弹塑性时程分析用地震波选取的基本原则(转载)

合集下载

谈时程分析中地震波的选取

谈时程分析中地震波的选取

第43卷第14期山西建筑Vol.43No.142 0 1 7 年 5 月SHANXI ARCHITECTURE May.2017 • 41 •文章编号:1009-6825 (2017)14-0041-03谈时程分析中地震波的选取赵婷婷谭军金春峰(中电投工程研究检测评定中心,北京100142)摘要:介绍了地震动的主要特性及结构抗震设计中需考虑的要素,并分析了人工合成地震波的原因及方法,归纳了时程分析中 几种地震波的选用原则,给出了时程分析中地震波选取的最优方案。

关键词:时程分析,地震波,地震动,反应谱中图分类号:T U311.3 文献标识码:A〇引言地震是一种严重的自然灾害,抗震设防是有效减轻震害的 途径,而抗震设防的首要任务就是地震动的输人。

影响地震的因素有断层位置、震中距、波传递途径的地质条件、板块运 动形式、场地土构造和场地类别等。

在不同的地震作用下,不 同场地得到的地震记录具有较大的区别,即使在同一次地震作用下,同一场地得到的地震记录也不尽相同。

因此,对未来 的地面运动进行准确地预见是很难实现的。

在进行结构时程分析时,对同一结构输人不同的地震波,所得到的计算结果相差甚远。

因此,选择合理的地震波是保证时程分析中计算结果可靠的必要条件。

1地震动的主要特性国内外学者的大量研究表明,虽然对未来地震动进行准确的 定量是难以实现的,但只要所选用的地震波的主要参数能够大体 上符合地震动的主要参数,所得到的时程分析结果可以较为真实 地反映出结构在真实地震作用下的地震反应,计算得到的位移及 内力能够满足工程设计对其精度的要求。

地震动有三要素,分别为地震动的幅值、频谱特性和持续时间。

1.1 地震动幅值地震动幅值可以是地震动加速度、速度或位移中三者之一的 峰值或某种意义下的等代值[1],是对地震动强度最为直观的描 述。

加速度峰值(P G A)为加速度时程的最大值,通常为地震动高 频成分的幅值,大量研究表明:由于高频地震波只存在于震源附 近,在传播过程中衰减较快,且与建筑物自振频率相差较大,对建 筑物的影响较小。

弹性动力时程分析中地震波的选取方法研究

弹性动力时程分析中地震波的选取方法研究
51 4 ) 06 1
摘 要 : 建筑结 构进 行 弹性动 力 时程 分析 时 , 了既 能让 设计 人 员易 于操作 , 对 为 又能在 地 震 波 选取
方 面不 失合 理性 , 根据 上 海市 某超 限高层 结构设计 实例 的弹性动 力 时程分析 结果 , 讨 了具 有 实际 探 工程 意 义的选 波方法。研 究表 明 , 无论 是基底 剪 力还 是基 底 弯矩 , 震波三 向输入 的 结构响 应均 比 地
第2 第1 9卷 期
2 1 年 1月 02
河 北 工 业 科 技
He e o r a fId sra ce c n c n lg b i u n l n u til in ea dTeh oo y .
J n 2 1 a. O 2
Ab ta t I lsi t -itr y a ca ay i frb i igsr cu e ,b t a y t p rt n ain l y i v sslc s r c :n ea t i hso y d n mi n lss o ul n tu tr s o h e s Oo eaea d rt ai n wa e ee。 c me d o t
Ke r s:lsi t - it r y a ca ay i;e rh u k v ;slcin y wo d ea t i hso yd n mi n lss a t q a ewa e ee t c me o
CH EN ng h .GUO a — i n 。 Ka — ua Yu n x a g ’
( . c o l f vlE g n e i g a d T a s o t t n。 o t ia Un v r i f e h oo y.Gu n z o a g o g 5 0 4 , i a . 1 S h o i n ie r n r n p ra i o Ci n o S u h Chn i est o c n lg y T a g h u Gu n d n 1 6 1 Ch n ;2

时程分析地震波选取问题

时程分析地震波选取问题

= 35cm / s 2
= 70cm / s 2
= 140cm / s 2
间)的地震波.
7. <<抗震规范>>第 5.1.2 条也对时程分析做了进一步的解释.其中有
一条: “时程分析中加速度有效峰值按照规范表 5.1.2-2 中所列地震加
速度最大值采用,即以地震影响系数最大值除以放大系数(约 2.25)得 到.” 这就涉及到地震影响系数α max 是如何取值的. 我们知道水平地震作用的基本公式为
水平地震影响系数.
水平地震影响系数
地震烈
6
7
8
9

地震系
0.05× 0.35× 2.25 = 0.04
0.1× 0.35× 2.25 = 0.08
0.2 × 0.35× 2.25 = 0.16
0.4 × 0.35× 2.25 = 0.32
数k
现在就明白为什么时程分析所用地震加速度时程曲线的最大值的
由来.做时程曲线分析的时候,所输入的地震波的峰值应该是
为:
β = 2π 1
T
..
x0
∫t
..
−ζ
x0 (τ )e
2π (T −τ ) T
sin

(t
−τ )dτ
0
T
max
max
它实际上就是就是相对于地面最大加速度的加速度反应谱.我国的规
范取值为 β max = 2.25 .
另外我国规定在第一阶段抗震设计的时候是按照多遇地震承载力验
算,此时的地震系数 k 就取基本烈度的 0.35. 这样就得到了各烈度下,
时程曲线地震加速度时程曲线的最大值
地震烈度
6
7

