977年用TiO2粉末光催化降解了含CN-的溶液。
由此,开始了TiO2光催化技术在环保领域的应用研究,继而引起了污水治理方面的技术革命。
近十几年来,随着社会的发展和人们对环境保护的觉醒,纳米级半导体光催化材料的研究引起了国内外物理、化学、材料和环境等领域科学家的广泛关注,成为最活跃的研究领域之一一。
TiO2是一种重要的无机材料,其具有较高的折光系数和稳定的物理化学性能。
以TiO2做光催化剂的非均相光催化氧化有机物技术越来越受到人们的关注,被广泛地用来光解水、杀菌和制备太阳能敏化电池等。
特别是在环境保护方面,TiO2作为光催化剂更是展现了广阔的应用前景。
但TiO2的禁带宽度是3.2eV,需要能量大于3.2eV的紫外光(波长小于380nm)才能使其激发产生光生电子-空穴对,因此对可见光的响应低,导致太阳能利用率低(只利用约3〜5%勺紫外光部分)。
同时光生电子和光生空穴的快速复合大大降低了TiO2光催化的量子效率,直接影响到TiO2光催化剂的催化活性。
因此,提高光催化剂的量子效率和光催化活性成为光催化研究的核心内容。
通过科学工作者对二氧化钛的物质结构、制备方法、催化性能、催化机理等方面的深入系统的研究,这种快速高效、性能稳定、无毒无害的新型光催化材料在废水处理、有害气体净化、卫生保健、建筑物材料、纺织品、涂料、军事、太阳能贮存与转换以及光化学合成等领域得到了广泛应用。
1 TiO2光催化作用机理“光催化”从字面意思看,似乎是指反应中光作为催化剂参加反应,然而事实并非如此。
光子本身是一种反应物质,在反应过程中被消耗掉了,真正扮演催化剂角色的却是TiO2。
2.3.6 金红石(TiO2)型
材料科学基础第 2 章2.3.6 金红石(TiO2)型无机化合物晶体结构2TiO金红石晶体结构示意图离子分布Ti4+位于四方柱的结点与体心位置,O2-位于四方柱内上下底面面对角线位置上有4个,在晶胞半高的连线上有2个。
有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)化学式TiO2晶体结构四方晶系,a=0.563nm四方简单格子(Ti4+一套,O2-两套),Z=2配位数Ti4+配位数:CN=6,配位八面体O2-配位数:CN=3,配位三角形TiO2晶体结构22金红石(TiO 2)的晶胞结构示意图为什么金红石(TiO 2)结构中单位晶胞分子数为2?O 2-数目上下对角线:4×1/2=2棱边半高连线:2总共:4个Ti 4+数目晶胞角顶:8×1/8=1晶胞体心:1总共:2个Ti 4+ ︰ O 2-=2 ︰ 4=1 ︰ 2化学式:TiO 2金红石(TiO 2)中离子的堆积方式金红石的结构可以近似看成O 2-做六方紧密堆积,而Ti 4+位于二分之一的八面体空隙中,使化学式为TiO 2。
2②①④③金红石晶体结构 (a )晶胞结构图,(b )(001)面上的投影图由图可见,晶胞中2个钛离子的坐标可分别用位于晶胞角顶与体心位置的钛离子来描述,分别是:2②①④③金红石晶体结构 (a )晶胞结构图,(b )(001)面上的投影图 ① ② ④ ③图中编号①~④的氧离子描述,分别是:金红石(TiO)中结构中离子的配位数2在金红石结构中,O2-的配位数为3,构成[OTi]三角形配位,3Ti4+的配位数为6,构成[TiO6]八面体配位2晶胞中心晶胞中心的钛氧八面体与角顶的钛氧八面体共角顶连接,排列方向相差90°晶胞角顶角顶的钛氧八面体以共棱方式连接,排列成沿c 轴方向延伸的钛氧八面体长链。
2金红石结构中[TiO 6]八面体及其连结方式晶胞中心晶胞中心的钛氧八面体也是共棱连接连接形成长链,与角顶的长链方向相差90°在金红石结构中O2-离子电价是否平衡?根据鲍林第二规则,在金红石结构中:常见金红石型离子晶体GeO2、SnO2、PbO2、VO2、NbO2、WO2氟化物MnF2、MgF2等2TiO2晶体结构还有板钛矿、锐钛矿两种晶型性能与用途①性能②用途光学性质:折射率高(2.76);电学性质:介电常数高光学玻璃原料金红石质电子陶瓷原料2。
锐钛型二氧化钛与金红石型二氧化钛的区分
1、(锐钛型二氧化钛与金红石型二氧化钛)的区分1.1 方法利用X射线衍射仪得到XRD图谱进行分析1.2用到的仪器X射线衍射仪X射线产生原理:高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高1.2.1 X射线管的结构阴极:又称灯丝(钨丝),通电加热后便能释放出热辐射电子。
阳极:又称靶,通常由纯金属制成(Cr,Fe,Co,Ni,Cu,Mo,Ag, W等),使电子突然减速并发射X射线。
阳极需要水强制冷却。
窗口:是X射线射出的通道,维持管内高真空,对X射线吸收较少,如金属铍、含铍玻璃、薄云母片X射线管中心焦点在X射线衍射中,总希望有较小的焦点(提高分辨率)和较强的X射线强度(缩短爆光时间)。
一般采用在与靶面成一定角度的位置接受X射线,这样可以达到焦点缩小,X射线相应增强的目的。
1.2.2 X射线特点1.2.3理论基础:布拉格方程1.2.4具体方法用X射线衍射分析法中的粉末法来分析两种结构。
只有满足Bragg方程,才能产生衍射现象,因此用粉末法对测定的晶体样品,不改变λ,要连续改变θ。
:⏹用单色的X射线照射多晶体试样,利用晶体的不同取向来改变θ,以满足Bragg方程。
试样要求:粉末,块状晶体。
⏹特点:试样容易获得,衍射花样反映晶体的全面信息。
粉末法:由于多晶体由无数取向无规的单晶组成,相当于单晶绕所有取向的轴转动,晶体内某等同晶面族{HKL}的倒易点,形成-相应倒易矢量gHKL为半径的倒易球。
一系列的倒易球与反射球相交,其交集是一系列园,则相应的衍射线束分布于以样品为中心、入射方向为轴、上述交线园为底的园锥面上。
1.2.5 两者结构分析晶胞结构的不同金红石型二氧化钛及锐钛型二氧化钛结晶类型均为正方结晶,前者为R型,后者为A型。
金红石型二氧化钛晶格结构致密,比较稳定,光化学活性小,因而耐久性由于锐钛型二氧化钛。
二氧化钛_TiO_2_表面能的理论研究
Vo.l 29高等学校化学学报No .42008年4月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 824~826二氧化钛(TiO 2)表面能的理论研究魏志钢1,2,张红星1,李前树2,Lew is James P .3(1.吉林大学理论化学研究所,理论化学计算国家重点实验室,长春130023;2.北京理工大学化工与材料学院,北京100081;3.D epart m ent of Phys i cs and A stronomy ,B ri gha m Y oung U n i versity ,P rovo ,U T 84602,USA )摘要 用密度泛函理论和虚拟原子轨道方法对二氧化钛 金红石(T i O 2)(110)表面的表面能进行了理论计算.结果表明,二氧化钛的表面能与表面缺陷的百分率相关.完整的表面具有最低的表面能,表面能随着表面缺陷百分率的增大而升高,这与自然环境下二氧化钛 金红石(T i O 2)具有规整的(110)表面一致.在光催化实验中利用二氧化钛表面的缺陷作催化剂需要考虑到表面的稳定性.另一方面,在完整的表面五配位T i 4+上填加氧原子与表面作用时,表面能起初变化很小,直到50%的五配位T i 4+被填充后表面能才开始升高.关键词 二氧化钛 金红石(T i O 2)(110)表面;表面能;缺陷表面;火球程序中图分类号 O 641 文献标识码 A 文章编号 0251 0790(2008)04 0824 03收稿日期:2006 11 13.基金项目:国家自然科学基金(批准号:20573042)资助.联系人简介:张红星,男,博士,教授,博士生导师,从事理论化学研究.E m ai:l hxzhang @m ai.l jl u 二氧化钛 金红石(T i O 2)的(110)表面能分解水已受到广泛关注[1].由于分解水发生在表面的缺陷位,因而对缺陷表面的表面能进行研究很重要.在水和氨气共同吸附于二氧化钛表面的实验中,如果在90~600K 的温度下充入氧气,氧气将分解并促进水分解.由此,在规整表面五配位T i 4+上填加氧原子并计算表面能同样值得重视.迄今,在实验和理论上对二氧化钛 金红石(T i O 2)的(110)规整表面所进行研究已有报道[2~5,6].但是对缺陷表面的表面能以及氧原子填加的表面能的研究尚未见报道.本文对其表面能进行了理论计算研究.1 计算方法本文全部计算利用Fireba ll 程序[7]完成.Fireba ll 程序基于密度泛函和紧束缚态理论,基组采用Sankey N i k l e w ski 的虚拟轨道函数.自恰场采用DOGS 方法.首先对晶体二氧化钛 金红石(T i O 2)进行计算,接着对完整(110)表面进行计算,最后进行缺陷表面的计算.对于晶体二氧化钛 金红石(T i O 2)的计算,其方法参照文献[8],晶格参数为a =0 4575n m,c =0 2951nm,u =0 303.对于二氧化钛 金红石(T i O 2)(110)表面的计算参数为a =0 4594n m,c =0 2959n m,u =0 305,计算结果与实验值一致[9].2 结果与讨论图1给出了二氧化钛 金红石(T i O 2)的表面.由图1可见,规整的二氧化钛(110)表面具有五配位和六配位两种T i 4+离子.与两个六配位T i 4+离子相连的氧为桥氧(br O );与一个五配位T i 4+离子相连的氧为坐标不饱和氧(cus O ).图2给出其表面能计算值的曲线.2.1 二氧化钛 金红石(T i O 2)晶体二氧化钛 金红石晶体属于立方晶系,空间点群P 41/m nm ,每个晶胞含有6个原子.本文中的晶体F ig .1 T i O 2ru til e (110)surface w ith all the b ridgedoxygen atom s(br O )and coord inate unsaturated oxygenat m o m s(cus O) Fig .2 Surface energy of the defect T i O 2rutile(110)s u rface correspond i n g to the coverage of T i ter m i nation计算是为计算表面能作准备的,晶体中包含了42个最小晶胞,即252个原子,与规整表面的原子数相同.2.2 规整表面以前的计算研究主要集中在表面结构的变化.其中R a m a m oort h y 等[5]和B ates 等[6]分别利用P WPP LDA 和P W GGA 方法对表面的表面能进行过计算,并给出了表面能的计算公式:E sur f (n,L )=[E tot (n,L )-E to t (n ,0)]/A (1)式中,E su rf (n,L )表示表面能,E to t (n,L )表示表面的总能量,E tot (n ,0)表示晶体的总能量,n 表示计算中所用晶体和表面的层数,L 表示表面之间的距离(本文中的表面间的距离为10nm,所用晶体的距离被看作为0),A 为表面的表面积2 1 4142a 6c .本文中的计算类似于Ra m a m oo rthy 等[5]的P W PP LDA 方法,计算中取4个M onkhorst Pack 关键点,7层表面,每层36个原子,与晶体的原子相同.由于在表面能的计算中,总能量因计算程序和方法的不同而有差异,故不具有可比性,本文中只列出表面能进行比较.由公式(1)得到表面的表面能为0 83J /m 2,比Ra m a moorthy 等[5]得出的0 89J/m 2略低,比B ates 等[6]得出的0 73J/m 2略高.2.3 缺陷表面由公式(1)不能直接计算缺陷表面的表面能,我们对晶体的总能量E tot (n ,0)进行改进:E tot (n ,0)=E bu lk mE atom O mE T i O (2)式中,E bu lk 为完整晶体的总能量,mE atom O 为填加或删除m 个氧原子的能量,mE T i O 为填加或删除m 个T i O 键的能量.从图1可见,表面上有两种氧原子(br O 和cus O ),所以有两种T i O 键的键能(br E T i O 和cus E T i O ).T i O 键的键能是表面能量和表面减去一个氧原子的能量的能量差.br E T i O 能量为8 066e V,这与文献[10]的7 9e V 接近,比实验值(6 852 0 311)e V 略高.c us E Ti O 能量为2 523e V,与实验值(2 679 0 228)e V 一致.