第五章静磁场有答案习题

合集下载

电工技术基础与技能【周绍敏】第五章磁场和磁路练习题答案

电工技术基础与技能【周绍敏】第五章磁场和磁路练习题答案

电工技术基础与技能【周绍敏】第五章磁场和磁路练习题答案( )。

电工技术基础与技能A.FB.0.5 FC.2 FD.4 F 第五章磁场和磁路练习题 7、如5-23所示,处在磁场中的载流导线,受到的磁场力的方向应为( )。

班别:高二( A. ) 姓名: 学号: 成绩: 垂直向上 B.垂直向下C.水平向左D.水平向右一、是非题(1.5X20) 8、空心线圈被插入铁心后( )。

1、磁体上的两个极,一个称为N极,另一个称为S极,若把磁体截成两段,则一段为N极,另 A.磁性将大大增强 B.磁性将减弱一段为S极。

( ) C.磁性基本不变 D.不能确定 2、磁感应强度是矢量,但磁场强度是标量,这是两者之间的根本区别。

( ) 9、为减小剩磁,电磁线圈的铁心应采用( )。

3、通电导体周围的磁感应强度只取决于电流的大小及导体的形状,而与媒介质的性质无关。

A.硬磁性材料 B.非磁性材料( ) C.软磁性材料 D.矩磁性材料 4、在均匀介质中,磁场强度的大小与媒介质的性质无关。

( ) 10、铁磁性物质的磁滞损耗与磁滞回线面积的关系是( )。

5、通电导线在磁场中某处受到的力为零,则该处的磁感应强度一定为零。

( ) A.磁滞回线包围的面积越大,磁滞损耗也越大6、两根靠得很近的平行直导线,若通以相同方向的电流,则他们相互吸引。

( ) B.磁滞回线包围的面积越小,磁滞损耗也越大 7、铁磁性物质的磁导率是一常数。

( ) C.磁滞回线包围的面积大小与磁滞损耗无关以上答案均不正确 8、铁磁性物质在反复交变磁化过程中,H的变化总是滞后于B的变化,称为磁滞现象。

( ) D.9、电磁铁的铁心是由软磁性材料制成的。

( )10、同一磁性材料,长度相同,截面积大则磁阻小。

( ) 三、填充题1、磁场与电场一样,是一种物质,具有力和能的性质。

二、选择题 2、磁感线的方向:在磁体外部由 N 指向 S ;在磁体内部由 S 1、判定通电导线或通电线圈产生磁场的方向用( )。

大学物理第五章 静电场部分的习题及答案

大学物理第五章 静电场部分的习题及答案

第五章 静电场一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。

答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。

0ε∑⎰=⋅内S Sq S d E3、写出静电场的环路定理,并分别说明其物理意义。

答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E ),静电场是保守场。

4、感生电场与静电场有哪些区别和联系?二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A.20214r Q Q επ+ B.()()2202210144R r Q R r Q -π+-πεε C.()2120214R R Q Q -+επ D.2024r Q επ 2、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( B )3、图示一均匀带电球体,总电荷为Q +,其外部同心地罩一内、外半径分别为1r 、2r 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: ( D )A.204r QE επ=,r Q U 04επ= B.0=E ,104r Q U επ= C. 0=E ,r Q U 04επ=D.0=E ,204r Q U επ= 4、图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )A.C B A E E E >>,C B A U U U >>B.C B A E E E <<,C B A U U U <<C.C B A E E E >>,C B A U U U <<D.C B A E E E <<,C B A U U U >>5、面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为 ( B )A.S q 02εB.S q 022εC.2022S q εD.202Sq ε 6、一均匀带电球面在球面内各处产生的场强 ( A )A.处处为零B.不一定为零C.一定不为零D.是常数7、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定:( C )A.高斯面上各点场强均为零B.穿过高斯面上每一面元的电通量均为零C.穿过整个高斯面的电通量为零D.以上说法都不对8、下列说法中正确的是 ( D )A.电场强度为0的点,电势也一定为0.B.电场强度不为0的点,电势也一定不为0.C.电势为0的点,则电场强度也一定为0.D.电势在某一区域为常数,则电场强度在该区域也必定为0.9、如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于 ( B ):A.04εqB.06εqC.06πεqD.04πεq 三、计算题1、两无限长同轴圆柱面,半径分别为1R 和2R (21R R < ),带有等量异号电荷,单位长度的电量为λ和λ-,求:(1) 1R r <;(2)21R r R <<;(3)r R <2处各点的场强。

磁场和磁路 练习题答案

磁场和磁路 练习题答案

电工技术基础与技能第五章磁场和磁路练习题班别:高二()姓名:学号:成绩:一、是非题1、磁体上的两个极,一个称为N极,另一个称为S极,若把磁体截成两段,则一段为N极,另一段为S极。