[doc]弹塑性反应谱的分析

[doc]弹塑性反应谱的分析

弹塑性反应谱的分析第35卷第4期2011年8月南京理工大学JournalofNanjingUniversityofScienceandTechnologyV0l_35No.4Aug.2011弹塑性反应谱的分析丁建国,陈伟(1.南京理工大学理学院,江苏南京210094;2.东南大学土木工程学院,江苏南京210090)摘要:为了分析结构在地震作用下的弹塑性反应,该文探讨了弹塑性反应谱.该文推导了弹塑性反应谱的基本方程,计算了等延性强度需求谱;描述了通过强度折减系数,延性系数及结构周期之间的关系建立弹塑性反应谱的方法;参照弹性反应谱理论分别得到了四种弹塑性反应谱.计算结果表明:当延性系数较小且土质较硬时,该文计算的弹塑性反应谱与范立础的弹塑性反应谱近似相等;当延性系数较大且土质柔软时,该文计算的弹塑性反应谱相对安全.关键词:强度折减系数;延性系数;弹塑性反应谱中图分类号:TU311.3文章编号:1005—9830(2011)04—0573—06 AnalysisofElasto-plasticResponseSpectraDINGJianguo,CHENWei(1.SchoolofSciences,NUST,Nanjing210094,China;2.CollegeofCivilEngineering,SoutheastUniversity,Nanjing210090,China) Abstract:Inordertoanalysetheelasto—plasticresponseofstructureunderthes eismicaction,this paperstudiesanelasto—plasticresponsespectrum.Thebasicequationofanela sto—plasticresponse spectrumisestablishedandtheconstant—ductilitystrengthdemandspectraare calculated.Themethodsofelasto-plasticspectraestablishedbyrelationshipamongthestrength reducingcoefficients andtheductilitycoefficientsaswellasthestructuralperiodsaredescribed.Four kindsofelasto- plasticresponsespectraarededucedfromreferringtotheelasticresponsespectr um.Thecalculation resultshowsthattheelasto—plasticresponsespectraproposedherearesimilart oFanLichu’Selasto—plasticresponsespectraundertheconditionofhardsoilandsmallductilitycoefficient,andthe elasto—plasticresponsespectraproposedherearerelativelysafeunderthecon ditionofsoftsoilandlargeductilitycoefficient.Keywords:strengthreducingcoefficients;ductilitycoefficients;elasto—plast icresponsespectra地震是人类所面临最严重的自然灾害之一.特别是从20世纪下半叶以来所发生的几次大地震使人们认识到,在强烈地震作用下建筑结构将产生屈服或部分屈服,从而发生弹塑性反应.依据《中华人民共和国抗震设计规范》规定J,抗震设防目标要求按照”三水准,二阶段”来进行,而抗震设防的第二阶段需要校核结构的弹塑性变形.结构在罕遇地震作用下的弹塑性变形计算是一个非常复杂的问题,目前在规范中所提出的计算方法主要包括静力弹塑性分析方法及弹塑性时程分析方法等.但是,如果要精确应用静力弹塑性分析方法,就需要采用通过由弹塑性反应谱得到的地震反应需求收稿日期:2010—06—04修回日期:2010-11-12作者简介:丁建国(1962~),男,副教授,主要研究方向:工程结构抗震与防灾,E-mail:*****************.cn.574南京理工大学第35卷第4期曲线来决定结构目标位移2J,因此,弹塑性反应谱的研究将具有极其重要的现实意义.近年来,国内外许多学者进行了有关弹塑性反应谱的研究.Miranda_3通过研究地震持续时间在0~3s内,且分别来自岩石地基,冲积土地基和软土地基的124条地震加速度记录曲线,得到了建立在单自由度体系基础上弹塑性需求谱,其研究结果表明:弹塑性需求谱主要依赖于场地条件,频谱特性和持续时间.Vidic’4等人用两种不同的方法获得了弹塑性强度需求谱:一种是通过减少相关因素降低弹性谱;另一种是通过对弹塑性结构在遭受地震作用时获得的反应谱进行统计分析,而直接得到弹塑性反应谱.范立础通过统计平均法和回归分析,给出了平均强度折减系数的函数表达式.其他相关文献[6-9]也介绍了地震力调整系数和相关的弹塑性反应谱.本文将试图根据结构抗震理论推导弹塑性反应谱的基本方程,并输入约200条地震波加速度时程曲线对单自由度体系进行弹塑性时程分析,以平均计算结果获得等延性强度需求谱及弹塑性反应谱,并与根据Vidic,Berrilld及范立础等人提出的R--g—T 关系所得到的弹塑性反应谱进行分析和比较.1基本方程在地震作用下,单自由度体系的运动微分方程如下.(£)+(),)=一眦()(1)式中:m为系统的质量;C为阻尼系数;(t),x(t)和x(t)分别为位移,速度和加速度i厂(,t)为系统恢复力;互(t)为地震作用加速度.为了计算方便,参照弹性系统恢复力公式,弹塑性系统恢复力可表示成式(2)的形式,.厂(,£)=()()(2)将式(2)代入式(1),因此得到()+2o(t)+[k(x)/k0]02(t)=-x(t)(3)式中:设:ko/m,=c/(2mw0),ko为滞回曲线系统的线弹性刚度.设屈服时位移为,则屈服力为(,)=kyX,是当=时系统的割线刚度.根据弹性反应谱理论(,t)=m3l,其中是动力系数.如果定义”(t):(t),R=厂(,)(,t),/.Z=maxI(t)I=JI/x(被称为强度折减系数,被称为延性系数),则式(3)将变为式(4).)+2)+一Rkr.2(4)根据弹性反应谱理论卢(5)式中:Ot为地震影响系数.因为系统周期和频率的关系为=2~r/w.,那么将式(5)代人式(4)中,则式(4)可以改写成式(6)的形式:u(t))睾)=睾Rky..c)(6)式(6)是等强度延性需求谱及等延性强度需求谱的基本方程.2等延性强度需求谱根据式(6),如果是一个常数,则等延性强度需求谱可以通过迭代计算得到.由于可能对应多个R的值,因此,等延性强度需求谱应选用尺的最小值.在本文中,假设抗震设防烈度为7度,利用如图1所示的退化三线型滞回模型,通过计算得出等延性强度需求谱.j,)图1退化三线型系统的恢复力模型在图1中,分别选择O/0=1,1=0.85,2=0.15,O/3=0.89.并且选择=0.30S,0.40S,0.55s和0.75S分别作为I,Ⅱ,Ⅲ和Ⅳ类场地的特征周期.选用包括EL.centro波,Taft波和天津波等近200条地震波.地震波选用原则,主要依据场地类别及特性进行选择.其中对于I类场地选用了57条地震波;Ⅱ类场地选用了55条地震波;111类场地选用了52条地震波;IV类场地选用了28条地震波.所有地震记录曲线的最大加速度峰值取0.22g. 这些地震记录的平均计算结果如图2所示.总第179期丁建国陈伟弹塑性反应谱的分析575 T/s(a)I类场地T/s(c)ll类场地T/s(b)1I类场地T/s(d)IV类场地图2等延性强度需求谱可改写为式(8).3由一j『1关系建立弹塑性反应谱的原理根据强度折减系数的定义,R={L,=se,.p7,式中:5:是弹性反应谱,5:是弹塑性反应谱.设弹性反应谱的地震影响系数为ot,弹塑性反应谱的地震影响系数为ol,根据S:=otg,则式(7)T/s(a)Berrill的弹塑性反应谱o/=:/g=a/R(8)因此,弹塑性反应谱的地震影响系数Ot可通过弹性反应谱的地震影响系数Ol和R一关系代人式(8)得到.本文分别利用Berrill,Vidic和卓卫东,范立础提出的R-/z—T的关系及本文所得到的等强度延性需求谱(图2),计算出了在I类场地(硬土)上四种弹塑性反应谱的地震影响系数,如图3所示.T/s(b)Vidic的弹塑性反应谱T/sT/s(c)范立础的弹塑性反应谱(d)本文计算出的弹塑性反应谱图3I类场地条件下Berrill,Vidic,范立础及本文计算出的弹塑性反应谱576南京理工大学第35卷第4期在图3中,当等于1时,该曲线则变为弹性反应谱,当=2,3,4,5时,曲线则为弹塑性反应谱.从图3可以发现,弹塑性反应谱中的地震作用明显小于弹性反应谱中的地震作用,这对抗震工程具有重要意义.4四种弹塑性反应谱的效果分析和对比由于没有足够且完整的较长时问软土地震加速度记录,且范立础的R一关系只包含了三种场地类别,同时考虑到等延性强度需求谱(图2 (d))有可能不具有良好的统计特性.因此,本文在对四种弹塑性反应谱进行比较和分析时,分别T/s(a)=2.0考虑了I,Ⅱ和Ⅲ类场地.在上述四种弹塑性反应谱中,Berrill的R一丁关系是建立在位移相同的原则上;Vidic的R一关系则建立在位移和能量相等的两个原则之上,并考虑到土壤条件和滞回模型等因素的影响;范立础的R一关系以及本文提出的等延性强度需求谱(图2)则建立在对单自由度体系的大量弹塑性时程分析的基础上.因此,通过对上述四种弹塑性反应谱分析和比较发现:(1)一般而言,通过Ben’ill的R一关系得到的弹塑性反应谱将相对偏于安全;(2)本文通过等延性强度需求谱计算出的弹塑性反应谱,因为选择了的最小值,在某些情况下也是比较安全的.为了对这四种弹塑性反应谱作进一步比较,更详尽曲线如图4~6所示.T/s(b)g=3.0T/sT/s(c)=4.0(d)5.0图4在I类场地条件下四种弹塑性反应谱参见图4~6,可以发现,一般而言,Berrill的弹塑性反应谱&gt;Vidic的弹塑性反应谱&gt;范立础的弹塑性反应谱.在硬土条件下(图4~5),当&gt;0.1s时,四种弹塑性反应谱近似相同;当T&lt;0.1s,本文计算出的弹塑性反应谱则是相对安全的,但比Berrill的弹塑性反应谱略低,Vidic的弹塑性反应谱接近于范立础的弹塑性反应谱.在软土条件下(图6),当结构周期为中长周期时,则本文计算出的弹塑性反应谱大于其他三种弹塑性反应谱,并且越大,则差值越大;当结构周期为长周期时,四种弹塑性反应谱几乎是相同的.当等于2时(图4(a),图5(a)及图6(a)),一般来说,Berrill的弹塑性反应谱大于Vidic的弹塑性反应谱,而Vidic的弹塑性反应谱大于范立础的弹塑性反应谱,同时也略大于本文计算出的弹塑性反应谱.当T&lt;0.2s时,Vidic的弹塑性反应谱以及范立础的弹塑性反应谱与本文得到的弹塑性反应谱几乎是相同的.当结构周期是中长周期时,本文计算的弹塑性反应谱值比范立础的弹塑性反应谱值大.当等于5时(图4(d),图5(d)及图6(d)),本文计算出的弹塑性反应谱是相对安全,并接近Berrill的弹塑性反应谱,范立础的弹塑性反应谱和Vidic的弹塑性反应谱则非常相近.总第179期丁建国陈伟弹塑性反应谱的分析577 5结论T/s(a)=2.0T/s(b)=3.0T/sT/s(c)=40(d)5.0图5在Ⅱ类场地条件下四种弹塑性反应谱T/s(a)=2.0T/s(c)=4.0T/s(b)=3.0图6在Ⅲ类场地条件下四种弹塑性反应谱(1)本文建立了弹塑性反应谱的基本方程,并根据大量地震加速度记录计算得到了等延性强度需求谱;(2)当延性系数较小且土质较硬,本文计算的弹塑性反应谱与范立础的弹塑性反应谱几乎近T/s(d)=5.0似相同;而Vidic的弹塑性反应谱比前两者大; Berrill的弹塑性反应谱相对安全.当值较大且土质柔软时,本文计算的弹塑性反应谱则相对安全一些;而在大多数情况下,弹塑性反应谱有以下关系:本文计算出的弹塑性反应谱&gt;Vidic的弹塑性反应谱&gt;范立础的弹塑性反应谱.但Vidic的弹塑性反应谱与范立础的弹塑性反应谱的差别不大;(3)范立础的R一关系是建立对单自由578南京理工大学第35卷第4期度系统大量的弹塑性时程分析的基础上,但这种关系不能充分考虑阻尼比,滞回模型等影响因素,而Vidic的一关系较简单但可以清楚地反映这些因素的影响,Vidic的弹塑性反应谱比较接近范立础的弹塑性反应谱.参考文献:[2][3][4]GB50011_-20o1.中华人民共和国抗震设计规范[s].北京:中国建筑工业出版社,2001. AppliedTechnologyCouncil.A TC一40.V o1.1.Seismic evaluationandretrofitofconcretebuildings[S].1996. MirandaE.Evaluationofsite—dependentinelasticseismic designspectra[J].JoumalofStruetEngngASCE,1993, 117(8):1319-1338.VidicT,FajfarP,FischingerM.Consistentinelastic designspectra:Strengthanddisplacement[J].[5][6][7][8][9] EarthquakeEngineeringandStructuralDynamics,1994, 24(5):507—521.卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84—88. BerrillJB,PriestleyMJ,ChapmaanHE.Design earthquakeloadingandductilitydemand[A].Bulletin oftheNewZealandNationalSocietyforEarthquake Engineering[C].Wellington,NewZealand~New ZealandSocietyforEarthquakeEngineeringInc,1980, 13(3):232—241.丁建国.弹塑性反应谱及其在抗震设计中应用[J]. 南京理工大学,2007,31(6):780—783. ElghadamsiFE,MohrazB.Inelasticearthquakespectra [J].EarthquakeEngineeringandStructuralDynamics, 1987.15:91一lo4.MirandaE,JorgeRG.Influenceofstiffnessdegradation onstrengthdemandsofstmcturesbuiltonsoftsoilsites [J].EngineeringStructures,2002,24:1271-1281.。

