固体物理作业二

合集下载

固体物理作业2

固体物理作业2

(a)在t=0时刻,选一电子,令P(t)为该电子在之后的t s内不受
碰撞的几率,电子是时间间隔t~t+dt 内收到碰撞的几率为:
P(t)-P(t+dt)=P(t)dt/τ
()

=−
()

积分得:P(t)=exp(-t/τ)
设P1(t)为该电子在t=0之前的t s内不受碰撞的几率,同理可得:
(c)由(b)知,电子连续两次碰撞时间间隔处于t和t+dt之间
的几率为(dt/τ)*exp(-t/τ)
所以电子连续两次碰撞的平均时间为:

= න
令 = /, =

Байду номын сангаас ‫׬‬0
0



=
dt/τ
11.20
2)说明并解释金属、半导体电导率随温度变化的差异。


对k空间态密度有:

又因为

代入上式
=



=
2
3
(2)
1
=
2
3
(2)
,所以 =
3

ℏ3
1 23
=
()
3
3
2 ℏ
考虑到热平衡状态下体系的均匀性, 0 (, )与r无关。
所以:
23
0 (, ) = 3 ()
亚铁磁:



= +
1
0


+ ′

−Θ
; ′为渐近居里点
; Θ为亚铁居里温度
12.4
Fe具有体心立方晶格,原子量=55.85,密度=7.86 g/cm3,

固体物理习题解答2

固体物理习题解答2

22;2A m a πε⎛⎫== ⎪⎝⎭A 点能量()22222222223,222B xyzK K K m m a a a m a ππππε⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++=++=⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦B 点能量所以/3B A εε=(c)如果二价金属具有简单立方品格结构,布里渊区如图7—2所示.根据自由电子理论,自由电子的能量为()22222xy z K K K mε=++,FerM 面应为球面.由(b)可知,内切于4点的内切球的体积343a ππ⎛⎫⎪⎝⎭,于是在K 空间中,内切球内能容纳的电子数为()3342 1.047332V N N a ππππ⎛⎫== ⎪⎝⎭ 其中3V Na = 二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953个电子可填入其它状态中.如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B 点).这样,晶体将只有绝缘体性质.然而由(b)可知,B 点的能员比A 点高很多,从能量上看,这种电子排列是不利的.事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Ferm 面.因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能.实际上,多数的二价金届具有六角密堆和面心立方结构,能带出现重达,所以可以导电.9,正方晶格.设有二维正方晶格,晶体势为()22,4cos cos .x y U x y U a a ππ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭用基本方程,近似求出布里渊区角,a a ππ⎛⎫⎪⎝⎭处的能隙. <解>以ˆˆ,i j 表示位置矢量的单位矢量,以12ˆˆ,b b 表示倒易矢量的单位矢量,则有,()11221122122ˆˆˆˆˆˆ,,,r xi yi G G b G b g b g b g g aπ=+=+=+为整数。

固体物理作业及答案

固体物理作业及答案

固体物理作业2.1 光子的波长为20 nm ,求其相应的动量与能量。

答:由λhP =,υh E =得:动量12693410313.3102010626.6----⋅⋅⨯=⨯⋅⨯==m s J ms J hP λ 能量J ms m s J chh E 189183410932.9102010998.210626.6----⨯=⨯⋅⨯⨯⋅⨯===λυ2.2 作一维运动的某粒子的波函数可表达为:, 求归一化常数A? 粒子在何处的几率最大?答:再由2)()(x x ψω=得:222)()(x a x A x -=ω 其中 a x ≤≤0;322222462)(x A x aA x A a dx x d +-=ω 令0)(=dx x d ω得:2,21a x a x ==而a x =1时,0)(=x ω,显然不是最大; 故当22ax =时,粒子的几率最大。

3.1 晶体中原子间的排斥作用和吸引作用有何关系?在什么情况下排斥力和吸引力分别起主导作用? 答:在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r , 当相邻原子间的距离0r r 时, 吸引力起主导作用;当相邻原子间的距离0r r 时, 排斥力起主导作用。

3.2已知某晶体中相邻两原子间的相互作用势能可表达为:(1) 求出平衡时两原子间的距离;(2) 平衡时的结合能;(3) 若取m=2, n=10,两原子间的平衡距离为3 Å,晶体的结合能为4 eV/atom 。

请计算出A 和B 的值。

答:设平衡时原子间的距离为0r 。

达到平衡时,相互作用势能应具有最小值,即)(r u 满足:0)(0=∂∂r rr u ,求得mn AmBn r -=10)(……(1) 将0r 代入,得平衡时的结合能mn mn m AmBn AmBn A r u --+-=n 0)(B )()( (2)当m=2,n=10时,由(1)式得5B=A 0r 8,再由0r =3Å,)(0r u -=4eV 代人(2)式可得: 109610001090.54)(m eV r r u B ⋅⨯=-=- 2192000100201050.4)(45)(m eV r r u r u r r A ⋅⨯=-=⎥⎥⎦⎤⎢⎢⎣⎡-=-B4.1 一定温度下,一个光学波的声子数目多,还是声学波的声子数目多? 答:频率为的格波的(平均) 声子数为:.因为光学波的频率比声学波的频率高, ()大于(), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.4.2 爱因斯坦模型和德拜模型的主要近似分别是什么?简述德拜温度及其物理意义。