()2、磁感应强度是矢量,但磁场强度是标量,这是两者之间的根本区别。

()3、通电导体周围的磁感应强度只取决于电流的大小及导体的形状,而与媒介质的性质无关。

()4、在均匀介质中,磁场强度的大小与媒介质的性质无关。

()5、通电导线在磁场中某处受到的力为零,则该处的磁感应强度一定为零。

()6、两根靠得很近的平行直导线,若通以相同方向的电流,则他们相互吸引。

()7、铁磁性物质的磁导率是一常数。

()8、铁磁性物质在反复交变磁化过程中,H的变化总是滞后于B的变化,称为磁滞现象。

()9、电磁铁的铁心是由软磁性材料制成的。

()10、同一磁性材料,长度相同,截面积大则磁阻小。

()二、选择题1、判定通电导线或通电线圈产生磁场的方向用()。

A.右手定则B.右手螺旋法则C.左手定则D.楞次定律2、如5-21所示,两个完全一样的环形线圈相互垂直地放置,它们的圆心位于共同点O点,当通以相同大小的电流时,O点处的磁感应强度与一个线圈单独产生的磁感应强度之比是( )。

:1 :1 :3、下列与磁导率无关的物理量是()。

A.磁感应强度B.磁通C.磁场强度D.磁阻4、铁、钴、镍及其合金的相对磁导率是()。

A.略小于1B.略大于1C.等于1D.远大于15、如5-22所示,直线电流与通电矩形线圈同在纸面内,线框所受磁场力的方向为( )。

A.垂直向上B.垂直向下C.水平向左D.水平向右6、在匀强磁场中,原来载流导线所受的磁场力为F,若电流增加到原来的两倍,而导线的长度减少一半,这时载流导线所受的磁场力为( )。

F F F7、如5-23所示,处在磁场中的载流导线,受到的磁场力的方向应为( )。

A.垂直向上B.垂直向下C.水平向左D.水平向右8、空心线圈被插入铁心后( )。

梁彬灿电磁学第五章习题解答

梁彬灿电磁学第五章习题解答

///5.1.1 解答:(1) 质子所受洛伦兹力的方向向东(2) 质子的电荷量191.610q C -=⨯,质子所受洛伦兹力大小为163.210F qvB N -==⨯质子的质量271.6710m kg -=⨯,质子所受洛伦兹力与受到的地球引力相比较:101.9510F qvB F mg==⨯洛重 5.2.1 解答:O 点的磁场B 可看作两条半无限长直载流导线产生的磁场1B 、2B 和MN 部分阶段1/4圆周载流导线产生的磁场3B 的合成。

由于磁场方向均垂直纸面向外,所以直接求出它们大小并相加即可0012cos0cos 424I IB B R Rμμπππ⎛⎫==-=⎪⎝⎭ 40032448I IB Rd R Rππμμαπ-==⎰0123124I B B B B R μππ⎛⎫=++=+ ⎪⎝⎭方向垂直纸面向外 5.2.2 解答:(a )延长线通过圆心的直长载流导线在O 点产生磁场为1B ,其大小为0;另一直长载流导线在O 点产生的磁场为2B ,方向垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。

故O 点的合磁场大小为0001233314842I I I B B B B R R R μμμπππ⎛⎫=++=+=+ ⎪⎝⎭方向垂直纸面向里(b )两半直长载流导线在O 点产生的磁场分别为1B 、2B ,方向均垂直纸面向里;圆弧部分载流导线在O 点产生的磁场为3B ,方向垂直纸面向里。

故O 点的合磁场大小为()000012324444I I I IB B B B R R R Rμμμμππππ=++=++=+ 方向垂直纸面向里 5.2.3 解答:(a )因为两直长载流导线延长线均通过圆心,所以对O 点的磁场没有贡献,故只需要考虑两个圆弧载流导线在O 点产生的磁场,它们所激发的磁场分别为1B 、2B ,方向均垂直纸面向里,故O 点的合磁场大小为00123312248I I B B B a b a b ππμμπ⎛⎫⎪⎛⎫=+=+=+ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里(b )两延长线的直长载流导线对O 点的磁场没有贡献,只需要考虑两长度为b 的直长载流导线对O 点的磁场1B 、2B 和圆弧载流导线对O 点的磁场3B ,方向均垂直纸面向里,其合磁场大小为()0001232332cos90cos13524442a I I I B B B B b a b a πμμμππππ⎛⎫⎛⎫⎪=++=-⨯+=+ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭方向均垂直纸面向里。

沪科版高中物理 选择性必修第二册 第五章 磁场 课后练习、课时练习

沪科版高中物理 选择性必修第二册 第五章 磁场 课后练习、课时练习

一、单选题(选择题)1. 如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场。

闭合开关S后导体棒中的电流为I,导体棒平衡时,弹簧伸长量为;调换图中电源极性,使导体棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为。

忽略回路中电流产生的磁场,则匀强磁场的磁感应强度B的大小为()A.B.C.D.2. 如图所示,两根固定的长直导线A、B平行放置,分别通有电流、,且,两根导线所在平面有一条虚线与两导线垂直,且与两导线分别相交于N、P两点,且。

下列说法正确的是()A.导线A对导线B的作用力大于导线B对导线A的作用力B.O点处的磁场方向垂直于纸面向外C.同一带电粒子在M点受到的洛伦兹力大于其在Q点受到的洛伦兹力D.若施加力F使某带正电粒子自N点沿虚线加速运动至P点,则该过程中力F做正功3. 下列说法正确的是()A.穿过线圈的磁通量为零时,该处的磁感应强度不一定为零B.电场线和磁感线都是客观存在的闭合曲线C.一运动电荷在某处不受磁场力的作用,则该处的磁感应强度一定为零D.磁场中某点磁感应强度的方向与放入磁场中的通电直导线所受安培力的方向相同4. 如图所示,和为水平、平行放置的两光滑金属导轨,两导轨相距,导体棒质量为,垂直放在导轨上,导体棒的中点用承受力足够大的轻绳经光滑定滑轮与放在水平面上的物体相连,细绳一部分与导轨共面且平行,另一部分与导轨所在平面垂直,磁场的磁感应强度与时间的关系为,方向竖直向下。