弹塑性分析输出结果解读

弹塑性分析输出结果解读

(一)时程法的规范规定
• 目的:补充计算(5.1.2-3)。 • 范围:高度和跨度(5.1.2-3,5,6)。 • 地震有效峰值加速度EPA:(5.1.2-3)
由αmax反算,EPA = αmax/ β , 统一取 β = 2.25。
(二)输入地震波准则
• 地震波数量:3组,取包络;7组,取平均。 • 选波原则:按场地类别和地震分组选择,平均地震影响系数曲线与规
40
US033 30
20
40
10
30
US031
0
20
加速度(gal)
10 -10
0 -20
-10
-4300
U-2S0032
-34000
20
40
60
80-30 100
20
t (sec)
-40
(三)常用软件
• Abagus • Perform-3D • Etabs • Midas • LS-Dyna • Sausage • Marc
大震/小震 •地震作用:4 ~ 7倍(烈度9 ~ 6) •基底剪力3 ~ 5倍? •楼层位移(角) 3 ~ 5倍?
大震弹塑性/大震弹性 •顶点位移时程曲线(结构刚度退化) •基底剪力时程曲线
利科•西安国际金融中心(Abaqus)
塔楼是一栋以高端写字楼为主的商务综合体, 高度349.7m,地上75层。 裙房共3层,为配套的商业和餐饮,裙房与主 楼在地上部分设缝脱开。 地下共4层,为配套用房及车库,地下部分不 设缝。
2014.09.01
标准层平面布置
塔楼标准层主要功能为办公。
加速度(gal)
范曲线在统计意义上相符,小震和大震地震波不同(反应谱Tg不同)。 • 地震波检验:结构主向,底部总剪力满足:

结构动力弹塑性分析地震波的选取原则

结构动力弹塑性分析地震波的选取原则
b r o a d a n d i n c o r p o r a t i n g wi t h r e l e v a n t c o d e s ,t h e s e l e c t i o n p r i n c i p l e o f e a r t h q u a k e wa v e wa s p r e s e n t e d a n d p r e s e l e c t e d a c c o r d i n g t o s t r u c t u r a l d y n a mi c p r o p e r t y a n d r e s p o n s e s p e c t r u m c u r v e t o c a r r y o u t t h e s t r u c — t u r a l e l a s t i c t i me h i s t o y r a n a l y s i s . Th e n b a s e d o n t h e a n a l y s i s r e s u l t ,t h e e a r t h q u a k e wa v e wa s s c r e e n - s e — l e c t e d b a s e d o n t h e b o t t o m s h e a r l i mi t r e q u i r e me n t o f mo d e - s u p e r p o s i t i o n r e s p o n s e s p e c t r u m me t h o d a n d d i s c r e t e n e s s o f t h e wa v e a n d t h e s e i s mi c wa v e o f d y n a mi c e l a s t o - p l a s t i c t i me h i s t o r y a n a l y s i s wa s d e t e r — mi n e d .F i n a l l y ,t h e e l a s t o - p l a s t i e a n a l y s i s c a l c u l a t i o n p r o c e s s a n d i t s r e s u l t we r e na a l y z e d a n d d e t e r mi n e d t o e n s u r e t h e r e l i a b i l i t y a n d v a l i d i t y o f t h e r e s u l t .I t wa s s h o wn b y t h e o r e t i c a l a n a l y s i s a n d s p e c i f i c e x a m— p i e s i n e n g i n e e r i n g t h a t t h e c o n c e p t o f s e i s mi c wa v e s e l e c t i o n wi t h t h e p r o p o s e d p r i n c i p l e wa s c l e a r ,i t s i m—