固体物理课后习题与答案

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。

在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。

在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。

也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。

2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。

晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。

3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。

除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。

4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。

价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。

在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。

由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。

这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。

电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。

固体物理习题答案PPT课件

固体物理习题答案PPT课件
上述八个矢量的垂直平分面,形成了第一布里渊 区。
5 解: A2 b c,B 2 c a,C 2 a b
V c
V c
V c
V A (B C ) (2)3( b c )[ c ( a ) ( a b )] V c
A (B C )(A C )B (A B )C
6解:当 KCl 取 ZnS 结构时,晶体总相互作用
能为 utotN(zeRR q2)
已知:N=6.023*1023/mol, ρ=0.326埃,αZnS=1.6381,(见P103) 为NaCl结构时,Zλ=2.05*10-8erg, Z=6 当为ZnS 结构时,Z=4, Zλ=(4/6)*2.05*10-8erg
设ZnS 结构时,其晶格常数与NaCl结构相同, (为原子最近邻距离)
即 a=6.294埃(见P20,图20配位数为6,参见表10,表11, a=2*1.33+1.81=6.2埃),31/2a/4=2.72埃(为原子最近邻距
离)
u to 6 . 0 t 1 2 2 [ 3 0 6 4 2 2 . 0 1 5 8 e 0 0 2 . 3 . 7 2 2 1 . 6 6 2 . ( 3 7 4 . 8 1 8 2 1 8 0 1 0 e 1 5 0 0 ) 3 ] s 1 u . 8 K 5/ m 3 C
第二章 习题答案
3解:
(c)衍射先只出现在同时满足以下二个方程的方
向上:(1)acosθ1=nλ,(2) bcosθ2=mλ
(
a,b
为二个方向矢量)
所以在二个锥面的交线上出现衍射极大。当底板
//原子面时,衍射花样为二个锥面的交线与底板
的交点。
(d)反射式低能电子衍射(LEED)中,只有表面 层原子参与衍射,故为二维衍射,衍射点的周期 大小与晶体表面原子排列方向上周期大小成反比。

高二物理人教版课堂练习《固体》作业

高二物理人教版课堂练习《固体》作业

高二物理《固体》作业1.一个外形规则的固体,表面形状为六面体,则关于它的说法,正确的有()A.一定是单晶体B.一定是多晶体C.一定是非晶体D.可能是晶体,也可能是非晶体2.关于晶体和非晶体,下列说法中正确的是()A.有规则的几何外形的固体一定是晶体B.晶体在物理性质上一定是各向异性的C.非晶体在适当的条件下可能转化为晶体D.晶体有确定的熔点,非晶体没有确定的熔点3.在图甲、乙、丙三种固体薄片上涂蜡,由烧热的针接触其上一点,蜡熔化的范围如图甲、乙、丙所示,而甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图丁所示,以下说法正确的是()A.甲、乙为非晶体,丙是晶体B.甲、乙为晶体,丙是非晶体C.甲、丙为非晶体,乙是晶体D.甲为多晶体,乙为非晶体,丙为单晶体4.关于晶体和非晶体,下列说法中正确的是()A.可以根据各向同性或各向异性来鉴别晶体和非晶体B.一块均匀薄片,沿各个方向对它施加拉力,发现其强度一样,则此薄片一定是非晶体C.一个固体球,如果沿其各条直径方向的导电性不同,则该球一定是单晶体D.一块晶体,若其各个方向的导热性相同,则一定是多晶体5.下列叙述中正确的是()A.晶体的各向异性是由于它的微粒按空间点阵排列B.单晶体具有规则的几何形状是由于它的微粒按一定规律排列C.多晶体有确定的熔点是因为物质微粒的有规则排列D.石墨的硬度与金刚石相比差得多,是由于它的微粒没有按空间点阵分布6.关于石墨和金刚石的区别,下面说法正确的是()A.石墨和金刚石是同种物质微粒组成的空间结构相同的晶体B.金刚石晶体结构紧密,所以质地坚硬,石墨晶体是层状结构,所以质地松软C.石墨与金刚石是不同的物质微粒组成的不同晶体D.石墨导电,金刚石不导电是由于组成它们的化学元素不同7.下列说法正确的是()A.将一块晶体敲碎后,得到的小颗粒是非晶体B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变《固体》作业答案1.解析:选D.物体具有规则的几何形状可能是机械加工造成的,它可能是单晶体、多晶体和非晶体,故选D.2.判断晶体与非晶体的关键是有没有确定的熔点.因为外形是否规则可以用人工的方法处理,所以A错误;多晶体在物理性质上是各向同性的,B错误;实验证明非晶体在适当的条件下可以转化为晶体,C正确;晶体与非晶体的区别表现在是否有确定的熔点,D正确.故选CD.3.由图甲、乙、丙可知:甲、乙各向同性,丙各向异性;由图丁可知:甲、丙有固定熔点,乙无固定熔点,所以甲、丙为晶体,乙为非晶体,其中甲为多晶体,丙为单晶体.故D正确.故选D.4.多晶体和非晶体都显示各向同性,只有单晶体显示各向异性,A、B错误,C正确;单晶体具有各向异性的特性,仅是指某些物理性质,并不是所有的物理性质都是各向异性的,换言之,某一物质的物理性质显示各向同性,并不意味着该物质一定不是单晶体,D错误.故选C5.晶体内部微粒排列的空间结构不同决定着晶体的物理性质不同,也正是由于微粒按一定规律排列,使单晶体具有规则的几何形状.石墨与金刚石的硬度相差很大是由于它们内部微粒的排列结构不同,石墨的层状结构决定了它的质地柔软,而金刚石的网状结构决定了碳原子间的作用力很强,所以金刚石有很大的硬度.多晶体在熔化时需破坏晶粒的空间点阵,故有确定的熔点.故选ABC6.由化学知识知道,石墨和金刚石是碳的同素异构体,其化学性质相同.它们的分子的空间结构不同,石墨中的碳原子排列为层状结构,层与层之间距离很大,所以其质地松软;金刚石中的碳原子排列紧密,相互间作用力很强,所以其质地坚硬.显然A、C、D错误,B正确.故选B7.将一块晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.熔化过程中,晶体的温度不变,但内能改变,故选项E错误.故选BCD.。

