高三数学训练题(三)平面向量、立体几何(2)

合集下载

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.在平面直角坐标中,的三个顶点A、B、C,下列命题正确的个数是()(1)平面内点G满足,则G是的重心;(2)平面内点M满足,点M是的内心;(3)平面内点P满足,则点P在边BC的垂线上;A.0B.1C.2D.3【答案】B【解析】对(2),M为的外心,故(2)错.对(3),,所以点P在的平分线上,故(3)错.易得(1)正确,故选B.【考点】三角形与向量.2.已知向量,,若与垂直,则实数 ( )A.B.C.D.【答案】A【解析】由题意,因为与垂直,则,解得.【考点】平面向量垂直的充要条件.3.已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的最大值为()A.-1B.C.+1D.+2【答案】C【解析】因为a,b是单位向量,且a·b=0,可令a=(1,0),b=(0,1),设向量c=(x,y),则c-a-b=(x,y)-(1,0)-(0,1)=(x-1,y-1),|c-a-b|=,又|c-a-b|=1,所以(x-1)2+(y-1)2=1,圆心A为(1,1),半径为1.如图,|c|的最大值表示原点到圆上动点的最大值,||==,|c|的最大值为+1.故选C.4.在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为()A.B.2C.5D.10【答案】C【解析】因为·=(1,2)·(-4,2)=1×(-4)+2×2=0,所以⊥,且||==,||==2,所以S四边形ABCD=||||=××2=5.故选C.5.设e1,e2为单位向量,且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.【答案】【解析】a在b方向上的射影为|a|cos〈a,b〉=.∵a·b=(e1+3e2)·2e1=2+6e1·e2=5.|b|=|2e1|=2.∴=.6.已知向量a,若向量与垂直,则的值为()A.B.7C.D.【答案】A【解析】由已知得,,又这两个向量垂直,所以,解得,所以正确答案为A.【考点】向量的运算与垂直关系7.已知平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=A.8B.6C.6D.8【答案】D【解析】=8,故选D.8.已知为内一点,若对任意,恒有则一定是A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【答案】A【解析】从几何图形考虑:的几何意义表示:在BC上任取一点E,可得=,所以,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A【考点】1.平面向量的减法的三角形法则的应用,2.平面几何中两点之间垂线段最短的应用,9.设点是线段BC的中点,点A在直线BC外,,..,则()A.2B.4C.6D.8【答案】A【解析】由,,如下图,则以,且,所以2,故选A.【考点】1.向量加法的运算法则.10.为平行四边形的一条对角线,.【答案】【解析】根据向量加法的平行四边形法则有,所以.【考点】向量的加法和减法.11.如图A是单位圆与轴的交点,点在单位圆上,,,四边形的面积为,当取得最大值时的值和最大值分别为( )A.,B.,1C.,D.,【答案】C【解析】根据可知四边形为平行四边形,于是,所以,当时,取得最大值.【考点】1.平面向量;2.三角恒等变换.12.已知是抛物线的焦点,过且斜率为的直线交于两点.设<,若,则λ的值为【答案】【解析】略13.在等腰直角三角形ABC中,D是斜边BC的中点,如果AB的长为2,则的值为【答案】4【解析】略14.(文)如图2, , 点在由射线, 线段及的延长线围成的区域内(不含边界)运动, 且,则的取值范围是__________;当时, 的取值范围是__________.【答案】,【解析】略15.已知过点的直线与两坐标轴的正半轴交于、两点,为坐标原点,若,则四边形周长的最小值等于A.B.C.D.【答案】C【解析】略16.设点是线段的中点,点在直线外,若,,则________【答案】2【解析】如图,向量、满足以、未变的平行四边形是正方形,则17.(本小题满分12分)将圆按向量平移得到,直线与相交于、两点,若在上存在点,使求直线的方程.【答案】或.【解析】解:由已知圆的方程为,按平移得到.(1分)∵∴.即. (5分)又,且,∴.∴. (7分)设,的中点为D.由,则,又.∴到的距离等于. (9分)即,∴.∴直线的方程为:或. (12分)18.设向量满足,则的最大值等于A.2B.C.D.1【答案】A【解析】19.在△ABC中,向量与满足,且,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】C【解析】略20.(本题满分12分)如图,是单位圆与轴正半轴的交点,点、在单位圆上,且,,,,四边形的面积为,(Ⅰ)求+(Ⅱ)求的最大值及此时的值;【答案】(1)(2)【解析】解:(1)∵,,,………………2分+=………………4分(2)由已知得:,………………5分∴,,………………7分又………………8分∴(………10分则的最大值为,此时……………12分21.(12分)已知向量a,b,函数a·b,且的图像上的点处的切线斜率为2求和的值;求函数的单调区间。

高三数学专项训练立体几何解答题二

高三数学专项训练立体几何解答题二

高三数学专项训练:立体几何解答题(二)1.如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2,6AB AC ==,点D 在线段1BB 上,且113BD BB =,11AC AC E =.(Ⅰ)求证:直线DE 与平面ABC 不平行;(Ⅱ)设平面1ADC 与平面ABC 所成的锐二面角为θ,若cos θ=,求1AA 的长; (Ⅲ)在(Ⅱ)的条件下,设平面1ADC 平面ABC l =,求直线l 与DE 所成的角的余弦值.2.三棱锥A BCD -中,E 是BC 的中点,,AB AD BD DC =⊥(I )求证:AE BD ⊥;(II ,且二面角A BD C --为60︒,求AD 与面BCD 所成角的正弦值。

3.如图,已知四棱锥E ABCD -的底面为菱形,且60ABC ∠=o , (I )求证:平面EAB ⊥平面ABCD ;(II )求二面角A EC D --的余弦值.4. 已知斜三棱柱ABC —A 1B 1C 1的底面是正三角形,侧面ABB 1A 1是菱形,且160A AB ∠=︒,M 是A 1B 1的中点,.MB AC ⊥(1)求证:MB ⊥平面ABC ; (2)求二面角A 1—BB1—C 的余弦值。

5.在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,)0(>==a aBC PA AB .(Ⅰ)当1a =时,求证:BD PC ⊥;(Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的余弦值.6.如图,直三棱柱111ABC A B C -中,AB AC ⊥,D E 、分别为11AA B C 、的中点,1DE BCC ⊥平面,二面角A B Q DCPA BD C --的大小为3π. (Ⅰ)证明://DE ABC 平面;(Ⅱ)求1B C 与平面BCD 所成的角的大小.7.如图,在矩形ABCD 中,点P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD ,点E 为PA 的中点。

天津市武清区高三数学 平面向量练习(3)

天津市武清区高三数学 平面向量练习(3)

平面向量练习(3)一.必做题1.[04高考] 若平面向量b 与向量)2,1(-=a 的夹角是o 180,且53||=b ,则=b ( )(A) )6,3(- (B) )6,3(- (C) )3,6(- (D) )3,6(-2.[08高考] 如图,在平行四边形ABCD 中,()()2,3,2,1-==BD AC , 则AD BA ⋅=u u u r u u u r .3.[06高考] 设向量a ρ与b ρ的夹角为θ,且)3,3(=a ρ,)1,1(2-=-a b ρρ,则sin θ=__________.4.[07高考] 如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD DC =u u u r u u u r · .5.[10高考]如图,在ABC V 中,AD AB ⊥,3BC BD =u u u r u u u r ,1AD =u u u r ,则DC AD ⋅u u u r u u u r .6.[12高考] 已知ABC ∆为等边三角形,AB=2,设点P ,Q 满足AB AP λ=,AC AQ )1(λ-=,R ∈λ,若149BQ CP ⋅=-u u u r u u u r ,则λ=7.【2012高考真题湖南理7】在△ABC 中,AB=2,AC=3,AB BC u u u r u u u r g = 1则BC =( )A B D CA.3B.7C.22D. 238.【2012高考真题新课标理13】已知向量,a b r r 夹角为45︒ ,且1,210a a b =-=r r r ;则_____b =r9.【2012高考真题浙江理15】在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅u u u r u u u r=________.二.选做题16.【2012高考真题北京理13】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ⋅的值为________,DC DE ⋅的最大值为______。

高考数学平面向量专题练习、参考答案

高考数学平面向量专题练习、参考答案

高考数学平面向量专题练习考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法。

3、掌握实数与向量的积,理解两个向量共线的充要条件。

4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。

6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。

1、已知向量b a 与不共线,且0||||≠=b a ,则下列结论中正确的是 A .向量b a b a -+与垂直 B .向量b a -与a 垂直C .向量b a +与a 垂直D .向量b a b a -+与共线2.已知在△ABC 中,OA OC OC OB OB OA ⋅=⋅=⋅,则O 为△ABC 的A .内心B .外心C .重心D .垂心3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC =,则AD 用b a ,表示为 。