现给导体棒通入的恒定电流,使导体棒最终向左运动,重力加速度大小为。

下列描述符合事实的是()A.棒上通入的电流方向为从b向aB.在第末物体m恰好离开地面C.第末棒的加速度为D.棒运动过程中安培力做的功等于系统动能的增加量5. 磁流体发电的原理如图所示。

电磁场原理习题与解答(第5章)

电磁场原理习题与解答(第5章)

第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

静磁学和电磁场检测题部分解答

静磁学和电磁场检测题部分解答

应该选 D
静磁学和电磁场检测题部分解答
3 一均匀磁场,其磁感应强度方向垂直于 纸面(指向如图),两带电粒子在该磁场中的 运动轨迹如图所示,则[ B ]
A 两粒子的电荷必然同号;
B 粒子的电荷可以同号也可以异号;
C 两粒子的动量大小必然不同;
B
D 两粒子的运动周期必然不同
解: R mv qB
的电流强度为I,圆环的半径为R,且a、b和圆心O
在同一直线上,则O点的磁感应强度大小0为 .
解: 如图
BO B1 B2 B3 B4


1 B3I
I
2
B2
B3

B1, B2大小相等,方向相反
B1 B2 0
0I ( 4R




)B4

0I (方 4R
解: 由题意可知
应该选 C
静磁学和电磁场检测题部分解答
7 半径为a的线圈置于磁感应强度为B的均匀 磁场中,线圈平面与磁场方向垂直,线圈电阻为R;
当把线圈转动使其法向与B的夹角 60时,线
圈中通过的电荷和与线圈面积及转动所用的时 间的关系是[ A ]
A 与线圈面积成正比,与时间无关; B 与线圈面积成正比,与时间成正比; C 与线圈面积成反比,与时间成正比; D与线圈面积成反比,与时间无关.
I


是 P型
解: 由题意可知,左图是N型半导体, 右图是P型半导体
静磁学和电磁场检测题部分解答
16 有很大的剩余磁化强度的软磁性材料不 能作成永久磁铁,这是因为软磁性 材料矫顽力小 如果做成永久磁铁 容易退磁 .
17 如图所示,一段长为l的直导线MN,水平放

大学物理学第五六章恒定磁场自学练习题

大学物理学第五六章恒定磁场自学练习题

07《大学物理学》第五六章恒定磁场自学练习题(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 恒定磁场部分 自学练习题要掌握的典型习题: 1.载流直导线的磁场:已知:真空中I 、1α、2α、x建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。

统一积分变量:cot()cot y x x παα=-=-;有:2csc dy x d αα=;sin()r x πα=-。

则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。

①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。

2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。

建立坐标系Oxy :任取电流元Idl ,P 204rIdldB πμ=;方向如图。

分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B x x απμ。

统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。

结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。

①当x R >>时,220033224IRI R B x xμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB RRμμππ==⋅; B⊗RI dlIdlr αOB d RrB③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。

静磁场练习题

静磁场练习题

2
l
. P

3) 对半无限长螺线管 B 1 o nI
2
B
2)、 3)在整个管内空间成立!
2L
2L
l
管内为均匀场 管外空间B0
13
例6. 求两个以相同速度v并排运动电子之间的 o q v r 相互作用力。
e1
F21 F12
.
I
B dB l ro ctg ro o Idl sin dl 2 d sin 4 r 2 o I (cos 1 cos 2 ) r ro / sin 4 ro 6
2 1
讨论
y 2 o l r Idl
例8.一无限大平面,有均匀分布的面电流,其横截线的 电流线密度为 i,求平面外一点 B=? 解: 由对称可知 Bi 并且离板等距离处的B大小相等。 过P点取矩形回路abcdL i 其中ab、cd与板面等距离。 0 0 B dl ab B dl bc B dl cd B dl da B dl
2a 2
无限大导体平面,以面电流密度 i (单位宽度上 的电流)均匀流有电流。求空间上任一点的磁感应强度。
解:经对称性分析知:无限大均匀载流平面两侧 距面等远处B的大小相等,方向相反,它们都平行于 载流平面且与电流方向垂直,如图所示:
/
补充题1.1
c d
O O
i
a
b
取矩形环路abcd(oa od, ab oo cd l, ab、cd平行于平面)
2a 2
例3 求载流圆线圈轴线上的磁场B,已知半径为R, 通电电流为I。 Idl 解:先讨论B的方向 r dB o Idl r R I P dB . 4 r 3 x o x d B dB 与 dB是对X轴对称的