固体物理答案第二章

固体物理答案第二章
6 σ 12 σ U ( R ) = 2Nε A12 A6 R R 式中R为最近邻原子间的距离 ε, 为最近邻原子间的距离, 为常数, 式中 为最近邻原子间的距离, σ, A6 , A12 为常数,试求
(1)平衡时原子间的最短距离; )平衡时原子间的最短距离; (2)平衡时晶体体积; )平衡时晶体体积; (3)平衡时体积弹性模量; )平衡时体积弹性模量; (
O
A
B
C
选取负离子O为参考离子,相邻两离子间的距离用R表示。 表示。 选取负离子 为参考离子,相邻两离子间的距离用 表示 为参考离子 第j个离子与参考离子的距离可表示为 roj = α j R 。 个离子与参考离子的距离可表示为 对于参考 离子O, 离子 ,它与其它离子的互作用势能为
zo z j e 2 ′ u0 = ∑ ± j roj

2.3 设两原子间的互作用能可由 u(r ) = α + βn 表述。 表述。 m
r r
式中第一项为吸引能,第二项为排斥能; 式中第一项为吸引能,第二项为排斥能; α, β 均为正的常 数。证明,要使这两原子系统处于平衡状态,必须m>n。 证明,要使这两原子系统处于平衡状态,必须m>n。 m>n 证明:相互作用着的两原子系统要处于稳定平衡状态, 证明:相互作用着的两原子系统要处于稳定平衡状态,相应 于平衡距离 r0 处的能量应为能量的极小值, 处的能量应为能量的极小值, 即当 r = r0 时,
对于面心立方, 个原子构成晶体体积 (2) ) 对于面心立方,N个原子构成晶体体积 3 a3 1 R03 V0 = N 2 R0 = N =N 4 4 2
6 σ 12 解: 1) 由 U( R) = 2Nε A12 A σ ( ) 6 R R

固体物理作业

固体物理作业

1. 泡利自旋磁化率.传导电子在零度()T 0≈时的自旋磁化率用其它的方法讨论令 n +=n (1+η)/2; ()1/2n n η-=-表示自旋向上和向下的电子浓度解:(1)在外磁场B 0, 电子气自旋向上部分的总能量为),1(21-)(105/30ημηε++=+B n E B这里F n εε1030=,费米能量F ε是在零场(B 0=0)时的能量.求相似表达E −. (2)最小能量值-++=E E E total 与η相关,1<<η,计算磁化率为203/2B F M n B με=解: ()1/2n n η+=+,(1)/2n n η-=- 分别表示自旋向上和向下的电子浓度。

由在外磁场0B 电子气向上部分的总能量为5/30053001(1)-(1)22B B E n B n B n n εημηεμ+++=++⎛⎫=- ⎪⎝⎭考虑到存在外加磁场0B 时,自旋方向相反的自旋磁矩在磁场中的取向能为0B B μ,所以53002B n E B n n εμ---⎛⎫=+ ⎪⎝⎭将(1)/2n n η-=-代入上式得 53001(1)(1)2B E n B εημη-=-+-(2) ),1(21-)(105/30ημηε++=+B n EB 53001(1)(1)2B E n B εημη-=-+-所以总能量55/33000055/3300055/33011(1)-(1)(1)(1)22(1)(1)33(1)(1)1010total B B B F F B E E E n B n B n B n n n B εημηεημηεηεημηεηεημη+-=+=+++-+-=++--=++--当能量取极小值时2/32/311(1)(1)022total F F B E n n n B εηεημη∂=+---=∂当1<<η时,将上式用泰勒级数展开并只取一级近似得:23F B n n B εημ-=推出32B F B μηε=代入上式中得到 223352B totalF F n B E n μεε=-上式中第二项为磁化能,故磁化强度为:232B F n B M με=2.氢原子的抗磁磁化率。

固体物理(胡安)第二版课后习题答案__完整版_校核版

固体物理(胡安)第二版课后习题答案__完整版_校核版

固体物理(胡安)第⼆版课后习题答案__完整版_校核版Word 版完整版校核版第⼀章晶体的结构及其对称性1.1⽯墨层中的碳原⼦排列成如图所⽰的六⾓⽹状结构,试问它是简单还是复式格⼦。