因此,由此可以得到公式:E surf (7,10)=[E tot (7,10)-E tot (7,0)]/A (3)式中,E sur f (7,10)为7层表面,层间距为10n m 的缺陷表面的表面能;E tot (7,10)为7层表面的总能量,E tot (7,0)为晶体的总能量由公式(2)得出;A 为表面面积.由图2可见,当所有的br O 和cus O 都空缺时表面上氧的覆盖率为0%,氧用空心圈表示;当所有的br O 和cus O 都被填充时表面上氧的覆盖率为100%,氧用实心圈表示.图2中包括了覆盖率依次为0 0%,8 3%,16 7%,25 0%,33 3%,41 7%,50 0%,58 3%,66 7%,75 0%,83 3%,91 7%,100 0%的表面能.从图2可见,覆盖率为0 0%时的表面能最高(2 52J/m 2),覆盖率从0 0%到50 0%的表面能依次降低,覆盖率为50 0%时的表面能最低(0 83J/m 2).可见,在实验中希望得到更多的缺陷以提高催化剂的效能,使表面能升高,表面的稳定性降低.表面上氧的覆盖率从50%到100%实际上是氧气在表面上分解得到的产物.覆盖率从50%到75%时表面能的变化很小,从热力学角度证明了氧气在表面上进行分解反应的可行性,这与实验结果[2,3]一致.由于分解的氧气能825 N o .1 魏志钢等:二氧化钛(T i O 2)表面能的理论研究826高等学校化学学报 V o.l29进一步促进水分解[2,3],使得计算结果更具实用价值.覆盖率从75%到100%时表面能变大,说明氧气变得难以进行分解.2.4 结 论本文用量子化学方法(Fireball程序)对二氧化钛 金红石(T i O2)(110)表面的表面能进行了理论计算.结果表明,表面能与表面上氧的覆盖率相关.表面上氧的覆盖率从0%到50%时表面能降低,50%到75%时表面能变化很小,75%到100%的表面能升高.计算表面能最低结果(50%覆盖率)与自然界中完整表面为稳定表面的一致.覆盖率从0%到50%时表面能降低说明在提高缺陷数量进行光化学催化时表面变得不稳定.覆盖率从50%到75%时表面能变化很小佐证了氧气在此表面分解的可行性.覆盖率从75%到100%时表面能升高说明氧气在此表面分解具有上限.参 考 文 献[1] Diebol d U..Sur.f S c.i[J],2003,48:53 229[2] Ep li ng W.S.,Peden C.H.F.,H enderson M.A.,e t al..Sur.f S c.i[J],1998,412:333 343[3] H enderson M.A.,Ep ling W.S.,Perk i ns C.L.,et al..J.Phys.C he m.B[J],1999,103:5328 5337[4] Charlt on G.,H o w es P.B.,N i ck li n C.L.,e t al..Phys.Rev.Lett.[J],1997,78:495 498[5] Ra m a moorthyM.,Vanderb iltD.,K i ng Sm i th R.D..Phys.Rev.B[J],1994,49:16721 16727[6] Bates S.P.,Kresse G.,G ill an M.J..Su r.f Sc.i[J],1997,385:386 394[7] Le w i s J.P.,Glaese m ann K.R.,Voth G. A.,et al..Phys.R ev.B[J],2001,64:195103 195112[8] W ang H.,L e w is J.P..J.Phys.:C ondens M atter[J],2005,17:209 213[9] Burdett J.K.,H ughbank s T.,M iller G.J.,e t a l..J.Am.Ch e m.Soc.[J],1987,109:3639 3648[10] W ang S.G.,W en X. D.,C ao D.B.,e t al..Su r.f S c.i[J],2005,577:69 76Theoretical Study on the Surface Energy of T iO2Rutile(110)W E I Zh i Gang1,2,Z HANG H ong X i n g1*,L I Q ian Shu2,LE W IS Jam es P.3(1.S t ateK ey Laboratory of T heoretical and Computational Che m istry,Instit ute of T heoretical Che m istry,J ili n Uni versity,Chan g chun130023,China;2.Schoo l of Che m ical E ngineer i ng and M a terials S cience,B eijing Ins titute of T echnology,Beijing100081,China;3.D e p ar t m ent of Phy sics and A strono m y,Br i gha m Young Uni versity,P rovo,UT84602,USA)Abst ract The density f u nctional theory and pseudopo tentia lm et h od w ere e m p l o yed to i n vesti g ate the T i O2 rutile(110)surface energy corresponding to the de fect concentration.It is shown that the surface energy is dependent on the defect percen tage,i.e.,the zero de fect surface possesses the lo w est surface energy and the 100 0%defect surface possesses the h i g hest surface energy.On t h e o ther hand,when w e added O ato m s to t h e fivefold coordinate T i4+sites of the perfect surface w it h a defect be l o w50%,there is little change of the surface energy,a lthough the perfect surface still has the l o w est surface energy.W hen w e added m ore O ato m s to these sites,the surface energy beco m es h i g her.K eywords T i O2Ru tile(110)surface;Surface energy;Defect surface;F ireball prog ra m(Ed.:D,I)。
二氧化钛
贵金属沉积
离子掺杂
采用复合半导体 添加适当的有机染料敏化剂
贵金属沉积
通过改变体系中的电子分布,影响二氧化钛的表面性质, 进而改善其光电性能。 可采用浸渍还原、表面溅射等方法使贵金属形成原子簇 沉积附着在二氧化钛表面。 通过贵金属的修饰一方面能促进光生电子-空穴对的分离, 另一方面可改变二氧化钛的能带结构,更有利于吸收低 能量光子,以增加太阳光的利用率。
离子掺杂
1、金属离子掺杂:
掺杂金属离子可以改变半导体的能级结构和表面性能, 进而改变光催化历程,提高光催化反应的量子产率。 在二氧化钛半导体中掺入不同嘉泰的金属离子,不仅 可以加强半导体的光催化作用,还可以使半导体的吸 收波长范围扩展至可见光区域。 从半导体的电子学来看,掺杂主要有下面三个作用: 1、形成捕获中心。 2、形成掺杂能级 3、改变载流子的扩散长度。
气相法 液相法
固相法
1、二氧化钛的光吸收只限于波长较短的紫外区,对太阳光 的吸收尚达不到照射到地面太阳光谱的10%,限制了太阳能 的利用; 2、光生载流子很容易重新复合。 如在二氧化钛表面上光生载流子的复合是在小于10-9s 的时间内完成,降低了光电转换效率,从而影响了光催化效率。
解决办法:对二氧化钛进行改性,通过改性可提高激发 电荷分离,扩大其作用的光波长范围以提高太阳光的利用率、 提高二氧化钛的稳定性、提高光催化反应的选择性或产率等。
光催化机理
当一个能量等于或大于半导体带隙能(Eg) 的光子(能量为h)射入半导体时,一个电 子e-被从价带VB 激发到导带CB,留下一个 空穴h+ 在价带中。激发态的导带电子和价带 空穴除了重新结合并消除输入的能量之外, 电子在材料的表面被捕捉。即电子被吸附在 半导体表面,或者吸附在荷电的周围粒子的 双电子层之内。如果一个适当的空穴或表面 缺陷态能被用来捕捉电子或空穴,则可以防 止电子和空穴的重新复合,后来的还原反应 就可以发生。 价带的空穴是有力的氧化剂(+1.0~ 3.5eV),而导带电子是很好的还原剂(+ 0.5~-1.5eV)。大部分的有机光催化降解反 应,不是直接就是间接地充分利用空穴氧化 剂的能量。 然而,为了防止电子和空穴的重新复合, 必须提供一个可还原物质与电子反应。
二氧化钛化学结构式-概述说明以及解释
二氧化钛化学结构式-概述说明以及解释1.引言1.1 概述二氧化钛,化学式为TiO2,是一种常见而重要的无机化合物。
它具有多种晶体结构,常见的有金红石型和锐钛型。
二氧化钛具有广泛的应用领域,包括光催化、光电子学、电化学、环境净化等。
它具有诸多优异的性质,如高光催化活性、优异的光电转换性能以及良好的化学稳定性,因此受到了广泛的研究和应用关注。
在本文中,我们将重点探讨二氧化钛的化学结构以及与之相关的物理性质和化学性质。
首先,我们将介绍二氧化钛的化学结构,包括它的晶体结构和分子结构,以及可能存在的缺陷。
其次,我们将深入探讨二氧化钛的物理性质,包括光催化活性、热稳定性和电学性能等。
最后,我们将介绍二氧化钛的化学性质,如与不同化合物的反应性和其它化学性质。
通过对二氧化钛的综合研究,我们可以更好地理解其在各个领域的应用潜力,从而为其在环境净化、能源转换和催化反应等方面的应用提供更加有效的指导。
同时我们也将探讨当前存在的问题和挑战,并提出进一步研究的方向和可能的解决方案。
综上所述,本文将通过对二氧化钛的化学结构、物理性质和化学性质进行系统的探讨,旨在为读者提供关于二氧化钛的全面了解,并对其未来的研究和应用方向提供参考。
1.2文章结构1.2 文章结构本文将分为三个主要部分进行讨论:引言、正文和结论。
引言部分将首先概述研究的背景和重要性,介绍二氧化钛的基本特性,并说明本文的目的和意义。
接着,将介绍本文的整体结构,包括各个章节的内容和主要观点。
正文部分将分为三个小节进行研究。
首先,将详细探讨二氧化钛的化学结构,包括原子组成、晶格结构以及电子排布等方面的内容。
其次,将介绍二氧化钛的物理性质,如密度、熔点、折射率等,并探讨其与化学结构之间的关系。
最后,将探讨二氧化钛的化学性质,包括其与其他物质的反应性和催化性能等方面的内容。
结论部分将对二氧化钛的化学结构进行总结,并分析其在不同领域的应用前景。
同时,将提出进一步研究的方向,指出目前存在的问题和挑战,并提出可能的解决方法和研究方向。
金红石二氧化钛纳米片的性质及其光催化活性
金红石二氧化钛纳米片的性质及其光催化活性赵丹丹;于彦龙;高东子;曹亚安【摘要】采用溶胶-凝胶、质子交换和层状剥离的方法,制备出金红石TiO2纳米片.利用X射线电子衍射谱(XRD)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X光电子能谱(xPS)的价带谱和荧光光谱(PL)等对样品进行了表征,研究了光生载流子的转移过程.结果证明:金红石TiO2纳米片具有较大的比表面积(185.7m2/g),厚度约5 nm,与金红石TiO2样品相比,金红石TiO2纳米片的禁带宽度增加,氧化还原能力增强;此外,纳米片结构能够促使光生载流子快速转移到纳米片的表面并产生有效分离,阻止了光生电子和空穴的复合,提高了光催化反应中光生载流子的利用率.金红石纳米片的这些特性导致其具有较高的光催化活性,紫外光催化降解对氯苯酚的实验表明:金红石TiO2纳米片的光催化活性高于金红石TiO2和锐钛矿TiO2样品.【期刊名称】《无机材料学报》【年(卷),期】2016(031)001【总页数】6页(P1-6)【关键词】金红石TiO2纳米片;比表面积;能带结构;光生载流子;光催化活性【作者】赵丹丹;于彦龙;高东子;曹亚安【作者单位】南开大学物理科学学院,泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津300457;南开大学物理科学学院,泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津300457;南开大学物理科学学院,泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津300457;南开大学物理科学学院,泰达应用物理研究院,弱光非线性光子学教育部重点实验室,天津300457【正文语种】中文【中图分类】O643;O644低维结构TiO2具有维度低、化学稳定性好和氧化还原能力强等特点, 近年来被广泛应用于光催化、太阳能电池和纳米器件等领域[1-13]。