4、已知21,e e 是两个不共线的向量,而→→→→→→+=-+=2121232)251(e e b e k e k a 与是两个共线向量,则实数k = .5、设→i 、→j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且→→+=j i OA 24,→→+=j i OB 43,则△OAB 的面积等于 :A .15B .10C .7.5D .56、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 ,将向量OC 按逆时针方向旋转90°得到向量OD ,则向量OD 的坐标是 . 7、已知)3,2(),1,(==AC k AB ,则下列k 值中能使△ABC 是直角三角形的值是A .23B .21-C .-5D .31-8、在锐角三角形ABC 中,已知ABC AC AB ∆==,1||,4||的面积为3,则=∠BAC ,AC AB ⋅的值为 .9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量AB 与CD 的位置关系是 A. 平行B. 垂直C. 相交但不垂直D. 无法判断10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围是:A .]4,0[π B .]125,4[ππ C .]125,12[ππ D .]2,125[ππ 11、若,4,,2||,3||π夹角为且b a b a ==则||b a +等于:A .5B .52C .21D .1712、已知→a =(6,2),→b =)21,4(-,直线l 过点A )1,3(-,且与向量→→+b a 2垂直,则直线l 的一般方程是 . 13、设]2,[,),()()(ππ--∈-+=R x x f x f x F 是函数)(x F 的单调递增区间,将)(x F 的图象按)0,(π=a 平移得到一个新的函数)(x G 的图象,则)(x G 的单调递减区间必是:A .]0,2[π-B .],2[ππC .]23,[ππ D .]2,23[ππ14、把函数3)2(log 2+-=x y 的图象按向量a 平移,得到函数1)1(log 2-+=x y 的图象,则a 为( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)15、如果把圆)1,(02:22-==-+m a y y x C 沿向量平移后得到圆C ′,且C ′与直线043=-y x 相切,则m 的值为 .16、已知P 是抛物线122-=x y 上的动点,定点A (0,-1),若点M 分PA 所成的比为2,则点M 的轨迹方程是_____,它的焦点坐标是_________.17、若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,则3r s +的值为:A. 165B. 125C. 85D. 4518、若向量),sin ,(cos ),sin ,(cos ββb a ==αα则b a与一定满足:A.b a 与的夹角等于βα-B.)()(b a b a -⊥+C. b a //D.b a ⊥19、已知A (3,0),B (0,3),C (cos α,sin α).(1)若BC AC ⋅=-1,求sin2α的值; (2)若13||=+OC OA ,且α∈(0,π),求OB 与OC 的夹角.20、已知O 为坐标原点,a R a R x a x OB x OA ,,)(2sin 3,1(),1,cos 2(2∈∈+==是常数),若.OB OA y ⋅=(Ⅰ)求y 关于x 的函数解析式);(x f (Ⅱ)若]2,0[π∈x 时,)(x f 的最大值为2,求a 的值并指出)(x f 的单调区间.21、已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||AC AB AD AC +== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 22、如图,已知△OFQ 的面积为S ,且 1=⋅FQ OF . (1)若21<S <2,求向量OF 与FQ 的夹角θ的取值范围; (2)设|OF | = c (c ≥2),S =c 43,若以O 为中心,F 为焦点的椭圆经过点Q ,当|OQ |取得最小值时,求此椭圆的方程.参考答案1、A ;2、D ;3、→→+b a 4341;4、231或;5、D ;6、)2,1(-,)1,2(--;7、D ;8、3π, 2;9、A ;10、C ;11、D ;12、0932=--y x ;13、D ;14、D ;15、35±;16、)0(162≠-=x x y ,)21,0(;17、C ;18、B19(1)解:(cos 3,sin )AC αα=-,(cos ,sin 3)BC αα=-∴BC AC ⋅=-1⇒cos (cos 3)sin (sin 3)1αααα-+-=- ∴2cos sin 3αα+=,∴224cos sin 2sin cos 9αααα++= ∴5sin 29α=- (2)∵(3cos ,sin )OA OC αα+=+=化简得1cos 2α=, ∵(0,)απ∈,∴sin 2α=∴3sin cos ,sin 3||||OB OC OB OC OB OC αα⋅<>====2 ∴OB 与OC 的夹角为6π20.(1),2sin 3cos 22a x x OB OA y ++=⋅=).](32,6[:).](6,3[:)(.1,23,3)(,]6,0[6,262.1)62sin(2)()2(.12sin 32cos )(Z k k kx Z k k kx x f a a a x f x x a x x f a x x x f ∈+-∈+--==++∈==+∴+++=+++=∴πππππππππππ单调减区间是的单调增区间是可解得函数解得由取最大值时解得 21.解:(I )设C 、D 点的坐标分别为C (),00y x ,D ),(y x ,则00,2(y x AC +=),)0,4(=AB则),6(00y x AC AB +=+,故)2,32()(2100y x AC AB AD +=+=又解得故⎪⎪⎩⎪⎪⎨⎧=+=++=.2,232),,2(00y y x x y x AD ⎩⎨⎧=-=.2,2200y y x x 代入2)2(||2020=++=y x AC 得122=+y x ,即为所求点D 的轨迹方程.(II )易知直线l 与x 轴不垂直,设直线l 的方程为)2(+=x k y ①.又设椭圆方程为)4(1422222>=-+a a y a x ②. 因为直线l 与圆122=+y x 相切.故11|2|2=+k k ,解得.312=k将①代入②整理得,0444)4(2422222222=+-++-+a a k a x k a x a k a , 而313=k ,即0443)3(24222=+-+-a a x a x a ,设M (),11y x ,N (),22y x ,则32221--=+a a x x ,由题意有)3(5423222>⨯=-a a a ,求得82=a .经检验,此时.0>∆ 故所求的椭圆方程为.14822=+y x 22.解:(1)由已知,得.2tan 1cos ||||)sin(||||21S FQ OF SFQ OF =⇒⎪⎩⎪⎨⎧==-⋅θθθπ ∵21<S <2,∴2<tan θ<4,则4π<θ<arctan4. (2)以O 为原点,OF 所在直线为x 轴建立直角坐标系,设椭圆方程为12222=+by a x (a >0,b >0),Q 的坐标为(x 1,y 1),则FQ =(x 1-c ,y 1),∵△OFQ 的面积为,43||211c y OF =⋅∴y 1 =23又由OF ·FQ =(c ,0)·⎪⎭⎫ ⎝⎛-23 ,1c x =(x 1-c )c = 1,得x 1 =491|| ,122121+⎪⎭⎫ ⎝⎛+=+=+c c y x OQ c c (c ≥2).当且仅当c = 2时|OQ |最小,此时Q 的坐标为⎪⎭⎫⎝⎛23 ,25,由此可得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-=+6104149425222222b a b a b a , 故椭圆方程为161022=+y x .。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

高三数学向量专项练习题及答案

高三数学向量专项练习题及答案

高三数学向量专项练习题及答案一、选择题1. 设向量a = (2, 3)、b = (4, -1),则a + b的坐标表示为:A. (6, 2)B. (2, 2)C. (6, -2)D. (2, -2)答案:A. (6, 2)2. 设向量a = (3, 2),则2a的坐标表示为:A. (3, 2)B. (6, 4)C. (2, 3)D. (6, 2)答案:B. (6, 4)3. 已知向量a = (5, -3)和b = (1, 2),则向量a与向量b的数量积为:A. 5B. 1C. -7D. -1答案:C. -74. 向量a, b的夹角θ满足sinθ = 1/2,则θ的大小为:A. 30°B. 45°C. 60°D. 90°答案:C. 60°5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的面积为:A. 4B. 6C. 7D. 8答案:B. 6二、填空题1. 设向量a = (2, 5),则|a|的值为________。