为什么?作出这⼀结构所对应的两维点阵和初基元胞。

解:⽯墨层中原⼦排成的六⾓⽹状结构是复式格⼦。

因为如图点A 和点B 的格点在晶格结构中所处的地位不同,并不完全等价,平移A →B,平移后晶格结构不能完全复原所以是复式格⼦。

1.2在正交直⾓坐标系中,若⽮量k l j l i l R l321 ,i ,j ,k 为单位向量。

3,2,1 i l i 为整数。

问下列情况属于什么点阵?(a )当i l为全奇或全偶时;(b )当i l之和为偶数时。

解: 112233123l R l a l a l a l i l j l kr r r r r r r...2,1,0,,321 l l l 当l 为全奇或全偶时为⾯⼼⽴⽅结构点阵,当321l l l 之和为偶数时是⾯⼼⽴⽅结构 1.3 在上题中若321l l l 奇数位上有负离⼦,321l l l 偶数位上有正离⼦,问这⼀离⼦晶体属于什么结构?解:是离⼦晶体,属于氯化钠结构。

1.4 (a )分别证明,⾯⼼⽴⽅(fcc )和体⼼⽴⽅(bcc )点阵的惯⽤初基元胞三基⽮间夹⾓相等,对fcc 为,对bcc 为(b )在⾦刚⽯结构中,作任意原⼦与其四个最近邻原⼦的连线。

证明任意两条线之间夹⾓θ均为'1cos 109273arc o '1cos 109273arco解:(1)对于⾯⼼⽴⽅ 12a a j k r r r 22a a i k r r r32a a i j r r r13222a a a a r r r1212121602a a COS a a a a o r rr r2323231602a a COS a a a a o r rr r1360COS a a o r r(2)对于体⼼⽴⽅ 12a a i j k r r r r 22a a i j k r r r r32a a i j k r r r r12332a a a a r r r12'12121129273a a COS a a a a o r rr r'1313131129273a a COS a a a a o r rr r r r'2312927COS a a o r r(3)对于⾦刚⽯晶胞134a i j k rr r r234a i j k r r r r2212122122314934a COS a r rr r1.5 证明:在六⾓晶系中密勒指数为(h,k,l )的晶⾯族间距为212222234c l a k hk h d证明: a b a r r元胞基⽮的体积a ai r rcos60cos301322b a i j ai ajo o r r r r rc ck r r20033022200a a a a c c倒格⼦基⽮ )33(2][2j i a c b ajaa c b334][2k c b a c2][2倒格⽮:***hkl G ha kb lc r r r r晶⾯间距***222cl b k a h Gd hklhkl2222222222ha kb lch a k b l c hk a b kl b c hl a cr r r r r r r r r 22423a a r 22423b a r 222c cr 2223a b ar r 0b c r r 0a cr r 122222222122222242424242333343hkld h k l hk a a a a h k kl l a c1.6 证明:底⼼正交的倒点阵仍为底⼼正交的。

固体物理第二章例题资料

固体物理第二章例题资料

1
1 n
2 6.02 1023 1.6381 22 1.602 10-19 2 1 - 1 8 3.14 8.85 10-12 3 5.41 10-10 5.4 4
3.17 106 J mol
9
例题7 有一维离子晶体,均为一价,正负离子各有N 个,最近邻离子间的排斥能为b/Rn。证明:
解:设平衡时r=r0,则有:

r0n

c exp
r0



du dr r r0
0,由U r 2 4 0r
-

rn
和U r
-N 2
e2

4
0r
- c exp
r


分别求导可得:


1 2r02

mn
r0 m

mn
r0 n


mn 2r02


r0 m


r0
n


把④代入①可得:
K0

1
9r0

d 2u dr 2

r0

1
9r0
mn 2r02

-

r0 m


r0
n


1
9r03
mn 2
2U N
i1 ai 2 3 4
8
15立方ZnS的晶格常数a=5.41Å,计算其结合能Eb。
解:ZnS晶体中最近邻的粒子是顶角上的 粒子和处在空间对角线四分之一处的粒子。R0

1 4

固体物理作业

固体物理作业

i
2 b
j
b
3
2 c
k
倒格子基矢与正格子基矢有相同的形式, 只是系数不同,
它们构成的倒格子也是底心正交的
27
固体物理
固体物理学
2. 非晶材料的结构
非晶不具有长程有序的特点。非晶态材料是一类新型的固体材料, 包括我们日常所见的种玻璃塑料高分子聚合物以及新近发展起来 的金属玻璃非晶态合金非晶态半导体非晶态超导体等等。晶态物 质内部原子呈周期性颁,而非晶态物质内部则没有这种周期性。 由于结构不同,非晶态物质具有许多晶态物质所不具备的优良性 质。玻璃就是非晶态物质的典型,对其结构的研究已有几十年的 历史并奠定了相当的基础。玻璃和高分子聚合物等传统非晶态材 料的广泛应用也早已为人们所熟悉,而近二、三十年、发展
金刚石结构的空间群属于简单空间群。 闪锌矿Zn晶格的空间群属于简单空间群
×
24
固体物理
固体物理学
规则的几何外形 宏观物理性质
对 称 性 平 移 对 称 对 晶 格 定 义 Bravais格 子 以 揭 示 宏 观 对 称
原胞 基矢
||
||
单胞 正交变换
晶列 晶向
32种 点 群
对称操作 对称素
晶格按对称性分类
晶体中不可能存在有五重对称轴
固体材料除了晶态和非晶态以外,还有一种介于晶态 和非晶态之间的新的状态,称之为准晶态
15
固体物理
固体物理学
合 金 的 电 子 衍 射 图
16
AlMn
固体物理
固体物理学
原胞的概念
原胞是指一个晶格的最小周期单 元。基矢是指原胞的边矢a1,a2,
a3
原胞示意图
a
1