Adachi等[2]合成了锐钛矿纳米管, 并研究了其光催化活性; Quan等[6]报道了改性的锐钛矿纳米管, 具有良好的光电协同催化能力; Zhang等[7]制备了一种高度有序的锐钛矿纳米管阵列电极, 有效地提高了电极光电协同催化活性; Macak等[8]合成了金红石锐钛矿混合的纳米管, 大大提高了TiO2光催化降解有机物的性能。
二氧化钛光催化原理
TiO 2光催化氧化机理TiO 2属于一种n 型半导体材料,它的禁带宽度为3.2ev (锐钛矿),当它受到波长小于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e -);而价带中则相应地形成光生空穴(h +),如图1-1所示。
如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO 2表面不同的位置。
TiO 2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h +则可氧化吸附于TiO 2表面的有机物或先把吸附在TiO 2表面的OH -和H 2O 分子氧化成 ·OH 自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO 2和H 2O 等无害物质。
反应过程如下:反应过程如下:TiO 2 + hv → h + +e - (3) h + +e - → 热能 (4)h + + OH- →·OH (5) h + + H 2O →·OH + H + (6)e- +O 2 → O 2- (7) O 2 + H+ → HO 2· (8)2 H 2O ·→ O 2 + H 2O 2 (9) H 2O 2 + O 2 →·OH + H + + O 2 (10)·OH + dye →···→ CO 2 + H 2O (11)H + + dye →···→ CO 2 + H 2O (12) 由机理反应可知,TiO 2光催化降解有机物,实质上是一种自由基反应。
Ti02光催化氧化的影响因素1、 试剂的制备方法常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。
不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。
光催化剂降解有机污染物
e—+ O2→·O2-
·O2—+ H+→·HO2
2·HO2→O2+H2O2
·HO2+ H2O + e—→H2O2+ OH-
H2O2+ e—→·OH + OH-
一般的光催化反应就是利用催化剂产生的极其活泼的羟基自由基(·OH),超氧离子自由基(·O2—)等活性物质将各种有机物污染物直接氧化为CO2、H2O等无机小分子。但是在气相条件下光催化反应可能并不一定是羟基自由基反应.有学者研究发现当光催化反应在气态环境下进行时,有时主要起作用的可能是其他物质。Stafford等[18]发现4—氯苯酚的光催化反应就是光生空穴直接参与反应完成的。他们在研究后发现这有可能是因为4—氯苯酚的苯环结构可以捕获中间自由基和电子,在没有水蒸气存在时,它能够直接和光生空穴反应,从而达到降解的目的。
a锐钛矿型b金红石型
图1-1TiO2两种晶型结构图
2.TiO2的生产及应用
二氧化钛的化学稳定性好,无毒,不溶于水、稀酸、有机溶剂和弱无机酸,微溶于碱和热硝酸,长时间煮沸才能溶于浓硫酸和氢氟酸。二氧化钛能强烈吸收紫外线,生成活化物质。这种活化物质能促使应用体系(如涂料、塑料等)中的有机物降解,影响使用性能。
二氧化钛又称钛白,一种主要用作白色的无机化工产品,二氧化钛折射率(金红石型为2.70,锐钛型为2.55)在所有白色颜料中最高,因此具有最优异的颜料性能。由于二氧化钛在涂料、塑料、造纸、合成纤维、印刷油墨、橡胶、搪瓷等工业领域的重要用途,其消费量已成为经济学家用来衡量一个国家生活水平的主要标志之一。
金红石型TiO_(2)中四种点缺陷态研究
原子与分子物理学报JOURNAL OF ATOMIC AND MOLECULAR PHYSICS第38卷第1期2021年2月Vol. 38 No. 1Feb. 2021金红石型Ti。
中四种点缺陷态研究朱海霞(盐城师范学院物理与电子工程学院,盐城224051)摘 要:利用第一性原理计算方法研究了金红石型TiO 2中四种缺陷的电子态.这四种缺陷包括氧空位 (O ’)、钛空位(Ti v )、钛间隙(Ti s )以及氧空位O ’与钛间隙态Ti s 共存态.氧空位的存在导致禁带内施主缺陷能级较浅,而深施主能级与Ti 间隙态有关.预测了氧空位更倾向于与钛间隙结合,主要通过钛间隙态的3d 电子部分转移到近邻近氧空位的部分形成O v -Ti s 对缺陷.具有O ’、Ti S 或O v -Ti s 缺陷的体系都出现 间隙态,促进体系出现红外吸收.关键词:金红石型TiO 2;点缺陷;电子性质;第一性计算中图分类号:O483文献标识码:ADOI :10.19855/j.l000-0364.2021.016008Researches on four different point defects of rutile TiO 2ZHU Hai ・Xid(School of Physics and Electronic Engineering , Yancheng Teachers University , Yancheng 224051 , China)Abstract :The electronic states of four types of defects in rutile TiO are studied using the first principles calcula tions. The four types defects include oxygen vacancy ( O v) , titanium vacancy ( Ti v) , titanium interstitial(Ti s) , and the coexistence of O vand Tis ( O v- Ti s) - The existence of oxygen vacancy (v °) leads to a shallow donor defect level in the forbidden band , while a deep donor level is associated with the Ti interstitial (Ti $) - Itis predicted that an oxygen vacancy prefers to combine with a Ti $ to form a O v - Ti $ dimer by a partial 3d electronbeing transferred from the Ti $ to the neighboring O v - The system with defects of O v ,Ti $ orO ” 一 Ti $ appears gap 一 states ,which promotes the infrared absorption of the system.Key words : Rutile TiO ; Point defects ; Electronic structure ;First-principles calculations1引言TiO 2是一种重要工业材料,也是重要的半导体光催化材料-TiO 2有三种基本晶相:锐钛矿型、 板钛矿型和金红石型,而最受关注的是锐钛矿和金红石相-然而,对于光催化剂的应用,TiO 2最优化的带隙应为~2.0 ev ,才能实现大量可见光 吸收-但是实际上纯TiO 2带隙值约3- 0 ev 左右,这意味着纯TiO 2只能吸收紫外线辐射,即只吸收约4.0%的太阳能量,而在优化带隙值这一问题 上已有了大量的研究工作[1>2]-而众所周知,无论是TiO 2粉末形式还是薄膜形式,实际合成的TiO 2都具有高密度的结构缺陷,特别是在常规合成条件下产生的固有点缺陷•这些点缺陷可能会在电子带结构中引入额外的成分,对传输和光学行为产生实质性的影响[3],其中一些在实际应用 中可能是有利的-这是全面研究TiO 2缺陷状态的 动机⑷-氧化钛最容易被发现的缺陷是氧空位(Ov ),这可能导致各种物理后果-例如,锐钛矿型TiO 2 表面上的可以增强分子吸附,有利于表面化学处理⑸,有利于电荷转移到吸收的CO 2-晶格内的 O v 诱导载流子自陷态⑷-对于金红石型TiO 2,有报道称其单重态为反铁磁态,三重态为铁磁态,收稿日期:2020-06-06基金项目:国家自然科学基金(11704326)作者简介:朱海霞,女,博士,副教授,主要从事新能源材料电子结构和物性的研究.E-mail : shyzhhx13@ 163. com第38卷原子与分子物理学报第1期外吸收光谱中的一些关键特征与也二者有关⑺.有研究表明,氧空位O v可以在能隙内产生浅缺陷态,从而抑制相邻Ti离子的局部磁态⑻.此外,还揭示了的钛是红外吸收数异常的•这些乎,一方面,TiO2纳了位以外的点,方面,这些不类型的点可能存在相互作用,了TiO2材料的电子结构的复杂性⑼.鉴于存在各种点缺,这种 可能是二氧化钛在电子结构和输运行为方面难以理解的原因之一⑹.然目在一些关于TiO2的研究68"12】,但主要是探讨氧空位缺陷对TiO2材料电子构的.此,面研究各种不TiO2的电子结构的是一件非常有的工作•为了化考虑,本文具有介电常数高、‘化能的金红石相TiO2为研究对象•主要详细研究了位(O v),Ti位i (%)、Ti子(企)和。
纳米二氧化钛
纳米二氧化钛产品简介:纳米二氧化钛是金红石型白色疏松粉末,作为紫外线屏蔽剂,防止紫外线的侵害。
也可用于高档汽车面漆,具有随角异色效应。
纳米技术在光催化领域扮演着重要的角色。
纳米二氧化钛的光催化作用能将光能转变为电能和化学能,实现许多难以实现或不可能进行的反应。
屏蔽紫外线作用强,有良好的分散性和耐候性。
可用于化妆品、功能纤维、塑料、涂料、油漆等领域,。
目前,环境污染的控制与治理是我们面临的亟待解决的重大问题,在众多环境治理技术中,利用太阳光作为光源来活化纳米二氧化钛,使其在室温下进行氧化还原反应,杀灭有害菌、清除污染物,这一技术已成为一种理想的环境治理技术。
纳米二氧化钛属非溶出型抗菌剂,本身具有很好的化学稳定性,无毒性,重金属含量少,抗菌性广且长效,被越来越广泛地应用于日常生活之中。
如太阳能电池、抗菌材料、空气净化器、自清洁材料、精细陶瓷及建筑材料等。
将对提高我们的生活质量发挥无穷潜力。
分类:纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
结构:纳米材料的两个重要特征是纳米晶粒与高浓度晶界。
纳米TiO2的微观结构特征的研究报道较少。
其中用拉曼散射和高分辨电镜研究了纳米TiO2陶瓷, 显示的结果与通常粗晶材料无多大的区别,晶粒间界处亦含有短程有序的结构单元。
纳米TiO2晶粒基本是等轴晶粒, 与从气体凝聚法得到的原子团簇形状相同, 尺寸相同并都服从对数正态分布。
性能:™ 纳米TiO2有白色和透明状的两种颗粒,常见的TiO2粉体有金红石、锐钛矿、板钛矿等3 种晶型。