答案:sqrt(29)2. 设向量a与向量b的夹角θ满足cosθ = 1/√2,则θ的大小为________。

答案:45°3. 平面直角坐标系中,若点A(3, 4)到点B(-2, -3)的距离为√k,则k= ________。

答案:504. 已知向量a = (2, 3),向量b = (4, -1),则向量a - b = (_______,_______)。

答案:(-2, 4)5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的周长为________。

答案:约9.21三、解答题1. 已知向量a = (2, 3),向量b = (4, -1),求向量a与向量b的数量积。

解答:向量a与向量b的数量积为:a·b = 2×4 + 3×(-1) = 8 - 3 = 5。

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

高考数学压轴专题莆田备战高考《平面向量》技巧及练习题附答案

高考数学压轴专题莆田备战高考《平面向量》技巧及练习题附答案

【高中数学】数学高考《平面向量》复习资料(2)一、选择题1.在ABC ∆中,已知3AB =,23AC =,点D 为BC 的三等分点(靠近C),则AD BC ⋅u u u v u u u v的取值范围为( )A .()3,5B .()5,53C .()5,9D .()5,7【答案】C 【解析】 【分析】利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r,的数量积,再利用余弦函数求最值,得解. 【详解】如图,()()()13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()11213333AC AB AC AC AB AC AB AC AB u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭22211333AC AB AB AC =--⋅u u ur u u u r u u u r u u u r =8﹣113233cos BAC -⨯⨯∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.2.如图,在ABC ∆中,12AN NC =u u u r u u u r,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B 【解析】 【分析】根据题意,以AB u u u r ,AC u u ur 为基底表示出AP u u u r 即可得到结论. 【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r,所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r, 又15AP mAB AC =+u u u r u u u r u u u r ,所以,1135λ-=,且m λ=,解得25m λ==. 故选:B. 【点睛】本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.3.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.4.已知,a r b r 是平面向量,满足||4a =r,||1b ≤r 且|3|2b a -≤rr,则cos ,a b 〈〉rr 的最小值是( ) A .1116B .78C .158D .31516【答案】B 【解析】 【分析】设OA a =u u u r r ,3OB b =u u u r r,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】设OA a =u u u r r ,3OB b =u u u r r,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,由|3|2b a -≤r r,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示则B 只能在阴影部分区域,要cos ,a b 〈〉rr 最小,则,a b <>r r 应最大,此时()222222min4327cos ,cos 22438OA OB AB a b BOA OA OB +-+-〈〉=∠===⋅⨯⨯rr .故选:B. 【点睛】本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.5.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r , P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r (λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得: ()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.6.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r( )A .2133BA AC +u uu r u u u rB .2133BA AC -u uu r u u u rC .1233BA AC +u uu r u u u rD .4233BA AC +u uu r u u u r【答案】A 【解析】 【分析】连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论.【详解】解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,则()()221121332333OD BO BE BA BC BA BA AC BA AC ===⨯+=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r . 故选:A.【点睛】本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题.7.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,则向量AF u u u r在向量BC uuu r 方向上的投影为( )A .2B .32C .1D .3【答案】A 【解析】 【分析】由1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r ,然后套用公式向量AF u u u r 在向量BC uuu r 方向上的投影||AF BCBC ⋅=u u u r u u u ru u u r ,即可得到本题答案. 【详解】因为点E 为BC 的中点,所以1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r,又因为EF BC ⊥,所以()22111()()()12222AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||AF BCBC ⋅=u u u r u u u ru u u r . 故选:A. 【点睛】本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.8.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v( )A .43AD BE +u u uv u u u vB .53AD BE +u u uv u u u vC .4132AD BE +u u uv u u u vD .5132AD BE +u u uv u u u v【答案】B 【解析】 【分析】利用向量的加减运算求解即可 【详解】 据题意,2533AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r.故选B . 【点睛】本题考查向量加法、减法以及向量的数乘运算,是基础题9.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) A .752B 73-C 53-D .312【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得2212302x y x y +-+=,所以原问题等价于,圆2212302x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为12⎛ ⎝⎭,,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.10.已知平面向量a v ,b v 的夹角为3π,且||2a =v ,||1b =v ,则2a b -=v v ( )A .4B .2C .1D .16【答案】B 【解析】 【分析】根据向量的数量积和向量的模的运算,即可求解. 【详解】由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r ,所以|2|2a b -=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.11.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuur =2,则△ABC 的面积为( )A B .32C .D .【答案】C 【解析】 【分析】利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积. 【详解】在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,可得cosB 222123a c b ac +-==,则sinB =BA u u u r ⋅BC =u u ur 2,可得cacosB =2,则ac =6,∴△ABC 的面积为:116223acsinB =⨯⨯=. 故选C . 【点睛】本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.12.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r,利用数量积的分配律即得解. 【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r, ()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C 【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.13.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,则当,1[]2t ∈-时,a tb-r r的最大值为( )A BC .2D 【答案】D 【解析】 【分析】根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用a tb -==r r 求解.【详解】因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,所以1a =r ,1b =r ,0a b ⋅=r r ,所以a tb -==r r当[]2,1t ∈-时,maxa tb-=r r故选:D 【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.14.已知向量()()75751515a b ︒︒︒︒==r r cos ,sin ,cos ,sin ,则a b -r r 的值为A .12B .1C .2D .3【答案】B 【解析】 【分析】 【详解】因为11,1,cos75cos15sin 75sin15cos602a b a b ==⋅=︒︒+︒︒=︒=r r r r ,所以||1a b -===r r ,故选B.点睛:在向量问题中,注意利用22||a a =r ,涉及向量模的计算基本考虑使用此公式,结合数量积的运算法则即可求出.15.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D16.已知向量(sin ,cos )a αα=r,(1,2)b =r , 则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断.【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r 取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确.D 选项,||a b -==r r 的最大值为1=,选项D 正确.故选:B .【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.17.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.18.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r 的最大值为( )A .714-B .24-C .514-D .30-【答案】A【解析】【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =Q()222001x x +=-解得01x =-(E ∴-(C Q ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(),353M x x -+(),353AM x x ∴=-+u u u u r()1,343E x M x -=--u u u r()()()3433531AM ME x x x x --∴⋅=--++u u u u r u u u r242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=-u u u u r u u u r故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.19.在四边形ABCD 中,若12DC AB =u u u r uu u r ,且|AD u u u r |=|BC uuu r |,则这个四边形是()A .平行四边形B .矩形C .等腰梯形D .菱形【答案】C【解析】由12DC AB =u u u r u u u r 知DC ∥AB ,且|DC|=12|AB|,因此四边形ABCD 是梯形.又因为|AD u u u r |=|BC uuu r |,所以四边形ABCD 是等腰梯形.选C20.已知向量(),1a x =-r , (b =r ,若a b ⊥r r ,则a =r ( )AB C .2 D .4 【答案】C【解析】由a b r r ⊥,(),1a x =-r , (b r =,可得:x 0x ,==,即)1a =-r所以2a ==r 故选C。

2018年高三数学(理)5.平面向量Word版含解析

2018年高三数学(理)5.平面向量Word版含解析

PA PB 的最大值为 1,选 A.
考点: 1、向量的坐标运算; 2、向量的数量积.
【易错点晴】本题考查的是向量的坐标运算、向量的数量积以及最值的求法,属于难题;本
题关键是由直角三角形先建立直角坐标系,在坐标系中表示出点
A、 B 的坐标,从而表示出向
2
量的坐标 PA (t 1, 2) , PB
( 1, t
量表示,可得 m n 1 ,然后再求出函数的导数,运用两直线垂直的条件可得
【答案】 3
【解析】
试 题 分 析 : 依 题 意 可 得 , a b 3cos sin
si n
t an
3
cos
考点: 1. 平面向量的数量积; 2. 同角的基本关系 .
0 , 所 以 si n
3 c o s, 则
9. 【江西省南昌市第二中学 2016 届高三上学期第四次考试数学(理)试题】已知向量
二.能力题组
1. 【湖南师范大学附属中学 2016 届高三上学期月考(三)理科数学试题】已知 Rt AOB 的面
积为 1, O 为直角顶点.设向量 a
OA ,b
OB , OP a 2b ,则 PA PB 的最大值为
OA
OB
()
A. 1 【答案】 A
B.2
C. 3
D.4
【解析】
试题分析:以 O 为原点,直线 OA 为 x 轴建立直角坐标系.由已知
2)
,根据向量的数量积运算,得到
PA PB 的值,
再根据基本不等式求解即可.
2. 【江西省吉安市第一中学 2016 届高三上学期第四次周考数学理试题】在正方体
ABCD 中,
( ) ( ) M 是 BD 的中点,且 AM = mAB + nAD m, n ? R ,函数 f x = ex - ax +1,的图象为曲

立体几何大题训练—— 高三数学一轮复习

立体几何大题训练—— 高三数学一轮复习
(2)在直三棱柱 中, 平面 , 平面 ,则 ,
因为 , ,所 ,
故 , ,从而 .
以点 为原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 如图所示,
则 、 、 、 ,
, , ,
设平面 的法向量为 ,
则 ,即 ,解得 ,令 ,得 ,
设平面 的法向量为 ,
则 ,即 ,解得 ,令 ,得 ,
(1)证明: ;
(2)求直线 与平面 所成角的余弦值.
4(2021·全国乙卷理科) 如图,四棱锥 的底面是矩形, 底面ABCD, ,M为BC中点,且 .
求BC;
求二面角 的正弦值.
5(2020全国乙卷理科)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径, 是底面的内接正三角形,P为DO上一点, .
所以 ,
由图可知,二面角 为锐角,所以二面角 的余弦值为
2.解:(1)因为 底面 ,所以 ,又 ,
所以 ,又 , 为平面 内的两条相交直线,所以 平面 ,
因为 平面 ,所以平面 平面 ;
(2)解法一由(1)可知, 为二面角 的平面角,所以 ,
又 , , ,所以 ,
过点 作 于 ,则 平面 且 为 中点,连接 ,
6.(2021泰安一模19)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AB=2AD=2,PA⊥平面ABCD,E为PD中点.
(1)若PA=1,求证:AE⊥平面PCD;
(2)当直线PC与平面ACE所成角最大时,求三棱锥E﹣ABC的体积.
二,高考实战。
1.(2021全国甲卷理科19)已知直三棱柱 中,侧面 为正方形, ,E,F分别为 和 的中点,D为棱 上的点.
则有 ,即 ,
令 ,则 ,故 ,
所以 ,