固体物理2(1)

固体物理2(1)
8
CA =
a1 a3 − ⇒CA⋅ Kh = 0 h1 h3
同 CB⋅ Kh = 0 理 ⇒ Kh垂 于 直 ABC面 。
Kh
a1/h1 返回
dh1h2h3
a1 Kh a1 (h1b1 + h2b2 + h3b3 ) 2π = ⋅ = ⋅ = h Kh h Kh Kh 1 1
9
2-2 X射线衍射
6
小结2
• 光波通过光栅衍射的过程,其实质是把 光栅从坐标空间(坐标域)变换到了状态空 间(频率域),晶体的X射线衍射照片上的 斑点分布或图谱分布,一定程度上是晶 体结构在状态空间的化身。 • 倒格子是晶格在状态空间的化身。
7
倒格子与正格子间的关系
• 正格子晶胞体积Ω=a1⋅[a2×a3],倒格子晶胞体积 Ω*=b1⋅[b2×b3], Ω*=2π/ Ω; • 晶面(h1h2h3)与倒格矢Kh= h1b1+h2b2+h3b3正交 (证明在下页); • 晶面(h1h2h3) 间距d h1h2h3= 2π/Kh; • 把晶格的一族晶面转化为倒格子中的一点,这 在处理晶格的问题上有很大的意义,晶体的衍 射是由于晶格和波的互相作用,一族晶面干涉 的结果,在照片上得出一点。倒格点的平移可 得出倒格子空间。
π
π
e4 1+ cos2 2θ 求和⇒ Ie = I0 2 2 4 mRc 2 汤 孙 Thom )公 姆 ( son 式
说明电子散射强度随2θ而变,IPZ在2θ为0o和180o 的方向上,其强度为90o方向上强度的2倍,IPY 不变,故一束非偏振的X射线被电子散射后偏振 31 化了,偏振化程度取决于2θ角度大小。
19
劳厄法
• 对应于λ极小和λ极大间的任一波长的反射球 介于这两反射球之间; • 所有反射球的球心都在入射线方向上, 图中的阴影部分的倒格点和各球心的联 线都表示晶体可以产生的反射的方向。

东北师范固体物理16秋在线作业

东北师范固体物理16秋在线作业

固体物理16秋在线作业2一、单选题(共 20 道试题,共 60 分。

)1. 晶体的内能是指原子的动能与原子间的()能之和.. 动. 相互作用势. 晶体结合. 零点振动正确答案:2.. -. -. -. -正确答案:3.. -. -. -. -正确答案:4.. -. -. -. -正确答案:5. 晶体的点对称操作中有()种独立的基本操作.. 14. 32. 8. 230正确答案:6.. -. -. -. -正确答案:7. 石墨具有层状结构,石墨的层与层之间是靠()结合的,这种力很弱,所以石墨硬度较金刚石差。

. 库仑引力. 一种强相互作用力. 范德瓦尔斯力. 氢键正确答案:8. 长波近似情况下,一维双原子链的相邻原子的振动振幅比为1,表明. 长声学波的相邻原子相对振动;. 长声学波描述原胞质心的振动;. 长光学波描述原胞中原子的相对振动;. 长光学波的原子做相对振动,且质心不动;正确答案:9.. -. -. -. -正确答案:10. 晶体中体积最小的周期性结构单元常称(). 原胞. 晶胞. 布拉伐格子. 晶格正确答案:11.. -. -. -. -正确答案:12.. -. -. -. -正确答案:13. 晶体学中考虑到晶体对称性,将晶体结构划分为7个(),14种().. 布拉伐格子,晶系. 晶体结构,布拉伐格子. 晶系,布拉伐格子. 布拉伐格子,晶体结构正确答案:14.. -. -. -. -正确答案:15.. -. -. -. -正确答案:16. 离子性结合是以()而不是以原子为结合单元,即靠()间的静电库仑作用相互结合.. 离子,正负离子. 正负离子,离子. 负离子,正离子. 正离子,负离子正确答案:17. 立方晶系中的简立方晶格的倒格子结构是. 体心立方. 面心立方. 简立方. 立方密排正确答案:18.. -. -. -. -正确答案:19. 简立方结构的配位数是. 12. 8. 6. 4正确答案:20. 非晶体. 具有长程有序. 不具有周期性结构. 具有短程无序. 具有周期性结构正确答案:固体物理16秋在线作业2二、多选题(共 5 道试题,共 10 分。