弹塑性时程分析用地震波选取的基本原则(转载)

弹塑性时程分析用地震波选取的基本原则(转载)

弹塑性时程分析用地震波选取的基本原则地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。

故要保证时程分析结果的合理性,必须合理选择输入地震波。

归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。

1、峰值调整地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。

A′(t) = (A′max/Amax) A (t)其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。

2、频谱特性频谱即地面运动的频率成分及各频率的影响程度。

它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。

地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。

一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。

因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。

合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。

2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。

3、地震动持时地震动持时也是结构破坏、倒塌的重要因素。

结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。

有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。

弹性动力时程分析地震波选取方法探讨

弹性动力时程分析地震波选取方法探讨

弹性动力时程分析地震波选取方法探讨摘要:本文根据珠海市某超限高层弹性动力时程分析结果,探讨了选波方法。

研究表明,采用小样本容量的地震波输入时,天然波输入数量的增加可以降低地震波的总体离散性,按规范推荐的比例输入三向地震波加速度是合理的。

关键词:结构设计;弹性动力时程分析;地震波Abstract: in this paper, according to the Zhuhai city high-rise overrun elastic dynamic time-history analysis results, discusses the selection of wave method. Studies show that, using the small sample size of earthquake input, natural wave input quantity increase can reduce the overall dispersion of seismic wave, according to the standard recommended proportional input three to seismic wave acceleration is reasonable.Key words: structural design; elastic time-history dynamic analysis; seismic wave近年来,随着我国社会经济的发展,各类高层建筑在全国各地日益增多。

它们新颖别致、多样化、复杂化和独特个性等特点给城市带来崭新面貌的同时也给高层建筑结构设计者带来了严峻的挑战。

《建筑抗震设计规范》[1]第5.1.2条和《高层建筑混凝土结构技术规程》[2]第4.3.4条规定了高层建筑应采用弹性时程分析法进行多遇地震下的补充验算的范围。

本文对珠海市某超限高层建筑进行弹性动力时程分析,探讨地震波的选取方法。

结构动力弹塑性分析方法

结构动力弹塑性分析方法

结构动力弹塑性分析方法1. 动力理论动力理论是直接通过动力方程求解地震反应。

由于地震波为复杂的随机振动,对于多自由度体系振动不可能直接得出解析解,只可采用逐步积分法•通过直接动力分析可得到结构响应随时间的变化关系,因而该方法又称为时程分析法。

时程分析法能更真实地反映结构地震响应随时间变化的全过程,并可以得到强震下结构的弹塑性变形,因此己成为抗震分析的一种重要方法。

多自由度体系地震反应方程为:M {x(t)} - C{x(t)} - K{x(t)} - {x g(t)} (1.1)在弹塑性反应中刚度矩阵与阻尼矩阵亦随时间变化,因此不可能求出解析解,只能采取数值分析方法求解。

把整个地震反应的过程分为短而相等的时间增量缸,并假定在每一个时间区间上体系的各物理参数均为常数,它们均按区间起点的值来确定,这样就可以把非线性体系的分析近似按照一系列连续变化的线性体系来分析。

方程(1 .2)适用于结构的任何时刻,则对于结构. ■:t时刻的地震反应方程可以表示为:M {lx(t:•一t)} - C {x(t :•一t)}门K { x(t :*t)} - _ M {x g(t :xt)} (1.2)令:{ , :x} ={x(t •.⑴} -{x(t)} (1.3) { .:X} ={x(t •••L t)} -{ x (t)}(1.4){ :x} ={x(t • . :t)} -{x(t)} (1.5) { >X g}二{X g(t •: =t)} -{ x g(t)} (1.6) 择将式(1.3)与式(1.2)相减得到结构的增量平衡方程:M { x} C {「:x} - K {.:x} - -I M { .%} (1.7) 2. 方法介绍时程分析法的基本过程是将地震波按时段进行数值化后,输入结构体系的微分方程中,采用逐步积分法对结构进行弹性或弹塑性地震反应分析,得到结构在整个时域中的振动状态全过程,并描述各个时刻结构构件的内力和变形。

时程分析法中有关地震波选取的几个注意问题

时程分析法中有关地震波选取的几个注意问题
?@ A#+7;&8+B,CD@ E)+75&8F
( "$3456789:; <6=>6994>6= ?@4A@458>@6 &?;96=BC D"11-(& ?;>65E
($F:;@@G @H ?>I>G <6=>6994& F@C8;J978 K>5@8@6= L6>I947>8M& ?;96=BC D"11-"& ?;>65 )
"
频谱特性
历史震害表明, 在同一地区的不同建筑物遭受震害程度差异很大, 说明不同频谱组成的地
震动, 对不同自振周期的结构物在不同的条件下( 场地土、 震中距等) 会产生不同程度的震害! 地震频谱包含了一次地震动中振幅与频率之间的关系, 是地震动在频域中的特征参数 ! 地 震动的频谱特性可用功率普、 反应谱和傅立叶谱表示, 包含有谱形状、 峰值、 卓越周期等特征! 功率谱( 功率谱密度函数) 是频域中描述随机过程特性的物理量, 可以定义为地震动过程 的傅立叶幅值谱的平方值 ! 强震记录表明: 震级越大、 震中距越远, 地震动的低频分量越显著, 软土地基上地震动的卓越周期显著, 而硬土地基上的地震动记录则包含多种频率成分; 傅立叶 谱包含傅立叶幅值谱和傅立叶相位谱,分别从两个不同的角度描述了一个地震动过程的频谱 特征, 因此, 利用傅立叶谱可以从时间过程求得频率分量, 并可以完成时域和频域的变换; 而反 应谱是结构的最大动力反应, 不能反应结构的具体特性, 只能反应地震动的频谱特征, 但是地 震动反应谱在实际应用中具有重要工程意义, 因而得到广泛的研究!
左右另外从随机过程观点来看最大加速度作为一个随机量增加持时相当于增加取样方差不变的情况下最大加速度会加大从而产生较大的破坏地震动持时对结构反应的影响同时存在于非线性体系的最大反应和能量损耗积累这两种反应之中现代建筑抗震设计中采用最大反应强度或变形和积累的非线性能量损耗指标作为设计依据提出结构的双重破坏标准使过去一直被忽略或无法加以考虑的持续时间得到重视统计证明地震波持续时间与地震的强度震中距及场地土类别有一定的关系地面运动预测结构地震反应最难或最不确定的因素就是如何合理确定地面运动的过程地震地面运动通常用三个平动加速度分量来表示任何线性体系对于这三个分量的反应可以通过分别计算每个分量反应然后叠加得到于是标准的分析问题就转化为计算由于单个平动分量所引起的反应更一般的情况下当地震波通过基础传播时支座除了平动运动外还有转动运动因此地震输入的全面考虑原则上应包括平动和三个支座转动分量但是由于目前难以测定地面转动分量的大小和特性这种作用只有根据平动分量推测的量级分析对旋转运动做出假定来估计确定由地震引起结构中的有效力时最后应考虑的一个因素是在结构基底处的地面运动可以受结构自身运动的影响即在结构基底处产生的运动可能与无结构情况下观察到的自由场地的运动不同若柔软建筑物在坚固的基岩上则土与结构相互作用的影响甚小结构传给土壤的能量很少自由场地的运动可以作为基底位移的一个适合的度量