电动力学导论格里菲斯中文版第五章

电动力学导论格里菲斯中文版第五章

电动力学是物理学中非常重要的分支之一,它研究电荷和电荷所产生的电场之间的相互作用。

而《电动力学导论格里菲斯中文版》是由美国加州大学河滨分校的大卫·J·格里菲斯所撰写的一本电动力学经典教材,其中第五章主要讨论的是磁场的静止情况和运动情况。

1. 静磁场第五章开篇即介绍了静磁场的基本概念和性质。

在这一部分中,格里菲斯首先介绍了磁场的产生原理,即电流产生磁场的安培定律。

通过对安培定律的深入探讨,读者可以逐步理解磁场的强弱和方向是如何受电流产生的影响的。

在阐述完安培定律后,格里菲斯进一步引入了磁场的高斯定律和比奥-萨伐特定律,这两个定律分别用于描述磁场的闭合性和洛伦兹力的作用。

2. 磁场的变化第五章的第二部分涉及到磁场的变化情况。

讨论了磁感应线圈、法拉第电磁感应定律和自感等内容。

这部分内容探讨了磁场与时间的关系,解释了磁场变化对于感生电动势和感生电流的影响,为后续章节的讨论奠定了基础。

3. 资料分析和补充第五章的第三部分主要是对前两部分内容的回顾和总结。

并结合实际例子来对磁场的理论知识进行应用和延伸,使读者能够更加直观生动地理解磁场的作用和应用。

总结通过对《电动力学导论格里菲斯中文版》第五章的深入阐述和梳理,不仅加深了我对静磁场和磁场变化的理解,同时也为我在电动力学领域的学习和研究提供了丰富的知识储备。

在学习过程中,我也意识到电动力学作为物理学中的重要分支,其理论知识和实际应用都具有广泛的价值和意义。

希望通过对电动力学的学习和探索,能够在相关领域取得更多的成果,并为科学研究和技术创新做出自己的贡献。

第五章的内容涵盖了静磁场和磁场的变化,这些内容是电动力学中非常重要的组成部分。

在这一部分中,格里菲斯详细地介绍了静磁场的基本概念和性质,包括安培定律、高斯定律和比奥-萨伐特定律。

通过对这些定律的深入探讨,读者可以更加深入地理解磁场与电流之间的关系,以及磁场的闭合性和洛伦兹力的作用。

在第二部分中,磁场的变化成为焦点,涉及到磁感应线圈、法拉第电磁感应定律和自感等内容。

大学物理静磁场 练习题

大学物理静磁场 练习题

穩恒磁場鞏固練習題§1Biot-Savart'law1.无限长的直导线载流I,距离导线x处的磁感应强度大小为;沿着直线运动的电荷,其运动的正前方的磁感应强度大小为2.相互平行的直导线之间距离为d;电流大小都是I,方向相反;则两导线中点位置的磁场B=3.半径为R的单匝环形导线载有电流I,环心处的磁感应强度为;该电流的磁矩为4.半径为R的两个单匝圆形线圈正交放置,其圆心重合。

若两个线圈中的电流大小都是I,则圆心处的磁场B=,两个电流环的总磁矩大小为5.边长为0.1m,匝数为1000的正方形线圈,通电0.5A,其磁矩大小为6.如下图所示,几种载流导线在平面内分布,电流均为I,它们在O点的磁感应强度各为多少?§2磁場的高斯定理、安培環路定理7.下图中两导线中的电流绝对值分别为I 1,I 2,写出下列环路积分的值˛L 1B ·d l =˛L 2B ·d l =˛L 3B ·d l =8.如下图所示,直线电流I 从立方体的两个相对表面的中心穿过,则˛abcda B ·d l =¨abcd B ·d S =˛bcgfbB ·d l =¨bcgfB ·d S =9.无限长的空心直螺线管,线圈数密度为n ,横截面积为S ,载流I ,则其管内的磁场B =,横截面上的磁通量为§3洛侖茲力、安培力10.一个电子以速度v=(5×104j)m/s的速度射入均匀磁场B=(0.4i+0.5j)T 中,受到的洛仑兹力F=11.一电荷q在均匀磁场B中运动,判断下列说法是否正确,并说明理由。

(1)只要速度大小相同,所受的洛仑兹力就相同。

(2)在速度不变的前提下,电荷q改为−q,受力的方向逆转,数值不变。

(3)电荷q改变为−q,速度方向也反向,则受力的方向逆转,数值不变。

(4)v,B,F三个矢量,已知任意两个,就能确定第三个量。

大学物理习题答案解析第五章

大学物理习题答案解析第五章

第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。

电磁场课后习题第五章

电磁场课后习题第五章
2
?
?K
2
uuv ey
?
?K uuv
2 ey
? uuv
uuv
? 0.998 0 ? 80ey ??100.9 10?6 e y T
uuuv H2 ?
uuv B2
?
?
uuv 80e y
A/ m
uuuv M2
?
uuv B2
?
?
uuuv H2
?
uuv ? 0.16e y
A/ m
⑵在区域①,③内与上面的结论一致,在区域②内
2??
??? BH? 0 r ? 4 ? 10?7 ? 500? 144.96 ? 9.1? 10?2
B ,H 方向均沿安培环路的切线方向。
3-9 已知在 Z ? 0 的区域中,? r1 ? 4 ,在 Z ? 0 的区域中 ? r 2 ? 1 ,设在
Z ? 0 处B 是均的,其方向为 ? ? 60o,? ? 45o ,量值为 1Wb / m2 ,试求
?
l?z 2
1
? ??
z
?
l ?2 ?2
2 ??
? ?
?
?? ?
uuv ez
?
?
??
⑵当远离圆柱时,即 z ? l ,? ? a 时,可将此圆柱视为一个磁偶极子,磁
2
? 偶极矩 uuv
uuv
uuv
me? ImS z ? M0l a 2 ez
uvu
它在空间中产生的磁场可用磁矩 m 表示为
? ? uv ? ? ? ? ? B ?
式中 dz?是小圆环的宽度,每个小圆环电流在轴线上某点均产生磁感应强度。利
用圆环电流在其中心轴线一点的磁感应强度的表达式,可以写出 dI m 在轴线上产