固体物理复习题整理

固体物理复习题整理
3、体心立方中格矢 的格点与过原点的晶列[112]的距离为______。(a/√2)
第二章
基本概念:
1、固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合这四种基本形式。
2、离子性结合是指固体中原子与原子之间的结合方式是以离子形式结合的单位。
3、结合能:两粒子结合成稳定结构时所释放出来的能量,或者是破坏稳定结构所需要的最小能量。也就是两粒子处在平衡状态时所具有的势能。
所以,能态密度为
5、例3:求简单立方s态能带的能态密度。
解:简单立方s态能带为
很明显, 。
在长波区域 时, ,此时等能面是一个半径为 的球面,
在 的其他地方,颇为复杂。从其等能面图上可以看到,有些地方, ,也就是 的地方,这些地方,导致能态密度发散,这样的点称为范霍夫奇点,也叫临界点。
6、作业:(1)求二维自由电子的能态密度。
方向性是指原子只在特定的方向上形成共价键。
7、电离度:描述共价结合中离子性的成份。
8、原子的负电性是用来标志原子得失电子能力的物理量,负电性越大越容易得到电子,负电性越小,越容易失去电子。负电性=0.18(电离能+亲和能),(单位:电子伏特)
9、亲和能用来度量原子束缚电子能力的量,即一个中性原子获得一个电子成为负离子时所放出的能量。
4.(作业)一维双原子链中, , ,计算: 1、光学波 和 以及声学波 ;
5.(作业)计算相应的声子能量 ( 声子的能量 )
6.(作业)在T=300K下,三种声子的数目各为多少?(利用 来求声子数)
7.课本p.580.第3.4题:考虑一个全同原子组成的平面方格子,用 记第 行,第m列的原子垂直于格平面的位移,每个原子质量为M,最近邻原子的力常源自为c,解:两格点连线的位矢为