谈时程分析中地震波的选取

谈时程分析中地震波的选取

谈时程分析中地震波的选取赵婷婷;谭军;金春峰【摘要】介绍了地震动的主要特性及结构抗震设计中需考虑的要素,并分析了人工合成地震波的原因及方法,归纳了时程分析中几种地震波的选用原则,给出了时程分析中地震波选取的最优方案.【期刊名称】《山西建筑》【年(卷),期】2017(043)014【总页数】3页(P41-43)【关键词】时程分析;地震波;地震动;反应谱【作者】赵婷婷;谭军;金春峰【作者单位】中电投工程研究检测评定中心,北京100142;中电投工程研究检测评定中心,北京100142;中电投工程研究检测评定中心,北京100142【正文语种】中文【中图分类】TU311.3地震是一种严重的自然灾害,抗震设防是有效减轻震害的途径,而抗震设防的首要任务就是地震动的输入。

影响地震的因素有断层位置、震中距、波传递途径的地质条件、板块运动形式、场地土构造和场地类别等。

在不同的地震作用下,不同场地得到的地震记录具有较大的区别,即使在同一次地震作用下,同一场地得到的地震记录也不尽相同。

因此,对未来的地面运动进行准确地预见是很难实现的。

在进行结构时程分析时,对同一结构输入不同的地震波,所得到的计算结果相差甚远。

因此,选择合理的地震波是保证时程分析中计算结果可靠的必要条件。

国内外学者的大量研究表明,虽然对未来地震动进行准确的定量是难以实现的,但只要所选用的地震波的主要参数能够大体上符合地震动的主要参数,所得到的时程分析结果可以较为真实地反映出结构在真实地震作用下的地震反应,计算得到的位移及内力能够满足工程设计对其精度的要求。

地震动有三要素,分别为地震动的幅值、频谱特性和持续时间。

1.1 地震动幅值地震动幅值可以是地震动加速度、速度或位移中三者之一的峰值或某种意义下的等代值[1],是对地震动强度最为直观的描述。

加速度峰值(PGA)为加速度时程的最大值,通常为地震动高频成分的幅值,大量研究表明:由于高频地震波只存在于震源附近,在传播过程中衰减较快,且与建筑物自振频率相差较大,对建筑物的影响较小。

超限审查报告编制及注意事项

超限审查报告编制及注意事项

超限审查报告编制及注意事项发表时间:2019-08-15T17:14:40.143Z 来源:《建筑实践》2019年第09期作者:张波[导读] 在多个项目的超限结构设计及超限审查报告的编制、内审、外部施工图审查过程中,积累了一些经验,整理出来以供参考。

湖南省建筑设计院有限公司【摘要】在多个项目的超限结构设计及超限审查报告的编制、内审、外部施工图审查过程中,积累了一些经验,整理出来以供参考。

【关键词】超限审查报告的编制相关参数的调整及控制计算分析中遇到的典型问题及解决办法超限审查报告编制及注意事项以长沙万达广场、绿地北站T1办公楼等几个项目的超限审查报告为模板进行总结。

一、超限审查报告的编制1、作为被审查的项目对象,应明确将要面临审查的项目内容,熟练掌握《超限高层建筑工程抗震设防专项审查技术要点》的内容是关键,其中专项审查的内容主要包括:(1)建筑抗震设防依据;(2) 场地勘察成果;地基和基础的设计方案:确定地基和基础的设计方案;(3) 建筑结构的抗震概念设计和性能目标:注重建筑结构抗震概念设计,确定、分析结构抗震性能目标;(4) 总体计算和关键部位计算的工程判断:正确判断结构计算分析模型和计算结果; (5) 薄弱部位的抗震措施:提出结构抗震加强措施; (6) 可能存在的其它问题。

2、超限审查报告编制模板实例(目录)XXXX项目超限高层结构抗震设防专项审查报告目录一、概述------31.1 工程概况------31.2 主要结构布置------41.3 专家咨询会意见------4二、设计依据 72.1采用的国家标准、规范、规程 72.2 其他依据及资料 7三、主要设计准则 83.1 结构设计基准期与设计使用年限 8 3.2 建筑结构安全等级 83.3 建筑结构抗震等级 83.4 结构控制性参数 8四、荷载 104.1 楼面荷载 104.2 阻尼比 104.3 风荷载 104.4 地震作用 134.4 温度作用 144.5 活荷载折减系数 144.6 荷载组合 14五、材料 155.1 混凝土 155.2 钢筋 155.3 钢材 155.4 焊接材料 155.5 螺栓 165.6 砌体材料 16六、场地条件与基础方案 176.1 位置环境及地形地貌 176.2 不良地质现象 176.3 岩土力学参数 176.4 场区水文地质条件及基础设计水位的确定17 6.5 场地地震效应 186.6 地基基础方案设计及防治措施建议 186.7基础方案选型 18七、结构体系 197.1 主塔楼结构高度 197.2 主塔楼结构体系 197.3 上部结构嵌固端 22八、结构超限判断与结构设计性能指标 238.1 结构超限分析判断 238.2结构设计性能指标 24九、弹性分析结果 259.1 振型与周期 259.2 地震质量与结构荷载 259.3 楼层剪力与倾覆弯矩 269.4 结构位移与层间位移 269.5 竖向不规则判定 279.6 楼层扭转比 309.7 楼层剪重比 319.8 整体稳定验算 339.9 核芯筒与框架的内力分配 339.10 墙柱轴压比 349.11 时程分析 349.12 风荷载下舒适度验算 389.13 弹性计算小结 38十、中震分析计算结果 3910.1 中震作用下构件性能目标及设计条件 3910.2 中震作用下核心筒承载力校核 3910.4 中震作用下伸臂桁架承载力复核 4210.5 中震作用下环带桁架承载力复核 4210.6 中震作用下框架梁承载力复核 4310.7 中震计算小结 44十一、罕遇地震弹塑性时程分析 4511.1 分析目的 4511.2 分析方法 4511.3 地震波数据 4511.4 材料滞回模型 4711.5 非弹性铰接特征值 4811.6 动力弹塑性时程分析及结果 4811.7 罕遇地震弹塑性时程分析结论 78十二、风荷载下舒适度验算 79十三、非荷载作用变形分析 7913.1 概述 7913.2 分析及设计依据 7913.3 混凝土收缩徐变影响分析 7913.4 竖向构件压缩变形影响及措施 82十四、楼面舒适度分析 8314.1 分析方法 8314.2 楼板主要振型及自振频率 8314.3 楼板竖向振动加速度响应 8514.4 结论 85十五、关键节点分析 8615.1 有限元模型 8615.2 材料模型 8715.3 边界条件及荷载 8715.4 有限元分析结果 8715.5 结论 89十六、抗震加强措施和结论 9016.1 针对超限情况的抗震加强措施 9016.2 结论 90附录 A 专家咨询会意见附录 B 结构计算书二、相关参数的调整及控制:1、周期调整:计算罕遇地震作用时,周期要调整,特征周期应增加0.05S(见抗规5.1.4条)。

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应谱法。

时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。

进行时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。

时程曲线的选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。

本文通过介绍常用的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。

关键词:时程分析,地震波,反应谱,动力计算1 地震反应分析方法的发展过程结构的地震反应取决于地震动和结构特性。

因此,地震反应分析的水平也是随着人们对这两个方面认识的深入而提高的。

结构地震反应分析的发展可以分为静力法、反应谱法、动力分析法这三个阶段。

在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。

[1]目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其中以加速度反应谱应用得最多。

反应谱是指:单自由度弹性体系在给定的地震作用下,某个最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。