大学物理第五版(马文蔚)电磁学习题答案

大学物理第五版(马文蔚)电磁学习题答案

第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41r e εr m =v由此出发命题可证.证 由上述分析可得电子的动能为 r e εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2 (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+= 考虑到z >>d ,简化上式得()()k k k E 42022220222206π4...321...32112π4/11/1112π4zqd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-= 通常将Q =2qd 2称作电四极矩,代入得P 点的电场强度 k E 403π41z Q ε= 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==DEFG OABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有22a E ABGF CDEO -=-=ΦΦ同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2Sπ4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场r rεq e E 20π4d d = 由电场叠加可解得带电球体内外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R )()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰ ()r εkR r e E 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰ 5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εσe E 012= n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为 n r x x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0在距离圆孔较远时x >>r ,则n n εσx r εσe e E 02202/112≈+= 上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 .证 带电球体内部一点的电场强度为r E 03ερ= 所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ 根据几何关系a r r =-21,上式可改写为a E 03ερ= 5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故 2013π4rεQ E = r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E += 电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量0230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑ r ελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30 C · m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角.解 由点电荷电势的叠加2000P π4cos π4π4r εθp r εq r εq V V V =-+=+=-+-+ (1) 若o 0=θ V 1023.2π4320P -⨯==rεp V (2) 若o45=θ V 1058.1π445cos 320o P -⨯==r εp V (3) 若o90=θ 0π490cos 20oP ==r εp V 5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV 5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 00a-a x l E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V lE d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布. 当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 5 -28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰ba b a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 带电圆环激发的电势220d π2π41d xr r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V-1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚。

大学物理磁场小结

大学物理磁场小结
(A)相同 (B)不相同 (C)不确定
答案:[ A ]
B 0nI
17、有一闭合回路由半径为a和b的两个同
心共面半圆连接而成,如图.其上均匀分 布线密度为λ的电荷,当回路以匀角速度 w 绕过O点垂直于回路平面的轴转动时, 求圆心O点处的磁感强度的大小.
解:B B1 B2 B3
B1大半圆 B2小半圆 B3线段
B1 B2 0
,B3 = 0.
2 Ib
(C) B ≠ 0,因为虽然B3 = 0、B1= 0,但B2≠ 0. (D) B ≠ 0,因为虽然 B1 B2, 但0 ≠ 0.B3
O c
C
4.若要使半径为4×10-3 m的裸铜线表面的
磁感强度为 7.0×10-5 T,则铜线中需要通过
的电流为(μ0 =4π×10-7 T·m·A-1) (A) 0.14 A. (B) 1.4 A.
静磁场 小结 习题课
本章介绍了几个基本概念、两个基 本定律和两个重要定理
一、几个基本概念 1.磁感应强度 B 描写磁场大小和方向的物理量
定义: B fL max qv
方向:小磁针N极指向。
2.磁通量 m :穿过某一曲面的磁力线根数。 定义:m sB dS
单位:韦伯, Wb
二.基本定律
毕奥--萨伐尔定律
Φm
S
B
d
S
BS cos600
1
BR2
2
9、如图,两根导线沿半径方向引到铁环的上
A、A′两点,并在很远处与电源相连,则环中
心的磁感强度为_______0_____.
B1=B2=0 B31= -B4
1
AI
+
3O
4
-
A′ I

真空中静磁场部分习题

真空中静磁场部分习题

真空中静磁场部分习题相关习题:一、计算题1.无限长直导线折成V 形,顶角为θ,置于xy 平面内,一个角边与x 轴重合,如图所示。

当导线中有电流I 时,求y 轴上一点),0(a P 处的磁感强度大小。

2.如图所示的被折成钝角的长导线中通有20A 的电流,求A 点的磁感应强度的大小和方向,设2=a cm ,120=α。

3.一载有电流I 的长直导线弯折成如图所示的状态,CD 为1/4圆弧,半径为R ,圆心O 在AC 、EF 的延长线上,求O 点处的磁感应强度的大小和方向。

D4.如图所示,一宽为a 的薄长金属板,其中载电流为I ,试求薄板的平面上距板的一边为a 的P 点的磁感应强度。

5.一弯曲的载流导线在同一平面内,形状如图所示 (O 点是半径为1R 和2R 的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),求O 点磁感强度的大小。