高三平面向量练习题和答案

高三平面向量练习题和答案

高三平面向量练习题和答案(文章内容根据题目给出的要求,以高三平面向量练习题和答案为主题展开)高三平面向量练习题和答案一、求解下列问题。

1. 已知向量a=3i-4j+2k,向量b=i+3j-k,求向量a与向量b之间的夹角。

解:根据向量的夹角公式,夹角θ=arccos( (a•b) / (|a|·|b|) )其中,•表示向量的数量积,|a|表示向量a的模长。

计算可得:a•b=3+(-12)+(-2)=-11,|a|=√(3²+(-4)²+2²)=√29,|b|=√(1²+3²+(-1)²)=√11所以,θ=arccos(-11 / (√29√11))≈102.66°2. 已知三角形ABC的顶点A(3,-1,2),B(1,2,-3),C(5,-3,0),求三角形ABC的面积。

解:首先求解两个向量的叉积,设向量AB=a,向量AC=b。

则有:a=(1-3)i + (2-(-1))j + (-3-2)k = -2i + 3j - 5kb=(5-3)i + (-3-(-1))j + (0-2)k = 2i - 2j -2k面积S=1/2 |a×b|,其中×表示向量的叉积。

叉积计算:a×b= ((3·(-2) - (-5)·2)i - ((-2)·(-2) - (-5)·2)j + (-2·3 - (-2)·(-5))k ) = 16i + 14j - 4k所以,S=1/2 |16i + 14j - 4k| = 1/2√(16² + 14² + (-4)²) = 1/2√408 =√1023. 已知平面P的法向量为n=(2,-1,3),平面P上存在点A(4,2,1),求平面P的方程。

解:由平面的一般方程Ax+By+Cz+D=0可知,法向量为(n1,n2,n3),平面上的一点为(A,B,C),则有:An1+Bn2+Cn3+D=0带入已知数据,得到方程:4·2 + 2·(-1) + 1·3 + D = 0简化后,得到平面P的方程:8 - 2 - 3 + D = 0解得 D = -3所以,平面P的方程为:2x - y + 3z - 3 = 0二、选择题,只需在括号内打“√”或“×”,表示正确或错误。

高三数学平面向量及其应用测试题 百度文库

高三数学平面向量及其应用测试题 百度文库

一、多选题1.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭2.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 4.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+5.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒6.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,则( )A .12AF AD AB =+ B .1()2EF AD AB =+ C .2133AG AD AB =- D .3BG GD = 7.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆外接圆半径为8778.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+9.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量10.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形11.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥ D .1a b ⋅=-12.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =13.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=的格点B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个14.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模 D .若a b a b -=-,则a 与b 方向相同 15.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =二、平面向量及其应用选择题16.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 17.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭18.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( )A .23BG BE =B .2CG GF =C .12DG AG =D .0GA GB GC ++=19.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定20.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-21.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +22.已知ABC 的面积为30,且12cos 13A =,则AB AC ⋅等于( ) A .72B .144C .150D .30023.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-24.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-25.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)26.题目文件丢失!27.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )328.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1429.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A .73B .273C .2D .21 30.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤D .1224abc ≤≤31.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( )4433.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形34.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( )A B .3CD【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知 解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角,可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.2.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.3.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.4.ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.5.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为csin sin 115B C b ==<,且c b >,所以角C 有两解;对于选项C 中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.AB【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有 ∴,即C 错误 同理 ,解析:AB 【分析】由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG == ∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=-211()333DG DF DA AB DA =+=+,即1()3GD AD AB =- ∴2BG GD =,即D 错误故选:AB【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系7.ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小, 又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯, 所以21cos22cos 18A A =-=,所以cos2A cosC =由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭ 所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以28R =,解得:R =D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.8.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确;对于B 选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.9.AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题对于B选项,若a b意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.10.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.11.CD【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案.【详解】分析知,,与的夹角是.由,故B 错误,D 正确;由,所以,故A 错误;由,所以,故C 正确.故选:CD【点睛】解析:CD【分析】 分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案.【详解】 分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a b a a b b +=+⋅+=-+=,所以3a b +=,故A 错误; 由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确. 故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.12.ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.13.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈,得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.14.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.15.ABD【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确.对解析:ABD【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确.对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确.故选:ABD .【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.二、平面向量及其应用选择题16.D【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n n n AB n n ==--+,再根据AM mAB =可得231n m n =-,整理可得213m n +=,最后选出正确答案即可.【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n n n AB n n ==--+,因为AM mAB =,所以231n m n =-, 整理可得213m n+=.故选:D .【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题.17.C【解析】【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.18.C【分析】由三角形的重心定理和平面向量的共线定理可得答案.【详解】ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G 为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题.19.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.20.D【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =, M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.21.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 22.B【分析】首先利用三角函数的平方关系得到sin A ,然后根据平面向量的数量积公式得到所求.【详解】解:因为ABC 的面积为30,且12cos 13A =,所以5sin 13A =,所以1||||sin 302AB AC A ⨯=,得到||||626AB AC ⨯=⨯,所以12|||||cos 62614413AB AC AB AC A =⨯=⨯⨯=; 故选:B .【点睛】 本题考查了平面向量的数量积以及三角形的面积;属于中档题.23.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=. 解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.24.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈.对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题. 25.B 【分析】 由向量相等的坐标表示,列方程组求解即可.【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭, 故选B.【点睛】本题考查了平面向量的坐标运算,属基础题. 26.无27.C【分析】先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果.【详解】如图所示,AB AF 2232,3cos 113BE EC BE BC AF DF α=⇒==→→=⇒=⇒=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则())0,3,,3B F E ⎫⎪ ⎪⎝⎭,因此()BF AE BF 233,2,3232643→=-→→=⨯-⨯=-=-,故选C.【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.28.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+ 即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】 本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.29.C【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】 ()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭ 故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立.故选:C . 【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力.30.A【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+, 即()()1sin 2sin sin 2A ABC A B C +-+++-=, 即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=, 即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=, 设ABC ∆的外接圆半径为R ,则2sin sin sin a b c R A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立.故选:A.【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 31.B【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →. 【详解】 解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N , 已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△,则:NF NBAE AB=且NF NDAC AD=,即:12NF NBABAC=且14NF NDAC AB=,所以142NBNF NDAC AB AB==,则:8NB ND=,即()8AB AN AD AN-=-,所以184AB AN AB AN⎛⎫-=-⎪⎝⎭,即28AB AN AB AN-=-,得:17AN AB=,解得:17AN AB→→=,四边形AMFN是平行四边形,∴由向量加法法则,得AF AN AM→→→=+,所以1377AF AB AC→→→=+.故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 32.C【分析】不妨设(2,0)b=,(2cos2sin)aαα=,,[0,2]απ∈,(,)c x y=,则求c b⋅的最大值,即求x的最大值,然后将问题转化为关于y的方程22sin(cos2)2cos0y y x xααα-+-++=有解的问题,最后求出x的最值即可.【详解】根据题意,不妨设(2,0)b=,(2cos2sin)aαα=,,[0,2]απ∈,(,)c x y=,则2b c x⋅=,所以求b c⋅的最大值,即求x的最大值,由()()20c a c b⋅--=可得2220c a c b c a b-⋅-⋅+⋅=,即22sin(cos2)2cos0y y x xααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥, 令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =时,22(2)1717288t m +--+==, 所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C.【点睛】 思路点睛:该题考查了平面向量的数量积的问题,解题思路如下:(1)先根据题意,设出向量的坐标;(2)根据向量数量积的运算律,将其展开;(3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.33.B【分析】利用两角和与差公式化简原式,可得答案.【详解】因为sin 2sin cos B A C =,所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C +=所以sin cos cos sin 0A C A C -=所以sin()0A C -=,所以0A C -=,所以A C =.所以三角形是等腰三角形.故选:B.【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.34.A【分析】。

高三数学练习题集:平面向量

高三数学练习题集:平面向量

高三数学练习题集:平面向量问题1:已知点A(1,2)、B(4,3)和C(2,6),求向量AB的大小和方向角。

解答1:向量AB的大小可以通过计算AB的坐标差得到:AB = (x2 - x1, y2 - y1) = (4 - 1, 3 - 2) = (3, 1)AB的大小可以通过使用勾股定理计算:|AB|^2 = (3^2 + 1^2) = 10所以,|AB| = √10AB的方向角可以通过计算AB与x轴正方向的夹角得到:tanθ = 1/3θ = arctan(1/3)所以,向量AB的大小为√10,方向角为arctan(1/3)。