™ 其中金红石和锐钛矿是四方晶系,板钛矿是正交晶系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Valence band electronic structure characterization of the rutile TiO 2(110)-(1×2)reconstructed surfaceC.Sánchez-Sánchez a ,b ,M.G.Garnier c ,P.Aebi c ,M.Blanco-Rey d ,P.L.de Andres a ,d ,J.A.Martín-Gago a ,e ,M.F.López a ,⁎aInstituto Ciencia de Materiales de Madrid (ICMM-CSIC),C/Sor Juana Inés de la Cruz 3,28049-Madrid,Spain bInstituto de Ciencia de Materiales de Sevilla (ICMSE-CSIC),Américo Vespucio 49,41092-Sevilla,Spain cDépartement de Physique and Fribourg Center for Nanomaterials,Universitéde Fribourg,CH-1700Fribourg,Switzerland dDonostia International Physics Center,Universidad del País Vasco UPV/EHU,Paseo Manuel de Lardizábal 4,20018Donostia-San Sebastián,Spain eCentro de Astrobiologia (CSIC-INTA),28850Madrid,Spaina b s t r a c ta r t i c l e i n f o Article history:Received 31May 2012Accepted 28September 2012Available online 6October 2012Keywords:Titanium oxideElectronic structure ARUPS DefectsThe electronic structure of the TiO 2(110)-(1×2)surface has been studied by means of angular resolved ultraviolet photoemission spectroscopy (ARUPS).The valence band dispersion along the high symmetry sur-face directions,[001]and [1–10],has been recorded.The experimental data show no dispersion of the band-gap Ti 3d states.However,the existence of dispersive bands along the [001]direction located at about 7eV below the Fermi level is reported.The existence of two different contributions in the emission from the defects-related state located in the gap of the surface is univocally shown for the first time.©2012Elsevier B.V.All rights reserved.1.IntroductionMetal oxides are of great importance due to their use in several technological applications such as heterogeneous catalysis,photo-chemistry,sensors,and composite materials [1].Among all of them,titanium dioxide has become the prototype for surface science studies due to its ordered structure and its capability of conduction upon re-duction.One of the main areas of application of TiO 2is the field of ca-talysis,being nowadays one of the more widely used materials for catalytic supports.In order to better understand and improve its cat-alytic properties,a detailed knowledge of its electronic structure is of crucial importance.The rutile TiO 2(110)is the most stable face and,in this work,we shall focus on its electronic properties.This surface,upon sputtering and annealing under ultra-high vacuum (UHV)con-ditions,presents the well-known (1×1)structure corresponding to the bulk truncated structure,modi fied by simple but relevant surface relaxations [2].The stable (1×1)surface transforms into a long range ordered structure with (1×2)symmetry upon further reduction of the sub-strate [3].The quality of this new surface depends on the reduction level of the TiO 2crystal,on the annealing temperature achieved dur-ing sample preparation,and on the duration of the annealing.This surface reconstruction has been the subject of many investigations during the last years.Most of the scienti fic efforts have been devotedtowards the determination of the geometrical disposition of atoms.This has been a matter of controversy,as several atomic models have been proposed based on different experimental techniques and theoretical calculations [4–9].In a previous work carried out by our group,the (1×2)structure was elucidated from density functional theory (DFT)calculations and quantitative low-energy electron diffraction experiments [LEED-I(V)][10,11].Similar to Onishi's proposal,a Ti 2O 3stoichiometry on the sur-face was favored,although some structural differences between these two models were reported.Surprisingly,not many investigations have focused on the electronic structure of the (1×2)surface reconstruction.One signi ficant issue in the study of TiO 2is the presence of defects of different nature,which are typical of this kind of substrates.Its importance arises from the fact that the presence of these defects,hy-droxyl impurities,oxygen atom vacancies and interstitials Ti atoms,confer unusual properties to this material.The local character of these defects makes near-field scanning probe microscopy a crucial technique for their study,although its assignation is not always clear and straightforward [12–18],not only regarding the surface to-pography but also from the electronic point of view.Depending on the amount of defects,some can be also detectable by spectroscopic techniques.The oxidation state of titanium cations in stoichiometric (110)TiO 2corresponds nominally to Ti 4+.However,an important contribution of defects will be originated when the surface is reduced by annealing and/or ion bombardment.The presence of these defects,not only mainly oxygen vacancies but also,in a lower amount,inter-stitials Ti 3+atoms,on the TiO 2(110)surface will lead to an excess ofSurface Science 608(2013)92–96⁎Corresponding author.Tel.:+34913349081;fax:+34913720623.E-mail address:m flopez@icmm.csic.es (M.F.López).0039-6028/$–see front matter ©2012Elsevier B.V.All rights reserved./10.1016/j.susc.2012.09.019Contents lists available at SciVerse ScienceDirectSurface Sciencej o u r na l h o me p a g e :ww w.e l s e v i e r.c o m /l o c a t e /s u s celectrons at these specific sites.This residual charge is expected to be transferred to the Ti atoms located close to defects[19–21].Consequently,the trapped electron will partially populate the Ti3d orbitals and will change the oxidation state of the adjacent Ti cations from4+to3+.For this reason,when the defects contribu-tion is high,a new electronic state appears in the gap region below EF. This state is referred in ultraviolet