6.如图所示,一根无限长直导线,通有电流I ,中部一段弯成圆弧形。

求图中P 点磁感应强度的大小。

7.如图所示,长直导线与矩形线圈共面,且 DF 边与直导线平行。

已知I 1=20A ,I 2=10A ,d =1.0cm ,a =9.0cm ,b =20.0cm ,求线圈各边所受的磁力。

二、选择题1.四条相互平行的载流长直导线电流强度均为I ,如图 放置。

设正方形的边长为a 2,则正方形中心的磁感应强度为( ) A .I a B πμ=02 B .I aB πμ=220 C .0=B D .I a B πμ=0题图32.如图 所示,A A '及B B '为两个正交的圆形线圈,A A '的半径为R ,通电流I ,B B ' 的半径为2R ,通电流2I ,两线圈的公共中心O 点磁感应强度为( ) A .R I 20μ B .RI0μ C .R I 220μ D .03.长直导线通以电流I ,设弯折成图所示形状,则圆心O 点的磁感应强度为( ) A .R I R I 4200μ+πμ B .R I R I 8400μ+πμ C .R I R I 8200μ+πμ D .RIR I 4400μ+πμ4. 磁场的高斯定理⎰⎰=⋅sS B 0d, 说明( )(A) 穿入闭合曲面的磁感应线的条数必然等于穿出的磁感应线的条数 (B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数 (C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内5. 对于安培环路定律0d LB l I μ⋅=∑⎰, 在下面说法中正确的是( )(A) B只是穿过闭合环路的电流所激发, 与环路外的电流无关(B) ∑I 是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时, 才能用它直接计算磁场强度的大小 6. 在圆形电流的平面内取一同心圆形环路, 由于环路内无电流穿过, 所以d 0LB l ⋅=⎰, 由此可知( )(A) 圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形环路上各点的磁场强度方向指向圆心(D) 圆形环路上各点的磁场强度方向为该点的切线方向7. 取一闭合积分回路L , 使三根载流导线穿过L 所围成的面,如图 所示. 现改变三根导线之间的相互间隔, 但不越出积分回路, 则( )(A) 回路L 内的∑I 不变, L 上各点的B 不变 (B) 回路L 内的∑I 不变, L 上各点的B 改变 (C) 回路L 内的∑I 改变, L 上各点的B 不变 (D) 回路L 内的∑I 改变, L 上各点的B 改变8. 一无限长直圆柱体, 半径为R , 沿轴向均匀流有电流,如图 所示.设圆柱体内(r <R )的磁感应强度大小为B 1, 圆柱体外( r >R )感应强度大小为B 2, 则有( )(A) B 1、B 2均与 r 成正比 (B) B 1、B 2均与 r 成反比(C) B 1与 r 成反比, B 2与 r 成正比 (D) B 1与 r 成正比, B 2与 r 成反比9. 一个半径为R 的圆形电流I , 其圆心处的磁场强度大小为( ) (A) R I 4 (B) ∞ (C) 0 (D) RI 2 10. 有一个圆形回路1及一个正方形回路2,圆的直径和正方形回路的边长相等, 二者中通有大小相等的电流, 它们在各自中心产生的磁感应强度的大小之比21B B 为((A) 0.90 (B) 1.00 (C) 1.11 (D) 1.2211.如图,在一圆形电流I 的平面内,选取一个同心圆闭合回路L 。

静电场和磁场高二总复习试题(含答案)

静电场和磁场高二总复习试题(含答案)

静电场和磁场考点一、电场强度的叠加例1.如图所示,Q1和Q2是两个电荷量大小相等的点电荷,MN是两电荷的连线,HG是两电荷连线的中垂线,O是垂足。

下列说法正确的是()A.若两电荷是异种电荷,则OM的中点与ON的中点电势一定相等B.若两电荷是异种电荷,则O点的电场强度大小,与MN上各点相比是最小的,而与HG上各点相比是最大的C.若两电荷是同种电荷,则OM中点与ON中点处的电场强度一定相同D.若两电荷是同种电荷,则O点的电场强度大小,与MN上各点相比是最小的,与HG上各点相比是最大的考点二、电势、电势能例2. 如图所示,实线为不知方向的三条电场线,从电场中M点以相同速度垂直于电场线方向飞出a、b两个带电粒子,仅在电场力作用下的运动轨迹如图中虚线所示,则()A.a一定带正电,b一定带负电B.a的速度将减小,b的速度将增加C.a的加速度将减小,b的加速度将增大D.两个粒子的动能一个增加一个减小例3.(多选)直线MN表示某电场中一条电场线,a、b是线上的两点,将一带负电荷的粒子从a点处由静止释放,粒子从a运动到b过程中的v­t图线如图(b)所示。

设a、b两点的电势分别为φa、φb,电场强度大小分别为E a、E b,粒子在a、b两点的电势能分别为W a、W b,不计重力,则有() A.φa>φb B.E a>E b C.E a<E b D.W a>W b例4.如图所示,虚线a、b、c代表电场中的三个等差等势面,a、b的间距大于b、c的间距。

实线为一带电的粒子仅在电场力作用下通过该区域时的运动轨迹,P、M为轨迹上的两个点,由此可知( )A.粒子在M点受到的电场力比在P点受到的电场力大B.粒子在P、M两点间的运动过程中,电场力一定做正功C.粒子在M点的电势能一定比在P点的电势能大D.三个等势面中,a的电势一定最高考点三、电场力做功的计算例5.(多选)如图所示,从灯丝发射的电子经电压为U1的加速电场加速后,进入偏转电场U2,若要使电子在电场中的偏转量增大为原来的2倍,可供选用的方法是( )A.使U1减小为原来的1/2B.使U2增大为原来的2倍C.使偏转极板的长度增大为原来的2倍D.使偏转极板间的距离减小为原来的1/2考点四、电容器的动态变化例6.如图所示,平行板电容器与电动势为E的直流电源(内阻不计)和灵敏电流计连接,电容器下极板接地.一带电油滴位于电容器中的P点且恰好处于平衡状态.现将平行板电容器的上极板竖直向上移动一小段距离,则A.带电油滴将沿竖直方向向下运动,电势能增加B .带电油滴在沿竖直方向向上运动,电势能减小C .P 点的电势将升高D .移动极板过程中灵敏电流计中的电流方向是由b 流向a 考点五、磁场的叠加例7.(多选)3条在同一平面(纸面)内的长直绝缘导线搭成一等边三角形。