固体物理第二章答案

固体物理第二章答案

第21. 有一晶体,平衡时体积为 0V , 原子间相互作用势为0.如果相距为 r 的两原子互作用势为 ()n m r r a r u β+-= 证明(1) 体积弹性模量为 K=.90V mnU (2) 求出体心立方结构惰性分子的体积弹性模量.[解答]设晶体共含有 N 个原子,则总能量为U(r)=()∑∑i jij r u '21. 由于晶体表面层的原子数目与晶体内原子数目相比小得多,因此可忽略它们之间的基异,于是上式简化为 U=().2'∑jijr u N设最近邻原子间的距离为R 则有j ij a r =R再令 A ,1'∑=j m j m a A ,1'∑=jn j n a 得到 U=.200⎪⎪⎭⎫ ⎝⎛+-n n m m R A R A N βα 平衡时R=R 0,则由已知条件U(R 0) = 0U 得0002U R A R A N n n m m =⎪⎪⎭⎫⎝⎛+-βα 由平衡条件 0)(0=R dRR dU得021010=⎪⎪⎭⎫⎝⎛-++n nm m R A n R A m N βα. 由(1),(2)两式可解得.)(2,)(20000n n m m nR n m N U A nR n m N U A -=-=βα利用体积弹性模量公式[参见《固体物理教程》(2.14)式]K=0220209R R U V R ⎪⎪⎭⎫ ⎝⎛∂∂得K= ⎥⎦⎤⎢⎣⎡+++-n n m m R A n n R A m m N V 000)1()1(291βα = ⎥⎦⎤⎢⎣⎡-++-+-)(2)1()(2)1(2910000000n m N mR U R n n n m N nR U R m m N V nnm m = .900V mn U - 由于,00<U 因此,00U U -= 于是 K= .90V mnU (1) 由《固体物理教程》(2.18)式可知,一对惰性气体分子的互作用能为.)(126r B r A r u +-=若令 61,42⎪⎭⎫⎝⎛==A B B A σε,则N 个惰性气体分子的互作用势能可表示为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122)(R A R A N r U σσε.由平衡条件0)(0=R dRR dU 可得 R .2616120⎪⎪⎭⎫ ⎝⎛=A A σ进一步得 .2)(122600A A N R U U ε-==代入K=.900V mn U 并取 m =6,n =12,V 300334R N =得 K=5126123233⎪⎪⎭⎫⎝⎛A A A σε.对体心立方晶体有 A .11.9,25.12126==A 于是.1.703σε=K 2. 一维原子链,正负离子间距为a ,试证:马德隆常数为2=μ1n2. [解答] 相距ij r 的两个离子间的互作用势能可表示成.4)(2n ijij ij r br q r u +=πμ设最近邻原子间的距离为R 则有 R a r j ij =, 则总的离子间的互作用势能 U=()∑∑∑-⎪⎪⎭⎫ ⎝⎛±-=jn jn j j j ij a bRa R q N r u N ''0'114[22πε. 基中 jja 1'±=∑μ 为离子晶格的马德隆常数,式中+;- 号分别对应于与参考离子相异和相同的离子.任选一正离子作为参考离子,在求和中对负离子到正号,对正离子取负号,考虑到对一维离子两边的离子是正负对称分布的,则有.413121112)1('⎥⎦⎤⎢⎣⎡+-+-=±=∑Λj ja μ利用正面的展开式 1n(1+x ),432432Λ+-+-x x x x 并令 1=x 得Λ+-+-41312111=1n(1+1)=1n2.于是,一维离子链的马德常数为2=μ1n23. 计算面心立方面简单格子的6A 和12A(1) 只计最近邻; (2) 计算到次近邻; (3) 计算到次近邻.[解答]图2.26示出了面心立方简单格子的一个晶胞.角顶O 原子周围有8个这样的晶胞,标号为1的原子是原子O 的最近邻标号为2的原子是O 原子的最近邻,标号为3的原子是O 原子的次次近邻.由此得到,面心立方简单格子任一原子有12个最近邻,6个次近邻及24个次次近邻.以最近邻距离度量,其距离分别为:.3,2,1===j j j a a a 由 .1,112'126'6⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∑∑jj j j a A a A图2.6 面心立方晶胞得(1) 只计最近邻时1211*12)1(66=⎪⎭⎫⎝⎛=A , 1211*12)1(1212\=⎪⎭⎫⎝⎛=A .(2) 计算到次近邻时.094.1221*611*12)2(,750.1221*611*12)2(121212666=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A(3) 计算到次次近邻时.127.12033.0094.1231*2421*611*12)3(,639.13899.0750.1231*2421*611*12)3(121212126666=+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A 由以上可以看出,由于12A中的幂指数较大,12A 收敛得很快,而6A 中的幂指数较小,因此 6A 收敛得较慢,通常所采用的面心立方简单格子的 6A 和 12A 的数值分别是14.45与12.13.4. 用埃夫琴方法计算二维正方离子(正负两种)格子的马德隆常数. [解答]马德隆常数的定义式为 jja 1'±=∑μ,式中+、-号分别对应于与参考离子相异和相同的离子,二维正方离子(正负两种)格子,实际是一个面心正方格子,图 2.7示出了一个埃夫琴晶胞.设参考离子O 为正离子,位于边棱中点的离子为负离子,它们对晶胞的贡献为4*(1/2).对参考离子库仑能的贡献为图2.7二维正方离子晶格.121*4顶角上的离子为正离子,它们对晶胞的贡献为4*(1/4), 对参考离子库仑能的贡献为 .241*4-因此通过一个埃夫琴晶胞算出的马德隆常数为 .293.1241*4121*4=-=ν再选取422=个埃夫琴晶胞作为考虑对象,这时离子O 的最的邻,次近邻均在所考虑的范围内,它们对库仑能的贡献为,2414-而边棱上的离子对库仑能的贡献为 ,521*8221*4+- 顶角上的离子对为库仑能的贡献为 ,841*4-这时算出的马德隆常数为图 2.8 4个埃夫琴晶胞同理对932=个埃夫琴晶胞进行计算,所得结果为611.11841*41321*81021*8321*48458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ 对 1642=个埃夫琴晶胞进行计算,所得结果为614.13241*42521*81721*81021*8421*4184138108348458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ当选取 n 2个埃夫琴晶胞来计算二维正方离子(正负两种)格子的马德隆常数,其计算公式(参见刘策军,二维NaC1 晶体马德隆常数计算,《大学物理》,Vo1.14,No.12,1995.)为 [][].1,8411>+++=--n D C B A n n n n μ其中 ,21)1(,1)1(11111nB t A n n n t t n +-=+--=-=∑,1)1(1)1()2()1(1)1()1(2112212221112122122222222221⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+--+-+-+--++⎪⎪⎭⎫⎝⎛+++-+⎪⎪⎭⎫ ⎝⎛+---n n n n n C n n ΛΛ.121)1()1(2181222222+-+-++++-=n n n n n D n n Λ5. 