photoemission spectra as band-gap or defects-related state and it has been the subject of many spec-troscopic studies[22,23].Since the TiO2(110)-(1×2)surface recon-struction is obtained from the(1×1)surface by annealing at high temperature,a significant amount of defects are originated in this process.Thus,a clear enhancement of the Ti3+band-gap state is expected for the(1×2)reconstruction[24].Additionally,the presence of surface Ti2O3rows where the Ti cations have a nominal 3+oxidation state will contribute to enhance the emission at the band-gap state.In this paper,the valence band electronic structure of the rutile TiO2(110)-(1×2)surface is investigated by angular resolved ultra-violet photoemission spectroscopy(ARUPS).Special effort has been made to understand the origin of the band-gap state that appears at a binding energy(BE)of approximately0.9eV.We will show that for the(1×2)reconstruction this peak presents a double contribution, one associated to the Ti3+in the Ti2O3rows of the(1×2)reconstruc-tion,and a different one related to the defective Ti3+atoms present throughout the crystal bulk.We also report the presence of a disper-sive band at a BE of about7eV and k//=0.35Å−1.2.Material and methodsExperiments have been carried out in two different ultra-high vacu-um(UHV)chambers,both of them with a base pressure better than 1·10−10mbar.In both cases,a commercial rutile TiO2(110)sample (Mateck)was prepared through repeated cycles of sputtering and annealing at1150K until a sharp(1×1)or(1×2)LEED pattern was obtained.The(1×1)surface is characteristic of a stoichiometric sample or a poorly reduced bulk,while the(1×2)reconstruction is typical of heavily reduced substrates.For the UPS band-gap peak study,three dif-ferent substrates were considered:low,medium and heavily reduced. The criteria used to discern among these three cases have been the color of the sample and the surface structure.In this way,for example, low reduced sample presents a light blue color and a(1×1)surface structure(as observed by STM and LEED).Medium reduced sample is dark blue but still with a(1×1)surface structure.Finally,heavily re-duced sample is almost black and presents a(1×2)surface termination. In all cases the same sample was used,and the degree of reduction was increased by controlling the annealing temperature and the cycle dura-tion.ARUPS measurements were performed using monochromatized He-I radiation from a He discharge lamp in combination with a VG EscaLab Mk II photoelectron spectrometer(20meV resolution),and a sample goniometer for full hemispherical Angular Resolved Photoemis-sion Spectroscopy(ARPES)[25].The angular acceptance and resolution is1°full-cone.Therefore,this corresponds to an approximate kII inte-gration of the Brillouin zone of less than0.04Å−1.Measurements of the band-gap state were done at the UHV chamber located at Centro de Astrobiología(CSIC-INTA),equipped with a hemispherical electron analyzer and a He-I lamp.To perform the ultraviolet photoemission spectroscopy(UPS)analysis the spectra werefitted to a least squares combination of Gaussian components.The background selected for thefitting procedure of the UPS spectra was a linear one as it is the typ-ical used for inelastic backgrounds without a stepwise change in inten-sity,as it was our case.All spectra were recorded at room temperature.The(1×2)reconstructed Ti2O3surface structure was determined from DFT and dynamical LEED in a previous work[10],and the surface model in the present paper has been constructed accordingly.The (1×2)supercell lattice dimensions are a=13.22Å,b=2.99Å,and c=3a,containing a slab of70atoms mirror-symmetric about its middle plane,exposing the Ti2O3reconstruction at both sides(see supplementary information).This ensures that the electronic struc-ture features come only from the bulk and the(1×2)reconstructed surface.The TiO2bulk unit cell dimensions are a=b=4.68Åand c=2.99Å.The plane wave basis has been constructed with a cut-off energy of400eV and a Monkhorst-Pack k-point mesh of7×13×1 (4×4×7for bulk)[26].Energy was converged up to0.01meV/ion and the Fermi level to0.001meV/ion.The supercell height,c,is such that the solid occupies approximately one half of the supercell, which we have shown to be enough to avoid interactions between consecutive slabs.The slab thickness is such that Mulliken charges of atoms in the central Ti–O layer are in good agreement with those of the bulk.The outmost19atoms of both sides of the slab were allowed to relax further with tolerances of0.05eV/Åin the force per atom and 0.001Åin the displacement.Thefinal atomic coordinates differed from those of the previous work[10]by no more than0.04Å.Actual calculations have been performed with the CASTEP code[29].3.Results and discussionFig.1(a)shows a schematic representation of the atomic arrange-ment corresponding to the rutile TiO2(110)-(1×2)surface recon-struction,as derived from previous LEED I(V)and DFT calculations [10].The most protruding features on this surface are the Ti2O3 rows,which extend along the[001]rge gray and small red circles correspond to Ti and O atoms,respectively.Ti3+atoms as-sociated to the surface reconstruction are marked by arrows.The red rectangle of Fig.1(b)represents the surface Brillouin zone(SBZ)for the TiO2(110)-(1×2)termination,with the two high-symmetry di-rections indicated.In this representation also the SBZ for the TiO2 (110)-(1×1)surface