问题2:已知向量A = (3,4)和向量B = (-1,2),求向量A与向量B的和与差。

解答2:向量A与向量B的和可以通过分别将它们的x坐标和y坐标相加得到:A + B = (3 + (-1), 4 + 2) = (2, 6)向量A与向量B的差可以通过分别将它们的x坐标和y坐标相减得到:A - B = (3 - (-1), 4 - 2) = (4, 2)问题3:已知向量A = (2,5)和向量B = (3,-1),求向量A与向量B的数量积和向量积。

解答3:向量A与向量B的数量积可以通过将它们的对应坐标相乘后相加得到:A·B = 2 * 3 + 5 * (-1) = 6 - 5 = 1向量A与向量B的向量积可以通过计算行列式的值得到:A ×B = |i j ||2 5 ||3 -1 |= (2 * (-1)) - (5 * 3) = -11问题4:已知平面上有一个三角形ABC,其中A(1,2)、B(4,3)和C(2,6),求向量AB和向量AC 的夹角。

解答4:向量AB可以通过计算B - A得到:AB = (4 - 1, 3 - 2) = (3, 1)向量AC可以通过计算C - A得到:AC = (2 - 1, 6 - 2) = (1, 4)因此,向量AB与向量AC的夹角可以通过计算它们的数量积除以它们的大小的乘积的反正弦得到:cosθ = (AB·AC) / (|AB| * |AC|)θ = arccos[(AB·AC) / (|AB| * |AC|)]将AB和AC的值带入上述公式,可以得到向量AB和向量AC的夹角。

8.42021届高三数学专题复习练习空间向量与立体几何(学生版)

8.42021届高三数学专题复习练习空间向量与立体几何(学生版)

8.42021届⾼三数学专题复习练习空间向量与⽴体⼏何(学⽣版)【课前测试】如图,已知正⽅形ABCD和矩形ACEF所在的平⾯互相垂直,AB=,AF=1,M是线段EF的中点.(2)求⼆⾯⾓A﹣DF﹣B的⼤⼩;(3)试在线段AC上⼀点P,使得PF与CD所成的⾓是60°.1空间向量与⽴体⼏何【知识梳理】⼀、平⾏、垂直的向量证法设直线l,m的⽅向向量分别为a,b,平⾯α,β的法向量分别为u,ν,则线线平⾏:l∥m?a∥b?a=k b,k∈R;线⾯平⾏:l∥α?a⊥u?a·u=0;⾯⾯平⾏:α∥β?u∥ν?u=kν,k∈R.线线垂直:l⊥m?a⊥b?a·b=0;线⾯垂直:l⊥α?a∥u?a=k u,k∈R;⾯⾯垂直:α⊥β?u⊥ν?u·ν=0.⼆、空间⾓的求法1、异⾯直线所成的⾓设a,b分别是两异⾯直线l1,l2的⽅向向量,则设直线l的⽅向向量为a,平⾯α的法向量为n,直线l与平⾯α所成的⾓为θ,则sin θ=|cos〈a,n〉|=|a·n| |a||n|.3、求⼆⾯⾓的⼤⼩23①如图①,AB ,CD 是⼆⾯⾓α-l -β的两个⾯内与棱l 垂直的直线,则⼆⾯⾓的⼤⼩θ=〈AB →,CD →〉.②如图②③,n 1,n 2分别是⼆⾯⾓α-l -β的两个半平⾯α,β的法向量,则⼆⾯⾓的⼤⼩θ满⾜|cos θ|=|cos 〈n 1,n 2〉|,⼆⾯⾓的平⾯⾓⼤⼩是向量n 1与n 2的夹⾓(或其补⾓).4【课堂讲解】考点⼀空间向量法证明平⾏或垂直问题例1、如图,在多⾯体ABC -A 1B 1C 1中,四边形A 1ABB 1是正⽅形,AB =AC ,BC =2AB ,B 1C 1平⾏且等于12BC ,⼆⾯⾓A 1-AB -C 是直⼆⾯⾓.求证:(1)A 1B 1⊥平⾯AA 1C ; (2)AB 1∥平⾯A 1C 1C .变式训练:1、已知正⽅体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平⾯ADE ; (2)平⾯ADE ∥平⾯B 1C 1F .52、如图,在四棱锥E-ABCD中,AB⊥平⾯BCE,CD⊥平⾯BCE,AB=BC=CE=2CD=2,∠BCE=120°.求证:平⾯ADE⊥平⾯ABE.3、如右图,在四棱锥P-ABCD中,底⾯ABCD是正⽅形,侧棱PD⊥底⾯ABCD,PD=DC,E是Pc的中点,作EF上PB交PB于F,证明:(1)直线PA∥平⾯EDB;(2)直线PB⊥平⾯EFD.67考点⼆利⽤空间向量求异⾯直线所成⾓例2、如图,在正⽅体ABCD -A 1B 1C 1D 1中,E 为AB 的中点. (1)求直线AD 和直线B 1C 所成⾓的⼤⼩; (2)求证:平⾯EB 1D ⊥平⾯B 1CD .变式训练:1.长⽅体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异⾯直线BC 1与AE 所成⾓的余弦值为( ) A.1010B.3010C.21510D.310102.如图,在四棱锥P -ABCD 中,P A ⊥平⾯ABCD ,底⾯ABCD 是菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平⾯P AC ;(2)若P A =AB ,求PB 与AC 所成⾓的余弦值.8考点三利⽤空间向量求直线与平⾯所成⾓例3、如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平⾯ACD 1所成⾓的正弦值.变式训练:1、如图所⽰,在四棱台ABCD -A 1B 1C 1D 1中,AA 1⊥底⾯ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 的中点,求证:AM ⊥平⾯AA 1B 1B ; (2)求直线DD 1与平⾯A 1BD 所成⾓的正弦值.2、在三棱柱ABC-A1B1C1中,侧⾯ABB1A1为矩形,AB=2,AA1=22,D是AA1的中点,BD与AB1交于点O,且CO⊥平⾯ABB1A1.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平⾯ABC所成⾓的正弦值.考点四利⽤空间向量求⼆⾯⾓例4、已知正三棱柱ABC-A1B1C1中,AB=2,AA1= 6.点F,E分别是边A1C1和侧棱BB1的中点.(1)证明:FB⊥平⾯AEC;9(2)求⼆⾯⾓F-AE-C的余弦值.1011变式训练:1、如图,在四棱锥S -ABCD 中,底⾯ABCD 是直⾓梯形,侧棱SA ⊥底⾯ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =1,M 是棱SB 的中点. (1)求证:AM ∥平⾯SCD ;(2)求平⾯SCD 与平⾯SAB 所成的⼆⾯⾓的平⾯⾓的余弦值;2、在四棱锥P -ABCD 中,P A ⊥平⾯ABCD ,E 是PD 的中点,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,AC =AP =2. (1)求证:PC ⊥AE ;(2)求⼆⾯⾓A -CE -P 的余弦值.3、如图,四边形ABCD 为正⽅形,PD⊥平⾯ABCD ,PD∥QA ,QA = AB =1PD.2(I)证明:平⾯PQC ⊥平⾯DCQ ;考点五解决探索性问题例5、如图,四棱锥P-ABCD的底⾯为直⾓梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD =60°,平⾯P AD⊥底⾯ABCD,E为AD的中点,△P AD为正三⾓形,M是棱PC上的⼀点(异于端点).(1)若M为PC的中点,求证:P A∥平⾯BME.(2)是否存在点M,使⼆⾯⾓M-BE-D的⼤⼩为30°?若存在,求出点M的位置;若不存在,说明理由.12变式训练:1、直三棱柱ABC A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在⼀点D,使得平⾯DEF与平⾯ABC所成锐⼆⾯⾓的平⾯⾓的余弦值为1414?若存在,说明点D的位置,若不存在,说明理由.2、如图,在四棱锥P-ABCD中,P A⊥平⾯ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,P A=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在⼀点M,使得⼆⾯⾓M-AC-D的⼤⼩为45°,如果存在,求BM与平⾯MAC所成⾓的正弦值,如果不存在,请说明理由.1314考点六空间中的距离问题例6、如图,平⾯P AD ⊥平⾯ABCD ,四边形ABCD 为正⽅形,△P AD 是直⾓三⾓形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点. (1)求证:平⾯EFG ⊥平⾯P AB ; (2)求点A 到平⾯EFG 的距离.变式训练:如图,在四棱锥O ABCD -中,底⾯ABCD 四边长为1的菱形,4ABC π∠=OA ABCD ⊥底⾯ 2OA = M 为OA 的中点,N 为BC 的中点(1)证明:直线MN OCD平⾯‖;(2)求异⾯直线AB 与MD 所成⾓的⼤⼩; (3)求点B 到平⾯OCD 的距离。

高三数学训练:立体几何(附答案)

高三数学训练:立体几何(附答案)