反应谱理论是指:结构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。

其优点是物理概念清晰,计算方法较为简单,参数易于确定。

反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时等无关。

[1]时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。

由于此法是对运动方程直接求解,又称直接动力分析法。

结构动力弹塑性分析地震波的选取原则_王智军

结构动力弹塑性分析地震波的选取原则_王智军

文章编号:1673-5196(2013)04-0138-05结构动力弹塑性分析地震波的选取原则王智军,王 斌,李银文(兰州有色冶金设计研究院有限公司,甘肃兰州 730000)摘要:总结分析国内外地震波研究成果,结合中国相关规范,提出地震波选取原则:根据结构动力特性、反应谱曲线初选地震波,对结构进行弹性时程分析;然后对其分析结果依据振型分解反应谱法基底剪力的“下限”要求以及波的离散性筛选地震波,确定动力弹塑性时程分析的地震波;最后对弹塑性分析计算过程及结果进行分析判断,确保分析结果真实可靠.理论分析和具体工程实例表明,利用这一原则选取地震波,概念比较清晰,实施相对简单,有利于在结构动力弹塑性分析过程中迅速选择合适的地震波.关键词:动力弹塑性分析;地震波;反应谱中图分类号:TU375 文献标识码:ASelection principle of earthquake waves in structuraldynamic elasto-plastic analysisWANG Zhi-jun,WANG Bin,LI Yin-wen(Lanzhou Engineering &Research Institute of Nonferrous Metallurgy Co.,Ltd,Lanzhou 730000,China)Abstract:By means of summarizing and analyzing the investigation results of seismic wave domes and a-broad and incorporating with relevant codes,the selection principle of earthquake wave was presented andpreselected according to structural dynamic property and response spectrum curve to carry out the struc-tural elastic time history analysis.Then based on the analysis result,the earthquake wave was screen-se-lected based on the bottom shear limit requirement of mode-superposition response spectrum method anddiscreteness of the wave and the seismic wave of dynamic elasto-plastic time history analysis was deter-mined.Finally,the elasto-plastic analysis calculation process and its result were analyzed and determinedto ensure the reliability and validity of the result.It was shown by theoretical analysis and specific exam-ples in engineering that the concept of seismic wave selection with the proposed principle was clear,its im-plementation was simple,and was beneficial to select proper waves quickly in structural elasto-plastic dy-namic analysis.Key words:elasto-plastic dynamic analysis;earthquake wave;response spectrum 结构的地震响应随输入地震波的不同而相差甚大,直接影响计算结果的正确性和结构的安全[1-2].许多国家对地震波的选取进行了大量研究[3-5],中国《建筑工程抗震性态设计通则》[6]、《建筑抗震设计规范》[7]和《高层建筑混凝土结构技术规程》[8]对地震波的选取都有详细规定,但主要适用于线弹性时程分析,对于弹塑性动力时程分析规范没有明确规定弹塑性时程分析法中地震波选取依据,使得结构分析中地震波选取存在较大的随意性,严重影响了使 收稿日期:2012-06-17 作者简介:王智军(1976-),男,陕西蒲城人,工程师.用该方法分析结构弹塑性发展、破坏情况时结果的真实性.为了在罕遇地震下进行弹塑性动力时程分析时合理地选择地震波,避免分析结果失真,通过具体工程弹塑性动力时程分析,深入研究地震波的选取,提出地震波选取原则:根据结构动力特性,反应谱曲线初选地震波,对结构进行弹性时程分析;然后对其分析结果依据振型分解反应谱法基底剪力的“下限”要求以及波的离散性筛选地震波[5-6],确定动力弹塑性时程分析的地震波;最后对弹塑性分析计算过程及结果进行分析判断,确保分析结果真实可靠.第39卷第4期2013年8月兰 州 理 工 大 学 学 报Journal of Lanzhou University of TechnologyVol.39No.4Aug.2013DOI:10.13295/ki.jlut.2013.04.0351 工程概况某大底盘双塔连体结构,地上均为25层,地下3层,房屋高度(室外地面~主屋面)99.7m.主体结构均采用钢筋混凝土框架-剪力墙结构;地上1~5层通过大底盘裙房连为一体,两栋建筑在24、25层通过连接体连为一体;连接体部分采用钢结构,跨度为32.6m.该结构属于复杂体型结构,超限高层建筑.结构安全等级连接体为一级,其余为二级,基本风压为0.39kN/m2,地面粗糙度为C类,抗震设防烈度为8度,设计基本地震加速度值为0.20g,设计地震分组为第三组,场地类别为Ⅱ类,结构阻尼比为0.05.利用midas/building程序对结构进行反应谱分析,计算得到结构周期见表1.表1 结构周期Tab.1 Structure period振型周期/s x向平动因子y向平动因子z向扭转因子1 2.524 8 83.84 0 0.012 2.422 8 0 92.01 0.153 2.127 9 0.01 0.19 99.784 0.785 6 63.83 0 0.015 0.668 2 0.02 3.90 95.196 0.652 9 0 77.02 1.967 0.534 2 0.02 0.31 99.632 初选地震波根据结构周期、场地条件和反应谱曲线结合相关规范[2-5]要求,从midas/building程序中选取了Taft_h、Sanfer_t、Arc_09_w、Ashanghai、James_t、T1-1-1和Cpc_74_nor共7条波进行线弹性时程分析.7条波加速度时程曲线如图1所示.图1 7条地震波时程曲线Fig.1 Seven seismic wave time history curves3 筛选地震波对结构进行线弹性时程分析,依据振型分解反应谱法基底剪力的“下限”要求以及波的离散性2个方面筛选地震波,最终确定3条地震波用于动力弹塑性时程分析.1)依据振型分解反应谱法基底剪力的“下限”选择.图2给出7条波加速度反应谱与规范反应谱的对比情况,表2为时程曲线计算所得结构底部剪力与振型反应谱法计算结果的比较.从图2可以看出,波T1-T-1与反应谱相差较大,动力弹塑性时程分析时不予选择.其反应谱的平均值与规范反应谱相差较大,平均值只有少数点能够做到与规范反应谱“在各个周期点上相差不大于20%”,较难做到与规范反应谱“在各个周期点上相差不大于20%”,“在统计意义上相符”这一点只能从概念角度模糊做到.由表2可知Arc_90_w不满足相关规范要求,动力弹塑性时程分析时不予选择.经过选择,满足要求可用于动力弹塑性分析的波有Taft_h、Sanfer_t、Ashanghai、James_t和Cpc_74_nor.2)地震波的离散性.图3、4给出该结构7条波的多遇地震弹性时程分析法和反应谱分析法计算得到的顶点位移、基底剪·931·第4期 王智军等:结构动力弹塑性分析地震波的选取原则 图2 所选波的加速度反应谱与抗震反应谱的比较Fig.2 Comparison between acceleration response spectra and seismic response spectrum of selected wave表2 时程曲线计算所得结构底部剪力与振型分解反应谱法计算结果的比较 Tab.2 Comparison of shearing force at structure bottom between time-history curve computation and modal decompositionresponse spectrum computationTaft_h波Sanfer_t波Arc_90_w波Ashanghai波James_t波T1-T-1波Cpc_74_nor波反应谱波底部剪力/kNx向28 234 28 116 15 540 43 183 30 899 66 332 22 984 32 363y向31 251 27 875 15 711 42 546 29 060 64 527 37 194 35 529与反应谱的65%比较x向满足满足不满足满足满足满足满足21 034y向满足满足不满足满足满足满足满足23 094平均值与反应谱的80%比较x向33 613满足25 890y向35 452满足28 423图3 楼层位移Fig.3 Floor displacement·041· 兰州理工大学学报 第39卷图4 楼层剪力Fig.4 Floor shearing force力响应结果.表3为多遇地震弹性时程分析结果离散性的比较.表3 地震波离散性分析Tab.3 Discreteness analysis of seismic wave地震波顶点位移均值/mm顶点位移均方差/mm基底剪力均值/kN基底剪力均方差/kN7条x 106.89 64.12 33 613 40 884y 99.49 60.19 35 452 37 4745条x 98.02 25.77 31 085 15 104y 96.51 36.39 33 585 12 3223条x 90.70 3.12 29 083 2 225y 85.37 7.39 29 395 2 422 注:5条波指Taft_h、Sanfer_t、Ashanghai、James_t和Cpc_74_nor;3条波指Taft_h、Sanfer_t和James_t.从图3、4和表3可以看出:1)对于基底剪力而言,地震波弹性时程分析平均结果与反应谱分析结果比较接近,相差4%左右.7条波和5条波计算所得基底剪力的离散性均较大,均方差与均值的比值在20%以上.Taft_h、James_t和Sanfer_t 3条波计算所得基底剪力离散性较小,均方差与均值的比值在10%左右.2)对于顶点位移而言,地震波弹性时程分析平均结果与反应谱分析结果相差较小,相差6%左右.7条波和5条波计算所得顶点位移响应离散性较大,均方差与均值的比值在30%以上.离Taft_h、James_t和Sanfer_t 3条波计算所得散性较小,均方差与均值的比值在8%左右.3)产生较大楼层剪力的地震波,并不一定产生较大的楼层位移.地震波作用于不同方向时,其结构响应不同.7条波中,Taft_h、James_t和Sanfer_t这3条波基底剪力和顶点位移的时程分析结果与反应谱分析结果比较接近,离散性较小,可用于动力弹塑性分析.4 弹塑性时程分析动力弹塑性分析的关键是地震波的选取和动力弹塑性分析模型的确定.本文通过弹性时程分析已选择Taft_h、James_t和Sanfer_t 3条波用于动力弹塑性分析,有关参数见表4.动力弹塑性分析模型采用BUILDING程序默认的塑性铰模型,滞回模型见图5.通过计算分析,分别得到结构的最大位移、和最大层间位移角和最大基底剪力,见表5~7.表4 地震波最大加速度值和持续时间Tab.4 Maximum acceleration and duration of seismic wave地震波类型PGA/(cm·s-2)持续时间/sTaft_h天然波400 41.34>15James_t天然波400 15.92>15Sanfer_t天然波400 38.02>15图5 滞回模型Fig.5 Hysteretic model·141·第4期 王智军等:结构动力弹塑性分析地震波的选取原则 表5 结构最大位移Tab.5 Maximum displacement of structure mm 地震波激励方向位移x yTaft_hx 253.9y239.6James_tx 289.3y296.6Sanfer_tx 601.2y472.9表6 结构最大层间位移角Tab.6 Maximum displacement angle between structural layer地震波激励方向位移角x yTaft_hx 1/240y1/271James_tx 1/253y1/230Sanfer_tx 1/139y1/157表7 结构最大基底剪力Tab.7 Maximum base shear of structure kN 地震波激励方向基底剪力x yTaft_hx 127 355y122 815James_tx 109 422y123 397Sanfer_tx 134 925y146 360模型在3条地震波、2个不同方向的激励下,均能完成弹塑性分析,没有出现结果不收敛的情况.部分梁出现了塑性铰,柱、剪力墙、连接体桁架均未出现塑性铰,表明结构抗震防线明确,具有较好的抗震性能,能满足“强柱弱梁”和“大震不倒”的设防要求.5 结论弹塑性动力时程分析时,不同的地震波得到的结构响应不同,单纯依靠规范较难选取合理的地震波.本文提出地震波选取原则,概念比较清晰,实施相对简单,有利于在结构动力弹塑性分析过程中迅速选择合适的地震波.在规范没有明确规定弹塑性时程分析地震波选取依据的情况下,采用这一原则选取地震波不失为一种有效的方法.参考文献:[1] 杨志勇,黄吉锋,邵 弘.弹性与弹塑性动力时程分析方法中若干问题探讨[J].建筑结构学报,2008(6):213-217.[2] 王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(2):51-60.[3] 陆新征,叶列平,廖志伟.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2010.[4] 赵伯明,王 挺.高层建筑结构时程分析的地震波输入[J].沈阳建筑大学学报:自然科学版,2010,26(6):1111-1118.[5] 曹 资,薛素铎,王雪生,等.空间结构抗震分析中的地震波选取与阻尼比取值[J].空间结构,2008(9):3-8.[6] 中国地震局工程力学研究所.CECS 160:2004建筑工程抗震性态设计通则[S].北京:中国计划出版社,2004.[7] 中华人民共和国住房和城乡建设部.GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.[8] 中华人民共和国住房和城乡建设部.JGJ 3—2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.·241· 兰州理工大学学报 第39卷。