is exhibited as a black rectangle.As it can be ob-served,both the(1×1)and the(1×2)surfaces present a rectangular structure in the reciprocal space.Fig.2(a)and(b)exhibits bidimensional representations of the experimental ARUPS spectra corresponding to the rutile TiO2(110)-(1×2)valence band as a function of the momentum parallel compo-nent k II along[001]and[1–10]directions,respectively.In both graphs,the high symmetry points of the SBZ as well as the Fermi sur-face edge are indicated.In the images,the darkest features corre-spond to more intense photoemission peaks while the brightest ones represent the less intense emissions.Along the[001]direction, i.e.the direction of the Ti2O3rows,a convex dispersive band located at a binding energy of about7eV and centered at0.35Å−1can be ob-served.On the other hand,no dispersion is observed along the[1–10] direction,i.e.perpendicular to the reconstruction rows.Previous re-sults on TiO2(110)-(1×1)showed weak dispersion of the states cor-responding to the valence band[27].Fig.2(c)and(d)shows the bidimensional representations of the experimental band-gap state ARUPS spectra along the two high sym-metry directions,[001]and[1–10],respectively.The data indicate that no dispersion can be distinguished by ARUPS.In particular,from Fig.2(c),we conclude there is no significative experimental dispersion of the band-gap state of the(1×2)surface along the direction of the Ti2O3surface wires.This result contrasts with the theoretical pre-diction derived from DFT calculations about the metallic character of the Ti2O3chains along the[001]direction[10].This discrepancy has been associated to the tendency of the GGA functional[30]to overestimate the delocalization of states that may be otherwise local-ized by different factors,like correlation effects and the quasi-1D char-acter of states running along the reconstruction chains.Indeed,the use of GGA+U as an alternative exchange and correlation functional fa-vors the opening of a gap along the[001]direction and results in a dis-persive state in the band gap,localized at the subsurface Ti atoms in the trenches between the Ti2O3chains[31,32].Fig.3shows the com-puted valence band electronic structure for a slab(left)and the corre-sponding projection of bulk states along the GΓ–Z direction(right).93C.Sánchez-Sánchez et al./Surface Science608(2013)92–96Blue dots label states with more than an 80%contribution from atoms of the Ti 2O 3chains,while green dots represent the same for atoms lo-cated on the TiO 2tri-layer closest to the surface.As it is well known,DFT underestimates the band gap because correlation effects are only taken into account in an approximate way (we obtain for bulk TiO 2a band gap of 2eV).Furthermore,the Hohenberg –Kohn theorem applies strictly speaking only to the ground state,and excited states,e.g.in the conduction band,are only covered in an approximate,perturbative way.Finally,the ARUPS technique only provides infor-mation about the valence band.Therefore,we only attempt to com-pare the experimental and theoretical valence bands.In the right hand side panel of Fig.3we show the bands along the G –Z direction from a bulk only calculation (i.e.from the 1×1×1bulk unit cell for TiO 2,as described above).We compare the bulk states from this calcu-lation with the experimental ones in Fig.2a.It is interesting to notice that these states are not affected by the low-dimensional comments made above for the Ti 2O 3chains,and are therefore properly described by a GGA functional.This point is double-checked by performing LDA+U calculations (U=4.5eV);the main effect is a rigid shift of bands by about half an eV to higher binding energies,but no notice-able distortions.The main observed features appear above and below 7eV,similarly as can be seen in the experiment (panel (a)in Fig.2).On the other hand,the states related to the surface (green tri-angles and circles)show a remarkable lack of dispersion very near 7eV.The experimental resolution does not allow seeing this flat surface-like band.For the experimental band structure,a dispersive band similar to the theoretical one happens above and below 7eV,as seen by comparing with Fig.2(panel a).Finally,we notice in Fig.2(c)and (d),that the data exhibit inten-sity maxima at approximately 0.8Å−1(along [001])and 0.15Å−1(along [1–10]).This can be explained by final-state scattering effects,i.e.as an ultraviolet photoelectron diffraction effect (UPD)[28].In order to extract additional information on the band-gap states,UPS measurements for three different reduction levels of the sub-strate have been performed.As it has been mentioned above,it is known that the band-gap state is related to Ti 3+states and it appears after bulk reduction.However,in the case of the (1×2)surface recon-struction,there are also Ti 3+states associated to the Ti 2O 3rows oftheFig.1.a)Schematic representation of the atomic arrangement corresponding to the (1×2)TiO 2(110)surface reconstruction as inferred from DFT calculations (only the last layers are shown).Large (blue)and small circles (red)correspond to Ti and O atoms,respectively.b)Surface Brillouin zone for the TiO 2(110)-(1×2)surface reconstruction marked in red with the two high-symmetry directions [001]and [1–10].The black rectangle corresponds to the extended SBZ for TiO 2(110)-(1×1)surface.Fig.2.Bidimensional representation of the ARUPS spectra of the TiO 2(110)-(1×2)surface