四川省2019届高三数学理一轮复习典型题专项训练立体几何一、选择、填空题1、(2018全国III 卷高考)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )2、(2017全国III 卷高考)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A .πB .3π4C .π2D .π43、(2016全国III 卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )814、(成都市2018届高三第二次诊断)已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥5、(成都市2018届高三第三次诊断)在正三棱柱111ABC A B C - (底面是正三角形,侧棱垂直于底面的棱柱)中,所有棱长之和为定值a .若正三棱柱111ABC A B C -的顶点都在球O 的表面上,则当正三棱柱侧面积取得最大值24时,该球的表面积为( ) A .43π B .323π C .12π D .643π6、(达州市2017届高三第一次诊断)如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为( ) A .32π B .3π C .32π D .3π7、(德阳市2018届高三二诊考试)如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A .12πB .24πC .36πD .48π8、(广元市2018届高三第一次高考适应性统考)设,m n 是两条不同的直线,,αβ是两个不同的平面,且,m n αβ⊂⊂,下列命题中正确的是( )A .若αβ⊥,则m n ⊥B .若//αβ,则//m nC .若m n ⊥,则αβ⊥D .若n α⊥,则αβ⊥9、(泸州市2018届高三第二次教学质量诊断)设a ,b 是两条不同的直线,α、β是不重合的两个平面,则下列命题中正确的是A .若a b ⊥,a α⊥,则//b αB .若//a α,αβ⊥,则//a βC .若//a α,//a β,则//αβD .若//a b ,a α⊥,b β⊥,则//αβ10、(南充市2018届高三第二次高考适应性考试)某三棱锥的三视图如图所示,则该三棱锥的表面积为( )A .23472++B .1072+ C. 710+ D .3412+11、(仁寿县2018届高三上学期零诊)如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1﹣BFE 的体积为12、(遂宁市2018届高三三诊考试)在一圆柱中挖去一圆锥所得的机械部件的三视图如图所示,则此机械部件的表面积为A .π)27(-B .π)27(+C .π)26(+D .π)37(-13、(雅安市2018届高三下学期三诊)某几何体的三视图如图所示,其中,正视图、俯视图都是矩形,侧视图是直角三角形,则该几何体的体积等于( )A .1B .2C .3D .414、(资阳市2018届高三4月模拟考试(三诊))如图,二面角BC αβ--的大小为6π,AB CD αβ⊂⊂,,且2AB =,243BC CD ABC BCD ππ==∠=∠=,,,则AD 与β所成角的大小为A .π4B .π3 C.π6D .π1215、(成都市石室中学高2018届高三下期二诊模拟)一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2 ,则此四棱锥最长的侧棱长为 .23A.11B .13C .10D16、(成都市2018届高三第二次诊断)《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .863π B .86π C .6π D .24π 17、(2016全国III 卷高考)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π二、解答题1、(2018全国III 卷高考)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M是CD 上异于C ,D 的点.⑴证明:平面AM D ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.2、(2017全国III 卷高考)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.DABCE3、(2016全国III 卷高考)如图,四棱锥P ABC -中,PA ⊥地面A B C D ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.4、(成都市2018届高三第二次诊断)如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,2AB BC ==.(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求平面AEF 与平面BCF 所成的锐二面角的余弦值.5、(成都市2018届高三第三次诊断)如图①,在等腰梯形ABCD 中,已知AB ∥CD ,60ABC ∠=,2CD =,4AB =,点E 为AB 的中点;现将三角形BEC 沿线段EC 折起,形成直二面角P EC A --,如图②,连接,PA PD 得四棱锥P AECD -,如图③.(I )求证:PD EC ⊥;(Ⅱ)求平面PEC 与平面PAD 所成的锐二面角的余弦值.6、(达州市2017届高三第一次诊断)如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥面ABCD ,2PB =,PB 与面PCD 成045角,PB 与面ABD 成030角.(1)在PB 上是否存在一点E ,使PC ⊥面ADE ,若存在确定E 点位置,若不存在,请说明理由; (2)当E 为PB 中点时,求二面角P AE D --的余弦值.7、(德阳市2018届高三二诊考试)如图,在四棱锥P ABCD -中,底面ABCD 为边长为2的菱形,60DAB ∠=,90ADP ∠=,面ADP ⊥面ABCD ,点F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得//AF 面PCE ,并说明理由; (2)当二面角D FC B --的余弦值为14时,求直线PB 与平面ABCD 所成的角.8、(广元市2018届高三第一次高考适应性统考)如图,ABC ∆是以ABC ∠为直角的三角形,SA ⊥平面,2,4,,ABC SA BC AB M N ===分别是,SC AB 的中点. (1)求证:MN AB ⊥;(2)D 为线段BC 上的点,当二面角S ND A --的余弦值为66时,求三棱锥D SNC -的体积.9、(泸州市2018届高三第二次教学质量诊断)如图,三棱锥A BCD -的侧面ABD △是等腰直角三角形,90BAD ∠=,BD DC =,120BDC ∠=,且2AC AB =. (I )求证:平面ABD ⊥平面BCD ; (II )求二面角B AC D --的余弦值.DCBA10、(南充市2018届高三第二次高考适应性考试)如图,四棱锥ABCD P -中,底面ABCD 是边长为2的菱形,PB PA ABC ⊥︒=∠,660,2=PC . (Ⅰ)求证:平面⊥PAB 平面 ABCD ;(Ⅱ)若PB PA =,求二面角D PC A --的余弦值.11、(仁寿县2018届高三上学期零诊)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直,AB ∥CD ,AB ⊥BC ,AB=2CD=2BC ,EA ⊥EB (1)求证:EA ⊥平面EBC ; (2)求二面角C ﹣BE ﹣D 的余弦值.12、(遂宁市2018届高三三诊考试)如图所示的几何体中,111C B A ABC -为三棱柱,且⊥1AA 平面ABC ,四边形ABCD 为平行四边形,︒=∠=60,2ADC CD AD .(1)若AC AA =1,求证:1AC ⊥平面CD B A 11; (2)若12,CD AA AC λ==,二面角11C A D C --的余弦值为24,求三棱锥11C ACD -的体积.13、(雅安市2018届高三下学期三诊)如图,在四棱锥S ABCD -中,SD ⊥底面ABCD ,M 为SD 的中点,底面ABCD 为直角梯形,AB AD ⊥,//AB CD ,且222CD AB AD ===.(1)求证://AM 平面SBC ,平面SBC ⊥平面SDB ; (2)若SB 与平面SDC 所成角的正弦值为33,求二面角A SB C --的余弦值.14、(资阳市2018届高三4月模拟考试(三诊))如图,三棱柱111ABC A B C -的各棱长均相等,1AA ⊥底面ABC ,E ,F 分别为棱1AA BC ,的中点.(1)过1FA 作平面α,使得直线BE //平面α,若平面α与直线1BB 交于点H ,指出点H 所在的位置,并说明理由;(2)求二面角1B FH A --的余弦值.15、(成都市石室中学高2018届高三下期二诊模拟)如图,在多面体ABCDEF 中,矩形BDEF 所在平面与正方形ABC D 所在平面垂直,点M 为AE 的中点. (1)求证:BM //平面EFC(2)若DE AB =,求直线AE 与平面BDM 所成角的正弦值.参考答案: 一、选择、填空题 1、A 2、【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径2213122r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.3、B4、C5、【答案】D【解析】设正三棱柱111ABC A B C -底面边长为x ,侧棱为y ,则63x y a +=,三棱柱111ABC A B C -侧面积3S xy =.所以2216336224x y a S xy +⎛⎫=≤= ⎪⎝⎭,当且仅当632a x y ==,即,126a a x y ==时,等号成立,所以24a =,2x =,4y =.所以正三棱柱111ABC A B C -的外接球的球心O 到顶点A 的距离为443434+=,所以该球的表面积为643π.故选D.6、D7、C8、D9、D 10、B 11、11212、B 13、B 14、C 15、C 16、C 17、【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .二、解答题1、解答:(1)∵正方形ABCD ⊥半圆面CMD ,∴AD ⊥半圆面CMD ,∴AD ⊥平面MCD .∵CM 在平面MCD 内,∴AD CM ⊥,又∵M 是半圆弧CD 上异于,C D 的点,∴CM MD ⊥.又∵AD DM D =I ,∴CM ⊥平面ADM ,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)如图建立坐标系: ∵ABC S ∆面积恒定,∴MO CD ⊥,M ABC V -最大.(0,0,1)M ,(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,(0,1,0)D -,设面MAB 的法向量为111(,,)m x y z =u r ,设面MCD 的法向量为222(,,)n x y z =r, (2,1,1)MA =--,(2,1,1)MB =-,(0,1,1)MC =-,(0,1,1)MD =--,11111120(1,0,2)20x y z m x y z --=⎧⇒=⎨+-=⎩, 同理(1,0,0)n =,, ∴15cos 55θ==,∴ 25sin 5θ=.2、【解析】⑴取AC 中点为O ,连接BO ,DO ;ABC ∆为等边三角形∴BO AC ⊥∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点 ∴DO AC ⊥令AB a =,则AB AC BC BD a ==== 易得:22OD a =,32OB a = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥OD ACOD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 ⑵由题意可知V V D ACE B ACE --= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,30,,02B a ⎛⎫ ⎪ ⎪⎝⎭,30,,44a E a ⎛⎫ ⎪ ⎪⎝⎭ 易得:3,,244a a AE a ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为1n ,平面AEC 的法向量为2n , 则110AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得()13,1,3n =DABC EODABCEyxOz220AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得()20,1,3n =- 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7n n n n θ⋅==⋅ 3、设),,(z y x n =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取)1,2,0(=n ,于是2558|||||||,cos |=⋅=><AN n AN n AN n .4、解:(1)连接MD ,FD .∵四边形BDEF 为菱形,且60FBD ∠=,∴DBF ∆为等边三角形.∵M 为BF 的中点,∴DM BF ⊥.∵AB BC ⊥,2AB BC ==,又D 是AC 的中点, ∴BD AC ⊥. ∵平面BDEF平面ABC BD =,平面ABC ⊥平面BDEF ,AC ⊂平面ABC ,∴AC ⊥平面BDEF .又BF ⊂平面BDEF ,∴AC BF ⊥. 由DM BF ⊥,AC BF ⊥,DM AC D =,∴BF ⊥平面AMC.(2)设线段EF 的中点为N ,连接DN .易证DN ⊥平面ABC .以D 为坐标原点,DB ,DC ,DN 所在直线分别为轴,y 轴,轴建立如图所示的空间直角坐标系.则(0,1,0)A -,13(,0,)22E -,13(,0,)22F ,(1,0,0)B ,(0,1,0)C . ∴13(,1,)22AE =-,(1,0,0)EF =,13(,0,)22BF =-,(1,1,0)BC =-.设平面AEF ,平面BCF 的法向量分别为111(,,)m x y z =,222(,,)n x y z =.由00AE m EF m ⎧⋅=⎪⎨⋅=⎪⎩111113022102x y z x ⎧-++=⎪⎪⇒⎨⎪=⎪⎩.解得1132y z =-.取12z =-,∴(0,3,2)m =-.又由00BC n BF n ⎧⋅=⎪⎨⋅=⎪⎩2222013022x y x z -+=⎧⎪⇒⎨-+=⎪⎩解得223y z =. 取21z =,∴(3,3,1)n =. ∵cos ,m n <>m n m n⋅=11777==⋅.∴平面AEF 与平面BCF 所成的锐二面角的余弦值为17.5、 【解析】6、1)法一:要证明PC ⊥面ADE ,易知AD ⊥面PDC ,即得AD ⊥PC ,故只需0DE PC ⋅=即可, 所以由()00||1DP PE PC DP PC PE PC PE +⋅=⇒⋅+⋅=⇒=,即存在点E 为PC 中点 …6分 法二:建立如图所示的空间直角坐标系D -XYZ , 由题意知PD =CD =1, 2CE =,设PE PB λ=, (2,1,1)PE PB λλ∴==-,(0,1,1)PC =-由()(0,1,1)(2,,1)0PC DE PC DP PE λλλ⋅=⋅+=-⋅-=,得12λ=, 即存在点E 为PC 中点。