混凝土框架结构动力弹塑性分析

混凝土框架结构动力弹塑性分析

混凝土框架结构动力弹塑性分析发布时间:2022-08-15T02:04:34.681Z 来源:《工程管理前沿》2022年第4月7期作者:戚佳飞[导读] 在强震作用下,戚佳飞河南省京武高速公路有限公司郑州市 450001摘要:在强震作用下,结构一般都会出现非线性行为从而进入弹塑性阶段,结构的受力特点发生很大变化,因此有必要研究结构在地震作用下的全过程响应,以期提高结构的抗震性能。

采用ABAQUS软件建立纵横向单跨的5层钢筋混凝土框架结构的三维实体有限元模型,考虑三条地震波和结构阻尼,分别在多遇地震作用和罕遇地震作用下分析模型的地震基底剪力响应、顶层最大水平位移响应和层间位移角响应。

并运用反应谱法进行弹性时程分析,与动力时程分析中在多遇地震作用下的计算结果进行对比。

结果表明:结构在多余地震和罕遇地震作用下,该结构符合小震不坏、大震不倒的最低性能要求;对比弹性时程分析结果与反应谱分析结果,二者在统计意义上相符合,本文分析结果较为合理,对于类似结构的抗震设计具有一定的指导价值。

关键词:动力时程分析;钢筋混凝土框架;多遇地震;罕遇地震;反应谱分析0 引言目前抗震研究的一个重要方法就是通过分析地震资料,根据总结的地震作用后框架结构的典型震害现象及破坏机理[2],设计合理的抗震措施和整体结构体系,以减少地震带来的危害。

在强震作用下,结构一般都会出现非线性行为从而进入弹塑性阶段,因此研究结构构件在弹塑性阶段的位移、应力等各种响应,更加符合现今的理论要求,也使得现实的工程结构设计更加合理。

罗靓等[3]采用ABAQUS软件建立2层1榀1跨钢筋混凝土平面框架结构的模型进行连续地震作用下的时程分析,探讨该框架结构的结构损伤、塑性耗能分配机制以及混凝土、钢筋的应力-应变。

郑捷等[4]采用OpenSees将6层3跨钢筋混凝土空间框架结构简化为平面框架模型,分析柱轴压比、高宽比、混凝土强度、纵筋强度等参数对地震作用下层间位移角的影响。

91-杨志勇、王雁昆等-弹性及弹塑性时程分析地震波有效选取方法

91-杨志勇、王雁昆等-弹性及弹塑性时程分析地震波有效选取方法

弹性及弹塑性时程分析地震波有效选取方法杨志勇,王雁昆,黄吉锋(中国建筑科学研究院建研科技股份有限公司PKPM设计软件事业部北京100013)[摘要] 以工程实例说明弹性及弹塑性时程分析地震波选取的重要性;从“统计意义上相符”和“基底剪力的下限要求”等角度探讨了弹性时程分析选择地震波的基本原则和实际工程应用注意事项;通过基本理论分析和工程实例说明了如何利用位移谱在进行弹塑性时程分析时有效选取地震波。

[关键词] 弹性时程分析,弹塑性时程分析,地震波选取,反应谱,位移谱1引言正确选取地震波是保障建筑结构弹性、弹塑性时程分析有效性的重要因素,但设计人员在实际选取地震波时往往具有很大的随意性,甚至存在刻意筛选响应较小地震波的现象。