电磁学课后习题答案

电磁学课后习题答案

第五章 静 电 场5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d证 (1) 延长线上一点P 的电场强度⎰'=L r πεE 202,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41Lr rεQrx L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅0d 0q εSS E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S SS E S E Φd d解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S SS E S E Φd d依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS2ππ2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场rrεqe E 20π4d d =由电场叠加可解得带电球体内外的电场分布()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()4202πd π41π4r εk r r kr εr r E r==⎰()r εkr r e E 024=球体外(r >R )()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d rπE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=E R 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4r εQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-=这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+dεQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明. 解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 计算题5-1-1√ 如图所示,几种载流导线在平面内分布情况,电流均为I ,它们在O 点的磁感应强度各是多少?5-1-1 a4120002321R I B B B B B μ=++=++=5-1-1 b )11(24240000321πμπμμπμ-=-+-=-+-=R I R I R I R I B B B B 5-1-1 c )211(2421240000321+=++=++=πμπμμπμR I R I R I R I B B B B5-1-1 d32432100B B B B B B B+++=+++= 32B B B -=习题5-1-1图(b)(a)(d)(c)II1习题5-1-2图PRl R I B πμ222102=Rl R I B πμ223203=2211R I R I U == S l R 11ρ= Sl R 22ρ=2211l I l I =∴02232=-=-=B B B B B5-1-2 √如图所示,一宽为b 的薄金属板,其电流为I 。

试求在薄板的平面上,距板的一边为r 的点P 的磁感应强度。

)(220x r b dxb I y dI dB -+==πμπ ⎰+=-+=-+=bb b r b Lnb I x r b Ln b I x r b b dx I B 000002)(2)(2πμπμπμ5-1-3 如图所示,载流长直导线的电流为I 。

试求通过矩形面积的磁通量。

5-1-4√电流均匀的流过半径为R 的圆形长直导线,试计算单位长度导线通过如图所示剖面的磁通量。

105220p R Ir B πμ=L d r R rIBdS d B202πμϕ== ⎰=⎥⎦⎤⎢⎣⎡==RRB L I r L R I Ldr R Ir 0002202042122πμπμπμϕπμϕ40ILB=5-1-5如图所示,两平行直导线相距cm 40=d ,导线载有电流A 2021==I I ,如图所示。

求:(1) 两导线所在平面内与两导线等距离的一点处的磁感应强度;(2) 通过图中斜线所示面积的磁通量)(cm 25cm 1031===l ,r r 设。

5-1-6√如图所示,一根长直导线载有电流A 301=I ,已知矩形回路的习题5-1-4图几何尺寸为:cm 0.1=d ,cm 0.8=b ,cm 0.12=l ,矩形回路载有电流A 202=I 。

计算作用在回路上的合力及磁力矩。

n B 同向 0=⨯=B n IS MF F F F F +++=321 31F F -= l I d I F 21022πμ= l I b d I F 2103)(2+=πμ )109101.01(212.02030104)11(22721032--⨯-⨯⨯⨯⨯=+-=-=πππμb d d I lI F F F5-1-7√如图所示,线圈均匀密绕在截面为长方形的整个木环上(木环的内外半径分别为1R 和2R ,厚度为h ,木料对磁场分布无影响),共有N 匝,求通过电流I 后,环内外磁场的分布。

通过管截面的磁通量是多少?⎰∑=⋅ljI l d B 0μ∑=21,,0R r R r Ij∑=∴21,,0R r R r ⎰⋅=SB dS B ϕ ⎰⎰∑====⋅llj NI I r B Bdl l d B 002μμπr NIB πμ20=h d r dS = []⎰⎰===⋅=212112000222R R R R SB R R Ln NIh Lnr h NI hdr r NI dS B πμπμπμϕ5-1-8 √带电粒子在过饱和液体中运动会留下一串气泡显示出粒子的运动轨迹。

设在气泡室有一质子垂直于磁场飞过,留下一个半径是cm 5.3得圆弧径迹,测得磁感应强度为T 2.0,求此质子的动量和动能。

mv p =m p m v E k 2222== Rv m q v B2=mq R Bv =219105.32.010602.1--⨯⨯⨯⨯==qBR p)1067.12/()105.32.010602.1(272219---⨯⨯⨯⨯⨯⨯=k E二 选择题(C) 5-2-1真空中有一载有稳恒电流I 的细线圈,若通过某面元S d 的元磁通为m d Φ,而线圈中的电流增加为I 2时,通过同一面元的元磁通为m 'd Φ,则m d Φ:m 'd Φ为:( )(A) 1:1 (B) 2:1 (C) 1:2 (D) 4:12I 习题5-1-5图习题5-1-6图⎰⋅=SB dS Bϕ I B ∝m d Φ:m 'd Φ (C) 1:2(B) 5-2-2在非均匀磁场中,有一电荷为q 的运动电荷。