人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案

人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案

第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( ) ①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 及不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 及b 所在直线平行。

A .1 B .2 C .3 D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 及1CD 所形成角的余弦值为( )A .1010 B . 15C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ;_C_D_A_P_ N_B_M(2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a=-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( )A .可构成直角三角形B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25]4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1及侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1及平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;D 1C 1B 1A 1DABCC 1 B 1 A 1B A(2)求1C 到平面1A AB 的距离;(3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,1AC AA ==(1)证明:1ABA C ⊥; (2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面PAC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-. 连结AC ,则§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ; (2)1,2,CD x CD CC ==1设则 2CC =x, 设1,,A A a AD b DCc ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-,令24260xx +-=,则2320x x --=,解得1x =,或23x =-(舍去),_C_D _A_P_ N _B _M _EA 1§3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示 1.A 2.D 3.B 4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1则有所以,MC 1⊥平面ABB 1A 1.因此,AC 1及AM 所成的角就是AC 1及侧面ABB 1A 1所成的角.∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°. ∴AC 1及侧面ABB 1A 1所成的角为30°. 3.2立体几何中的向量方法 新 课 标 第 一网1.A2.C3. (1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DEAC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得t =.设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =-,所以点1C 到平面1A AB 的距离1AC n d n⋅==7. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向,可知二面角1A A B C --的余弦值大小为77. 4.(1)三棱柱111ABC A B C -为直三棱柱,由正弦定理030ACB∠=.如右图,建立空间直角坐标系, 则1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量,设平面1A BC 的法向量为(,,)n l m n =,则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 不妨取1,(3,1,1)mn ==则,1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DSa =,平面DAC 的一个法向量600aOS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°._C_A_S_F_BO(3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且),(0,)DS CS ==.设,CEtCS = 则((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面. 作 者 于华东 责任编辑 庞保军。

高三数学解析几何与向量练习题及答案

高三数学解析几何与向量练习题及答案

高三数学解析几何与向量练习题及答案解析几何与向量是高中数学中的重要内容。

通过解析几何与向量的学习,我们可以更加深入地理解几何图形的性质和运动规律,同时也可以应用向量的知识解决实际问题。

为了帮助高三学生巩固解析几何与向量的知识,以下是一些练习题及其答案供大家参考。

练习题1:已知平面α:2x - 3y + z - 4 = 0,点A(1, -2, 3)和点B(4, 1, 2)。

求点A关于平面α的对称点A'的坐标。

解析:首先,我们知道一个点关于平面的对称点,其坐标的x、y、z均不变,只是取相反数。

所以对于点A(x, y, z),其关于平面α的对称点A'的坐标为A'(-x, -y, -z)。

所以,点A关于平面α的对称点A'的坐标为A'(-1, 2, -3)。

练习题2:已知直线l过点A(1, -2, 3)和点B(4, 1, 2),平面α经过点C(3, 5, 6)且垂直于直线l。

求平面α的方程。

解析:首先,我们知道平面α垂直于直线l,所以平面α的法向量与直线l 的方向向量垂直。

直线l的方向向量可以通过点A和点B的坐标差求得:l的方向向量d = (4-1, 1-(-2), 2-3) = (3, 3, -1)。

由于平面α过点C(3, 5, 6),所以平面α上任意一点P(x, y, z)到点C(3, 5, 6)的向量PC与平面α的法向量垂直,即它们的点积为0。

根据点积的定义,可以得到平面α的方程为:(3, 3, -1)·(x-3, y-5, z-6) = 0。

化简得:3(x-3) + 3(y-5) - 1(z-6) = 0。

展开得:3x - 9 + 3y - 15 - z + 6 = 0。

合并同类项得:3x + 3y - z - 18 = 0。

所以,平面α的方程为:3x + 3y - z - 18 = 0。

练习题3:已知向量a = 2i + 3j + k,向量b = i + 2j - 2k,向量c = -3i + j + 4k。

高考数学(理)三年真题专题演练—立体几何(解答题)

高考数学(理)三年真题专题演练—立体几何(解答题)