as a function of k II along (a)[001]and (b)[1–10]directions for the valence band region,and (c)and (d)for the band-gap states region along [001]and [1–10],respectively.94 C.Sánchez-Sánchez et al./Surface Science 608(2013)92–96surface reconstruction.It is generally accepted that the exact binding energy of an electron depends not only on the level from which pho-toemission originates but also on the oxidation state of the atom and the local chemical environment.Thus,modi fications on the local chemical environment introduce small shifts in the peak position,which are known as chemical shifts.In the present case,two different chemical environments for the Ti 3+ions are present,one at the bulk and another at the Ti 2O 3surface rows.For this reason,these two dif-ferent chemical settings should give rise to different photoemission signals separated by a certain binding energy,making possible their distinction by means of UPS.Fig.4exhibits UPS spectra of the band-gap state region for both a poorly reduced and a highly reduced substrate with a (1×1)surface symmetry,and for a heavily reduced substrate with (1×2)symmetry at the surface.In all spectra,the red solid line through the black data circles represents the result of the least-squares fit,with the blue dashed-dotted component giving the signal corresponding to the low binding energy (BE)peak and the green solid curve showing the high BE emission.The yellow dashed line represents the linear background.As it can be observed in Fig.4(a),for a low reduction level associated to a TiO 2(110)-(1×1)surface,just one peak is needed in order to properly fit the ex-perimental data (chi-square test is 0.079).The binding energy for this peak is 0.78eV with a FWHM value of 0.62eV.If the reduction level isincreased (but still preserving a (1×1)surface)an enhancement of the band-gap state is observed,as it is evident from Fig.4(b).Again,only one peak is necessary to fit the experimental data,being this peak almost identical to the previous one,except for an increase in its intensity.In this case,its binding energy is 0.77eV and the FWHM is 0.63eV (chi-square 0.047).On the other hand,upon further reduction of the substrate a phase transition takes place at the surface,where a new reconstruction appears as it is evidenced from LEED and STM measurements.This new reconstruction,characterized by a Ti 2O 3surface stoichiometry,presents a wider and asymmetric band-gap state peak,which makes necessary the addition of a second com-ponent in the fit.Indeed,for the heavily reduced substrate with a (1×2)surface termination,two contributions have been required to properly fit the band-gap state emission,one located at the same posi-tion as in the previous cases,and another one located at a slightly higher BE (Fig.4(c)).The two curves used in these fits are located at 0.75eV and 1.18eV BE showing a FWHM of 0.67eV and 0.51eV,re-spectively (chi-square 0.077).Attempts to fit this spectrum with a sin-gle component have been unsuccessful due to the asymmetry of the experimental data (best chi-square obtained has been 0.43).This new state appearing together with the (1×2)surface reconstruction and not observed for any of the (1×1)symmetry cases,can only be associated to the Ti 3+states of the Ti 2O 3rows.As it would be expected from the existence of two different chemical environments associat-ed with the Ti 3+states,the UPS experiments clearly indicate the pres-ence of two different contributions in the band-gap state peak:one component is related to the bulk defects typical of the (1×1)structureFig.3.Ab-initio DFT electronic structure calculation along the [001]direction (G –Z).(i)Left panel:band structure of the slab supercell (with the Ti 2O 31×2reconstructed chains).(ii)Right panel:band structure of the 1×1×1bulk TiO 2unit cell projected along the G –Z direction.Red regions in the graph correspond to bulk states with a large weight in the projection along the G –Z direction.Blue and violet correspond to states with small weight and black regions are either gaps or zones with a very small number of states.Green triangles label electronic states that have more than 80%con-tribution from atoms in the Ti 2O 3group,as obtained in the left panel.Green circles label the same corresponding to atoms of the topmost trilayer (TiO 2).Green ellipse marks the dispersive band similar to the experimentalone.Fig.4.UPS spectra of the band-gap states region for:(a)poorly reduced substrate with a (1×1)surface,(b)highly reduced substrate with (1×1)symmetry at the surface,and (c)heavily reduced substrate with a (1×2)symmetry at the surface.95C.Sánchez-Sánchez et al./Surface Science 608(2013)92–96(low BE peak),and the other is due to the Ti atoms present at the sur-face reconstruction in the(1×2)surface(high BE peak).The presence of this new surface termination in the(1×2)TiO2(110)sample sur-face,i.e.the Ti2O3surface rows,is the origin of the sudden appearance of the latter component.It is important to note the increase in the in-tensity of the peak at0.75eV for this sample in comparison to the less reduced ones.The reason of this effect is the increasing amount of Ti3+states not only at the Ti2O3surface rows(peak at1.18eV BE) but also at the bulk(peak at0.75eV BE)when the sample has been reduced.It is worthy to comment on the different contexts for Ti3+and Ti4+ atoms in the(1×2)TiO2(110)sample.The geometrical disposition