本文将从提高结构抗震安全性角度探讨地震波正确选取方法,以避免弹性、弹塑性时程分析流于形式,并为地震波的正确选取提供一些理论参考。

2弹性及弹塑性时程分析在结构设计中的必要性对于“小震”弹性阶段抗震设计而言,振型分解反应谱方法是现阶段的主流方法。

该方法依据规范规定的反应谱,在结构模态空间内得到各振型所对应的地震响应,进而采用CQC等组合方法进行振型叠加得到结构的最终地震响应。

其中规范所规定的反应谱是由数百条地震波通过概率平均化和平滑化后得到,且CQC振型组合方法也是基于平稳随机过程的概率保证方法,所以振型分解反应谱方法可以从概率意义上保证大多数结构地震响应计算足够保守。

但对于复杂高层建筑结构等一些特殊情况,该方法可能出现计算结果偏于不安全的个别现象,所以要选取多条实际或人造地震波进行附加弹性时程分析,以进一步保证结构的安全。

对于“大震”弹塑性阶段抗震分析而言,由于非线性问题的特殊性,目前阶段尚无法找到一种类似于弹性阶段振型分解反应谱方法的,基于概率的,可以应用振型解耦和叠加原理的,漂亮且简化的分析方法。

虽然学术界近年来在基于性能设计的PushOver方法等方面有所进展,但选取多条地震波进行弹塑性时程分析仍然是目前阶段保证结构“大震不倒”的主流分析方法。

弹塑性时程分析用地震波选取的基本原则1

弹塑性时程分析用地震波选取的基本原则1

弹塑性时程分析用地震波选取的基本原则2010-06-06 20:14:20| 分类:结构设计相关| 标签:高层建筑地震地震波地震资料|字号大中小订阅地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。

故要保证时程分析结果的合理性,必须合理选择输入地震波。

归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。

1、峰值调整地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。

A′(t) = (A′max/A max) A (t)其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。

2、频谱特性频谱即地面运动的频率成分及各频率的影响程度。

它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。

地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。

一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。

因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。

合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。

2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。

3、地震动持时地震动持时也是结构破坏、倒塌的重要因素。

结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。

有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。

三向地震波的合理选取和人工定义

三向地震波的合理选取和人工定义
加速度 方向:VERT,记录时长:40.00秒
时间(秒)
保留的旧版地震波库
18.3。如何人工定义地震波
在当前的工程目录下建立相应的地震波文件。 文件名应采用“ USER”加上“ 1”或“ 2”或其他阿拉伯数 字。 使用“.X”、“.Y”和“.Z”文件后缀给出主方向、次方向 和竖向所对应的地震波波形。如果用户给出了无后缀的 文件,则认为该文件中的内容为主方向的地震波波形。 例 如 “ USER1” 、 “ USER2.X” 、 “ USER2.Y” 、 “USER2.Z”等文件名都是合法的。 文件中第一行输入用户地震波步数N;在第2~第N+1行写 入地震波加速度值,单位任意,但要一致。
19.4。静力弹塑性分析方法
抗倒塌分析图
静力弹塑性分析方法的特点
静力弹塑性分析方法是将动力地震作用静力化的一种罕 遇地震分析方法。 考虑结构的弹塑性性质。 较动力弹塑性分析方法能一定程度上节省计算时间。 通过静力推覆分析过程可以了解结构的抗倒塌能力。 通过能力谱方法可以得到结构的罕遇地震下最大弹塑性 位移角。 能力谱方法存在“以第一振型振动为主、结构可以等效 为单自由度体系”等前提假定,能否适用于超高层结构 仍然需要探讨;但推覆分析过程有一定的普适性。
“塑性铰判断参数”:该参数与“塑性铰判断方法”相对应, 填入 0.0 ~1.0 之间的一个数值。当通过“弹性积分点比例” 判断塑性铰时,如果填入“0.3”表示“只有30%的端截面积 分点保持弹性时出现塑性铰”。当选择当通过“截面刚度退 化比例”判断塑性铰时,如果填入“0.3”表示“截面刚度退 化为初始截面刚度的30%时出现塑性铰” 。
σ(压) E0
强化
σ(压) σc 弱化 ε(压) 退化斜率 退化起始界

[整理版]正确选取地震波

[整理版]正确选取地震波

[整理版]正确选取地震波地震波的选取方法 (MIDAS(2009-05-16 22:51:32)转载?标签: 分类: 结构专业杂谈建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。

频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。

这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。

特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。

加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。

地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。

持续时间的概念不是指地震波数据中总的时间长度。

持时Td的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值,a(t),,k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*amax之间的时段长度,k ,0.5。

不论实际的强震记录还是人工模拟波形,一般持续时间取结构一般取0.3基本周期的5,10倍。

说明:有效峰值加速度 EPA,Sa/2.5 (1)有效峰值速度 EPV,Sv/2.5 (2)特征周期Tg = 2π*EPV/EPA (3)1978年美国ATC,3规范中将阻尼比为5,的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。

上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性时程分析用地震波选取的基本原则
地震动具有强烈随机性,分析表明,结构的地震反应随输入地震波的不同而差距很大,相差高达几倍甚至十几倍之多。

故要保证时程分析结果的合理性,必须合理选择输入地震波。

归纳起来,选择输入地震波时应当考虑以下几方面的因素:峰值、频谱特性、地震动持时以及地震波数量,其中,前三个因素称为地震动的三要素。

1、峰值调整
地震波的峰值一定程度上反映了地震波的强度,因此要求输入结构的地震波峰值应与设防烈度要求的多遇地震或罕遇地震的峰值相当,否则应按下式对该地震波的峰值进行调整。

A′(t) = (A′max/Amax) A (t)
其中,A′(t) 和A′max分别为地震波时程曲线与峰值,A′max取设防烈度要求的多遇或罕遇地震的地面运动峰值; A (t) 和Amax分别为原地震波时程曲线与峰值。

2、频谱特性
频谱即地面运动的频率成分及各频率的影响程度。

它与地震传播距离、传播区域、传播介质及结构所在地的场地土性质有密切关系。

地面运动的特性测定表明,不同性质的土层对地震波中各种频率成分的吸收和过滤的效果是不同的。

一般来说,同一地震,震中距近,则振幅大,高频成分丰富;震中距远,则振幅小,低频成分丰富。

因此,在震中附近或岩石等坚硬场地土中,地震波中的短周期成分较多,在震中距很远或当冲积土层很厚而土质又较软时,由于地震波中的短周期成分被吸收而导致长周期成分为主。

合理的地震波选择应从两个方面着手:1) 所输入地震波的卓越周期应尽可能与拟建场地的特征周期一致。

2) 所输入地震波的震中距应尽可能与拟建场地的震中距一致。

3、地震动持时
地震动持时也是结构破坏、倒塌的重要因素。

结构在开始受到地震波的作用时,只引起微小的裂缝,在后续的地震波作用下,破坏加大,变形积累,导致大的破坏甚至倒塌。

有的结构在主震时已经破坏但没有倒塌,但在余震时倒塌,就是因为震动时间长,破坏过程在多次地震反复作用下完成,即所谓低周疲劳破坏。

总之,地震动的持续时间不同,地震能量损耗不同,结构地震反应也不同。

工程实践中确定地震动持续时间的原则是:1) 地震记录最强烈部分应包含在所选持续时间内。

2) 若仅对结构进行弹性最大地震反应分析,持续时间可取短些;若对结构进行弹塑性最大地震反应分析或耗能过程分析,持续时间可取长些。

3) 一般可考虑取持续时间为结构基本周期的5 倍~10 倍。

4、地震波数量
输入地震波数量太少,不足以保证时程分析结果的合理性;输入地震波数量太多,则工作量较大。

研究表明,在充分考虑以上三个因素的情况下,采用3 条~5 条
地震波可基本保证时程分析结果的合理性。

相关文档
最新文档