当电荷运动至某点时,其速度为v ,运动方向与磁场方向间的夹角为α ,则对磁场和磁场力m f 的描述正确的是:( )(A) B 大小为αqv f sin /m ,m f 仅与B 垂直 (B) B 大小为αqv f sin /m ,m f 与v 和B 构成的面垂直 (C) B 大小为αqv f cos /m ,m f 与v 和B 构成的面垂直 (D) B 大小为αqv f cos /m ,m f 仅与v 垂直 根据B 的定义为(B)(A) 5-2-3在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源,如图所示。

已知直导线上的电流强度为I ,圆环半径为R 。

a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为:( )(A) πR I/μ40 (B) I πR/μ04(C) R I/μπR I/μ2400+ (D) R I/μπR I/μ2200+RIB B B B B B B πμ400224321+-+=+-+= (A)πR I/μ40? 5-2-4关于安培环路定理∑⎰=⋅i Ll B I μ0d 的说法中,错误的是:( )(A)∑iI 为闭合回路所包围的所有电流的代数和 对(B) B 为闭合回路内包围的电流产生的磁场的磁感应强度矢量和 错误 (C) 若0d =⋅⎰Ll B ,则闭合回路上各点的磁感应强度都为零 错误(D) 由安培环路定理可看出,恒定磁场为非保守场 对习题5-2-3图(A) 5-2-5一质点带有电荷C 108.0 -10⨯= q ,以速度-1 5s m 103.0 ⋅⨯=v 在半径为m 106.00 -3⨯=R 的圆周上作匀速圆周运动。

则该带电质点在轨道中心所产生的磁感强度的大小为:( )(A) T 1067.67-⨯ (B) T 1033.37-⨯ (C) T 1033.16-⨯ (D) T 1067.66-⨯RiB 20μ=vR Tq i π210810-⨯==T R qv R B 76510701067.61036410310810422----⨯=⨯⨯⨯⨯⨯⨯⨯==πππμ (A)(B) 5-2-6电子(基本电荷C 101.6 -19⨯=e )以某速度v 飞入磁感应强度为B 的匀强磁场中,那么关于作用在电子上的洛伦兹力的说法中错误的是:( ) (A)电子所受的磁场力最大值为vB e 对(B)因为电子的速度不为零,所以电子在磁场中一定受到磁场力 错误 (C)若电子速度v 与磁感应强度B 成 30,它所受的磁场力为2e vB/ 对 (D)电子在磁场中的受力情况,取决于其速度的大小和方向 对?θsin qvB f = (B)(A) 5-2-7如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为 120的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B 平行,则a 、b 两段载流导线所受的合磁力的大小为:( )(A)23IaB (B)IaB 21(C) )(22ab a b IB -+ (D)B b a I )(+aIB B Ia F a 236cos ==π 0=b F (A)BaI习题5-2-7图(C) 5-2-8已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为1:2,圆线圈在其中心处产生的磁感强度为0B ,那么边长为a 的正方形线圈在磁感强度为B 的均匀磁场中所受最大磁力矩为:( )(A) π/μBa B 0302 (B) πμ/Ba B 0302 (C) π/μBa B 030 (D)π/μBa B /023022212a I R I =π RI B o 210μ=212I I =ππa R a R S =∴==22πμ0012aB I =πμπ0302m a x 2s i n a BB SB I M == (C)(D) 5-2-9 在磁感应强度大小为2 Wb/m 2.0 匀强磁场中,放置一圆形试验线圈,其半径为0.01m ,如果通过的电流为mA 10,那么以下说法中错误的是:( )(A) 所受的最大磁力矩为m N 102-6⋅⨯π(B) 当线圈平面与磁感强度的方向的夹角为 90时,线圈不受力矩 错误 (C) 此线圈在磁场中所受的合外力为0 不一定(D) 当线圈平面法线方向与磁感强度的方向垂直时,线圈不受力矩作用 错误 (D) 6422m a x 10210102---⨯=⨯⨯==πππB r M(B)5-2-10如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中心转动,并能靠近或离开ab 。

当电流方向如图所示时,导线cd 将 ↑ ↓ (A) 顺时针转动同时离开ab (B) 顺时针转动同时靠近ab(C) 逆时针转动同时离开ab (D) 逆时针转动同时靠近abc三 填空2:2π 5-3-1 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比21 / B B 为_________。

RIB 201μ=R a 2= 2c o s c o s 12=-θθ22244002πμπμR I a I B ==22220021πμπμ=⋅=I R R I B B< 5-3-2 通有电流I 的无限长直导线有被弯成如图所示的两种形状,则Q ,O 两点磁感强度的大小Q B ,O B 间的关系为:Q B _______O B (填“>”或“<”)。

)211(2421240000321+=++=++=πμπμμπμR I R I R I R I B B B B O )cos 1(20θπμ+=R I B Q )221(20+=R I B Q πμ Q O B B2/32220)/(d )4/(z y x l Iy ++π-μ 5-3-3 一个电流元l d I 位于直角坐标系原点 ,电流沿z 轴方向,则点)P(z y ,x ,的磁感应强度沿x 轴的分量是:_________。

相关文档
最新文档