of the Ti3+atoms at the surface within the Ti2O3chains,and therefore its chemical environment,is completely different to that of the of Ti3+ atoms at the bulk near the defect sites.However,in the case of the Ti4+atoms,the geometrical arrangement in both cases,bulk and surface,is the same.For this reason,no shift in the binding energies should be expected for the surface Ti4+atoms.The possibility of discerning the two components for the band-gap states peak leads to some important consequences.For example,this method based onfitting the bad-gap states region can be used to con-firm the existence and quality level of the(1×2)surface reconstruc-tion on TiO2(110).It could be also used to determine the nature of the interaction of a molecular adsorbate on the(1×2)reconstruction by analyzing the evolution of the relative intensity of the different com-ponents of the band-gap state peak upon deposition.4.ConclusionsIn this paper,the electronic structure of the rutile TiO2(110)-(1×2)surface reconstruction has been characterized,paying special attention to Ti3+related band-gap state.By means of ARUPS,the presence of a downward dispersive band along the rutile TiO2(110)-(1×2)[001]surface direction is determined.This band,with its max-imum at0.35Å−1,appears7eV below the Fermi edge.No dispersion of the band-gap states is observed by ARUPS.Regarding the band-gap states emission,the double nature of this peak has been identified. One component is associated to the Ti3+cations next to the bulk de-fects and the other,observed for the case of the TiO2(110)-(1×2)sur-face reconstruction,to the Ti3+cations in the Ti2O3chains present at the surface.AcknowledgmentsThis work has been supported by the Spanish CYCIT(MAT2011-26534)and the Ministry of Science and Innovation(CSD2007-41 NANOSELECT).C.S.S.gratefully acknowledges Ministerio de Educación for thefinancial support inside the“FPU programme”under the AP2005-0433grant.M.G.G.and P.A.are grateful for the support by the Fonds National Suisse pour la Recherche Scientifique through Div. II and the Swiss National Center of Competence in Research MaNEP. M.B.-R.acknowledgesfinancial support from the Gipuzkoako Foru Aldundia and the European Union7th Framework Programme(FP7/ 2007–2013)under grant agreement no.FP7-PEOPLE-2010-RG276921. Appendix A.Supplementary dataSupplementary data to this article can be found online at http:// /10.1016/j.susc.2012.09.019.References[1]U.Diebold,Surf.Sci.Rep.48(2003)53.[2]W.Busayaporn,X.Torrelles,A.Wander,S.Tomić,A.Ernst,B.Montanari,N.M.Harrison,O.Bikondoa,I.Joumard,J.Zegenhagen,G.Cabailh,G.Thornton,R.Lindsay,Phys.Rev.B81(2010)153404(and references therein).[3]J.Abad,C.Rogero,J.Méndez,M.F.López,J.A.Martín-Gago,E.Román,Surf.Sci.600(2006)2696.[4]P.J.Møller,M.C.Wu,Surf.Sci.224(1989)265.[5]H.Onishi,K.I.Fukui,Y.Iwasawa,Bull.Chem.Soc.Jpn.68(1995)2447.[6] C.L.Pang,S.A.Haycock,H.Raza,P.W.Murray,G.Thornton,O.Gülseren,R.James,D.W.Bullet,Phys.Rev.B58(1998)1586.[7]R.A.Bennett,P.Stone,N.J.Price,M.Bowker,Phys.Rev.Lett.82(1999)3831.[8]K.T.Park,M.H.Pan,V.Meunier,E.W.Plummer,Phys.Rev.Lett.96(2006)226105.[9]N.Shibata,A.Goto,S.-Y.Choi,T.Mizoguchi,S.D.Findlay,T.Yamamoto,Y.Ikuhara,Science322(2008)570.[10]M.Blanco-Rey,J.Abad,C.Rogero,J.Mendez,M.F.Lopez,J.A.Martin-Gago,P.L.deAndres,Phys.Rev.Lett.96(2006)055502.[11]M.Blanco-Rey,J.Abad, C.Rogero,J.Méndez,M.F.López, E.Román,J.A.Martín-Gago,P.L.de Andrés,Phys.Rev.B75(2007)081402(R).[12]uritsen,A.S.Foster,G.H.Olesen,M.C.Christensen,A.Kühnle,S.Helveg,J.R.Rostrup-Nielsen,B.S.Clausen,M.Reichling,F.Besenbacher,Nanotechnology 17(2006)3436.[13]X.Cui,Z.Wang,S.Tan,B.Wang,J.Yang,J.G.Hou,J.Phys.Chem.C113(2009)13204.[14] C.L.Pang,O.Bikondoa,D.S.Humphrey,A.C.Papageorgiou,G.Cabailh,R.Ithnin,Q.Chen,C.A.Muryn,H.Onishi,G.Thornton,Nanotechnology17(2006)5397. [15] C.Sánchez-Sánchez, C.González,P.Jelinek,J.Méndez,P.L.de Andrés,J.A.Martín-Gago,M.F.López,Nanotechnology21(2010)405702.[16] A.Yurtsever,Y.Sugimoto,M.Abe,S.Morita,Nanotechnology21(2010)165702.[17]R.Bechstein,C.González,J.Schütte,P.Jelínek,R.Pérez,A.Kühnle,Nanotechnology20(2009)505703.[18]H.P.Pinto,G.H.Enevoldsen,F.Besenbacher,uritsen,A.S.Foster,Nanotech-nology20(2009)264020.[19]P.Krüger,S.Bourgeois,B.Domenichini,H.Magnan,D.Chandesris,P.Le Fèvre,A.M.Flank,J.Jupille,L.Floreano,A.Cossaro,A.Verdini,A.Morgante,Phys.Rev.Lett.100(2008)055501.[20]M.Nolan,S.D.Elliott,J.S.Mulley,R.A.Bennett,M.Basham,P.Mulheran,Phys.Rev.B77(2008)235424.[21]M.V.Ganduglia-Pirovano,A.Hofmann,J.Sauer,Surf.Sci.Rep.62(2007)219.[22]R.Patel,Q.Guo,I.Coks,E.M.Williams,E.Roman,J.L.de Segovia,J.Vac.Sci.Technol.A15(1997)2553.[23]Z.Zhang,S.Jeng,V.E.Henrich,Phys.Rev.B43(1991)12004.[24]J.Abad,C.Rogero,J.Méndez,M.F.López,J.A.Martín-Gago,E.Román,Appl.Surf.Sci.234(2004)497.[25]T.Pillo,L.Patthey, E.Boschung,J.Hayoz,P.Aebi,L.Schlapbach,J.ElectronSpectrosc.Relat.Phenom.97(1998)243.[26]H.J.Monkhorst,J.D.Pack,Phys.Rev.B13(1976)5188.[27]S.Fischer,J.A.Martín-Gago,E.Román,K.D.Schierbaum,J.L.de Segovia,J.ElectronSpectrosc.Relat.Phenom.83(1997)217.[28]J.Osterwalder,T.Greber,P.Aebi,R.Fasel,L.Schlapbach,Phys.Rev.B53(1996)10209.[29]S.Clark,M.Segall,C.Pickard,P.Hasnip,M.Probert,K.Refson,M.C.Payne,Z.Kristallogr.220(2005)570().[30]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865.[31]V.Celik,H.Unal,E.Mete,S.Ellialtioglu,Phys.Rev.B82(2010)205113.[32]H.Unal,E.Mete,S.Ellialtioglu,Phys.Rev.B84(2011)115407.96 C.Sánchez-Sánchez et al./Surface Science608(2013)92–96。