高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。

高三数学单元测试(三)平面向量立体几何

高三数学单元测试(三)平面向量立体几何

20XX 年广州市高三数学训练题(三) 平面向量、立体几何(2)(时间:100分钟 满分100分)(由广州市中学数学教研会高三中心组编写,本卷命题人:杨 斗 修改:吴永中) 一、选择题:本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,(1 (A )0° (B )45°(C )90°(D )180°(2)在空间四边形ABCD 中,AB=BC ,AD=DC ,则对角线AC 与BD 所成角的大小是 (A )90︒ (B )60︒ (C )45︒(D )30︒(3)将函数12++=x x y 的图象按向量()1,1a =-平移后所得图象的函数解析式为 (A )252++=x x y (B )x y 1= (C )21+=x y (D )xx y 12+=(4)已知(1,0,2)a λλ=+,(6,21,2)b μ=-,若//a b ,则λ与μ的值分别为(A )-5,-2 (B )5,2(C )21,51--(D )21,51 (5)若向量、的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则·等于(A )5- (B )5 (C )7(D )1-(6)在正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM (A )是AC 和MN 的公垂线 (B )垂直于AC ,但不垂直于MN(C )垂直于MN ,但不垂直于AC(D )与AC 、MN 都不垂直(7)地球表面上从A 地(北纬45°,东经120°)到B 地(北纬45°,东经30°)的球面距离为(地球半径为R ) (A )R(B )42R π (C )3Rπ (D )2Rπ(8)如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为(A )61cm (B )157cm (C )1021cm(D )3710cm(9)在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )(A )52-(B )52 (C )53 (D )1010 (10)平面内有1230OP OP OP ++=且122331OP OP OP OP OP OP ==,则113PPP ∆一定是 (A )钝角三角形 (B )直角三角形 (C )等腰三角形(D )等边三角形(11)在棱长为2的正方体AC 1中,点E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离是(A )32(B )34(C )332 (D )322 (12)设PA ,PB ,PC 是从点P 引出的三条射线,每两条的夹角都等于60°,则直线PC 与平面APB所成角的余弦值是 (A )21(B )23 (C )33 (D )36 二、填空题(本大题共4小题,每小题3分,共12分) (13)C B A P 、、、是球O 面上的四个点,PC PB PA 、、两两垂直,且1===PC PB PA ,则球的体积为__________.(14)设{|(2,2)2(cos ,sin )}M a a θθ==+,{|(2,0)(2,2)}N a a λ==+,则M N ⋂= (15)已知:a b a ,2||,2||==与b 的夹角为45°,要使a b -λ与a 垂直,则λ= .(16)向量的命题:①若非零向量),(y x a =,向量),(x y b -=,则⊥;②四边形ABCD 是菱形的充要条件是==;③若点G 是ABC ∆的重心,则0=++ ④ABC ∆中,和CA 的夹角为A -︒180,其中正确的命题序号是 __________.三、解答题(本大题共4小题,共40分)(17)(本小题满分8分)平行四边形ABCD中,已知:13DE DC= ,14DF DB=, 求证:A、E、F三点共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州市高三数学训练题(三) 平面向量、立体几何(2)(时间:100分钟 满分100分)(由广州市中学数学教研会高三中心组编写,本卷命题人:杨 斗 修改:吴永中) 一、选择题:本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 得分 答案(1b a b a 与则),2,1,1(),1,2,0(--== (A )0° (B )45°(C )90°(D )180°(2)在空间四边形ABCD 中,AB=BC ,AD=DC ,则对角线AC 与BD 所成角的大小是 (A )90︒ (B )60︒ (C )45︒(D )30︒(3)将函数12++=x x y 的图象按向量()1,1a =-平移后所得图象的函数解析式为 (A )252++=x x y (B )xy 1= (C )21+=x y (D )x x y 12+=(4)已知(1,0,2)a λλ=+,(6,21,2)b μ=-,若//a b ,则λ与μ的值分别为(A )-5,-2 (B )5,2(C )21,51--(D )21,51 (5)若向量a 、b 的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则a ·b 等于(A )5- (B )5 (C )7(D )1-(6)在正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM (A )是AC 和MN 的公垂线 (B )垂直于AC ,但不垂直于MN(C )垂直于MN ,但不垂直于AC(D )与AC 、MN 都不垂直(7)地球表面上从A 地(北纬45°,东经120°)到B 地(北纬45°,东经30°)的球面距离为(地球半径为R ) (A )R(B )42R π (C )3Rπ (D )2Rπ(8)如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为 (A )61cm (B )157cm (C )1021cm(D )3710cm(9)在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM与CN 所成角的余弦值是( )(A )52-(B )52 (C )53 (D )1010 (10)平面内有1230OP OP OP ++=且122331OP OP OP OP OP OP ==,则113PPP∆一定是 (A )钝角三角形 (B )直角三角形 (C )等腰三角形(D )等边三角形(11)在棱长为2的正方体AC 1中,点E ,F 分别是棱AB ,BC 的中点,则点C 1到平面B 1EF 的距离是(A )32(B )34(C )332 (D )322 (12)设PA ,PB ,PC 是从点P 引出的三条射线,每两条的夹角都等于60°,则直线PC 与平面APB所成角的余弦值是 (A )21(B )23 (C )33 (D )36 二、填空题(本大题共4小题,每小题3分,共12分) (13)C B A P 、、、是球O 面上的四个点,PC PB PA 、、两两垂直,且1===PC PB PA ,则球的体积为__________.(14)设{|(2,2)2(cos ,sin )}M a a θθ==+,{|(2,0)(2,2)}N a a λ==+,则M N ⋂= (15)已知:a b a ,2||,2||==与b 的夹角为45°,要使a b -λ与a 垂直,则λ= .(16)向量的命题:①若非零向量),(y x a =,向量),(x y b -=,则b a ⊥;①四边形ABCD 是菱形的充要条件是DC AB =且AD AB =;①若点G 是ABC ∆的重心,则0=++CG GB GA ①ABC ∆中,AB 和CA 的夹角为A -︒180,其中正确的命题序号是 __________.三、解答题(本大题共4小题,共40分)(17)(本小题满分8分)平行四边形ABCD中,已知:13DE DC=,14DF DB=, 求证:A、E、F三点共线。

(18)(本小题满分10分)已知△ABC的顶点坐标为A(1,0),B为4,在边AC上求一点Q,使线段PQ(19)(本小题满分10分)在正方体1111ABCD A B C D -中,E 、F 、G 、H 为BC 、CD 、1CC 、11C D 中点.(①)求证:1A G ⊥平面1EFC ; (①)求证:BH //平面1EFC 。

(20)(本小题满分12分)已知ABCD 为直角梯形,AD //BC ,90BAD ∠=, 1AD AB ==, 2BC =, PA ⊥平面ABCD ,(Ⅰ)若异面直线PC 与BD 所成的角为θ,且cos θ=,求||PA ; (Ⅱ)在(Ⅰ)的条件下,设E 为PC 的中点,能否在BC 上找到一点F ,使EF CD ⊥? (Ⅲ)在(Ⅱ)的条件下,求二面角B PC D --的大小.HGC D A CAB(三) 平面向量、立体几何(2)参考答案CADA(5)提示:求得1,2,0a =-,3,1,2b =- (8)提示:将圆柱侧面展开,如图,可得长度为61=(10)D 解析:由1230OP OP OP ++=知O 为113PPP ∆的重心,由1223OP OP OP OP =31OP OP =知O 为113PPP∆的垂心 (如:()122321323100OP OP OP OP OP OP OP OP P P =⇒-=⇒=) (也可用列举三角形,排除选项ABC ) (11)提示:等积法,1111C B EF E B FC V V --= 二、填空题(13)π23(14) {(2,0),(4,2)} (M 是起点在原点,终点在圆22(2)(2)4x y -+-=上的向量的集合,N 是起点在原点,终点在直线2y x =-上的向量的集合,直线与圆有两个交点,对应M 、N 有两个相同的向量。

) (15)2 0)(=⋅-λ ;()202a b a λλ∴⋅-=⇒= (16)①①①三、(17)。

证明一:(利用共线向量的判定定理证明)以,AB BD 作为基底,有:34AF AB BF AB BD =+=+, C1433AE AD DE AB BD AB AB BD =+=++=+,从而43AE AF =, 所以A 、E 、F 共线。

证明二:(利用三点共线的判定定理证明)11113()(3)44444DF DB DA DC DA DE DA DE ==+=+=+,而:13144+=,所以A 、E 、F 共线。

(可以建立坐标系,利用求出等比分点坐标公式求出E 、F 的坐标,再证明A 、E 、F 共线)(18)设112145,,11PA AB QA AC λλλλ+===+ 431-=∴λ又||||ACAQ AB AP S S ABCAPQ ⋅=∆∆32,021||43|,|43||||2222-=∴<===λλλλ又则AC QA AB PA设点Q 的坐标为(x Q ,y Q ),则321)4()32(,3217)32(1--⨯-+=-⨯-+=Q Q y O x ,得)38,5(,38,5-∴-==Q y x Q Q(19)解:如图,建立坐标系xyz D -,设正方体的边长为2,则各点的坐标为:()2,0,21A 、()2,2,21B 、()2,2,01C 、()2,0,01D 、(2,2,0)B 、()0,2,1E 、()0,1,0F 、()0,2,1G ,(0,1,2)H (Ⅰ)∵()1,1,0EF =--,()11,0,2C E =-,()12,2,1AG =-- ∴()()11,1,02,2,10AG EF =----= ∴1AG EF ⊥ ()()111,0,22,2,10AG C E =---= ∴11AG C E ⊥ ∴1A G ⊥平面1EFC (Ⅱ)(0,1,2)(2,2,0)(2,1,2)BH =-=--=1EF C E -,BH ∴ 、EF 、1C E 共面。

又BH 不在平面1EFC 内,∴BH //平面1EFC(20)解:建立如图所示的空间坐标系(Ⅰ)设||PA a =,则(0,0,),(2,1,0),(0,1,0),(1,0,0)P a C B D(2,1,),(1,1,0)PC a BD ∴=-=-由已知得:2cos ||||25PC BD PC BD aθ==+6=,即 256a +=1(0)a a ∴=>即|1|PA =(2)设能在BC 上找到一点F ,使EF CD ⊥,设(,1,0)F x ,由(1)知(1,0,0)P 11(1,,)22E ∴,则11(1,,)22EF x --,又有(1,1,0)CD =--,EF CD ⊥,1110,22EF CD x x ∴=-+=∴=即存在点1(,1,0)2F满足要求。

(3)111(,,)(2,1,1)0222EF PC=---=EF PC∴⊥;EF CD⊥且PC CD C⋂=EF∴⊥平面PCD。

EF⊂平面, 所以平面PCB⊥平面PCD,故二面角B PC D--的大小为90。

相关文档
最新文档