用埃夫琴方法计算CsCl 型离子晶体的马德隆常数(1) 只计最近邻 (2) 取八个晶胞 [解答](1) 图2.29是CsCl 晶胸结构,即只计及最近邻的最小埃夫琴晶胞,图2.29()a 是将Cs +双在体心位置的结构,图2.9(a)是将 Cl -取在体心位置的结构,容易求得在只计及最近邻情况下,马德隆常数为1.图2.29 (a )Cs 取为体心的CsC1晶胞,(b) C1取为体心的CsC1晶胞(2)图2.10是由8个CsCl 晶胞构成的埃夫琴晶胞,8个最近邻在埃夫琴晶胞内,每个离子对晶胞的贡献为1,它们与参考离子异号,所以这8个离子对马德隆常数的贡献为8埃夫琴晶胞6个面上的离子与参考离子同号,它们对埃夫琴晶胞的贡献是21,它们与参考离子的距离为32R 它们对马德隆常数的贡献为-()3/2*621图 2.10 8个CsCl 晶胞构成的一个埃夫琴晶胞埃夫琴晶胞楞上的12个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是41它们与参考离子的距离为322R 它们对马德隆常数的贡献为-()3224/1*12埃夫琴晶胞角顶上的 8个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是81它们与参考离子的距离为2R 它们对马德隆常数的贡献为 -()281*8,由8个CsCl 晶胞构成的埃夫琴晶胞计算的马德隆常数.064806.32)8/1(*8322)4/1(*123/2)2/1(*68=---=μ 为了进一步找到马德常数的规律,我们以计算了由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数,结果发现,由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数是0.439665.马德隆常数的不收敛,说明CsCl 晶胞的结构的马德隆常数不能用传统的埃夫琴方法计算.为了找出合理的计算方法,必须首先找出采用单个埃夫琴晶胞时马德隆常数不收敛的原因.为了便于计算,通常取参考离子处于埃夫琴晶胞的中心.如果以Cs +作参考离子,由于埃夫琴晶胞是电中性的要求,则边长为pa 2(p 是大于或等于1的整数)的埃夫琴晶胞是由(2p )3个CsCl 晶胞所构成,埃夫琴晶胞最外层的离子与参考离子同号,而边长为(2p +1)的埃夫琴晶胞是由(2p +1)3 个 CsCl 晶胞所构成,但埃夫琴晶胞的最外层离子与参考离子异号,如果以C1-作参考离子也有同样的规律,设参考离子处于坐标原点O ,沿与晶胞垂直的方向(分别取为x,y,z 图2.11示出了z 轴)看去,与参考郭同号的离子都分布在距O 点ia 的层面上,其中i 是大于等于 1的整数,与 O 点离子异号的离子都分布在距O 点(i -0.5)a 的层面上,图 2.11(a) 示出了同号离子层,图2.11(b)示出了异号离子层.图2.11 离子层示意图(a)表示同号离子层, O 离子所在层与 O '离子所在层相距ia(b)表示异号离子层, O 离子所在层和O ' 离子所在层相距(i -0.5)a当 CsCl 埃夫琴晶胞边长很大时,晶胞最外层的任一个离子对参考离子的库仑能都变得很小,但它们对参考离子总的库仑能不能忽略.对于由(2p )3个CsCl 晶胞所构成的埃夫琴晶胞来说,最外层有6*(2p )2个与参考离子同号的离子,它们与参考离子的距离为(1/2)pa ~(23)pa ,它们与参考离子的库仑能为a pe 024πε量级,这是一个相对大的正值.对于由(2p +1)3个CsCl 晶胞所构成的埃夫琴晶胞来说,离外层有6*(2p +1)2个与参考离子异号的离子,它们与参考离子的库仑能为a pe 024πε-量级,这是一个绝对值相对大的负值,因此,由(2p )3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能,与由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能会有较大的差异.即每一情况计算的库仑能都不能代表CsCl 晶体离子间相互作用的库仑能.因此这两种情况所计算的马德隆常数也必定有较大的差异,由1个CsCl 晶胞、8个CsCl 晶胞和27个CsCl 晶胞构成的埃夫琴晶胞的计算可知, CsCl 埃夫琴晶胞体积不大时,这种现象已经存在.为了克服埃夫琴方法在计算马德隆常数时的局限性,可采取以下方法,令由 (2p )3个CsCl 晶胞构成的埃夫琴晶胞计算的库仑能为1U ,由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能为1U ,则CsCl 晶体离子间相互作用的库仑能可近似取作 )(2121U U U +=(1) 因子1/2 的引入是考虑除了(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞最外层离子外,其他离子间的库仑能都累计了两偏,计算1U 和2U 时要选取体积足够大的埃夫琴晶胞,此时埃夫琴晶胞最外层离子数与晶胞内的离子数相比是个很小的数,相应的马德隆常数应为 )(2121μμμ+=(2) 其中:=1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'是由(2p )3个CsC1晶胞构成的埃夫琴晶胞计算的值; =1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'由 (2p +1)3 个CsC1晶胞构成的埃夫琴晶胞所计算成本的值.为简化计算,特选取晶胞边长a 为计算单位,由于,32a R =所以,23'μμ= ⎪⎪⎭⎫ ⎝⎛±=∑'''1i i a μ (3) 其中'i a 是某一离子到参点的距离与a 的比值.考虑到对称性,对选定的埃夫琴晶胞,把晶胞的离子看成分布在一个个以参考离子为对称心的正六面体的六个面上,体积不同的正六面六个面上的离子分别计算.由(2p )3个CsC1晶胞构成埃夫琴晶胞时,由分析整理可得,231111⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i C B A μ (4) 由(2p +1)3个 CsC1 晶胸构成埃夫琴晶胞时,,231112⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i D B A μ (5)其中:),1(''''22'2'p i i y x k A i x iy y x i <≤++-=∑∑(6)i A 表示与 O 点距离为ia 的6个面上所有的离子对马德隆常数的面贡献,因为这些离子与参考离子同号,故到负号.'x 、'y 是离子在平面 '''y x o 上的坐标, ''y x k 代表 6个面上等价离子的个数,其取值规则为:(1) 在角上(如E 点),即'x =i 且 'y = i. 时, ''y x k =8;(2) 在棱与坐标轴的交点(如 F 点),'x =i 且'y = 0或 'x =0且'y = 0时, ''y x k =6 (3) 在棱上的其他点(如H 、I 点)即不满足上述条件,且'x =i 或'y = i.时, ''y x k =12 (4) 在'O 点,即'x =0且'y = 0时, ''y x k =6(5) 在除'O 点外的面上的点(如J 点),即不满足上述条件时,''y x k =24.),1()5.0(5.05.05.05.022'2''''''p i i y x k B i x i y yx i ≤≤-++=∑∑-=-=(7)i B 代表距O 点距离为(i -0.5)a 的6个面上的离子对马德隆常数的贡献,因为这种些离子与参考离子异号,故取正号. 'x ,'y 是离子在平面'''y x o 上的坐标, '''y x k 代表这6个面上等价离子的个数,其取值规则为:(1) 在角上(如K 点),即'x =i 且 'y = i.时, '''y x k =8;(2) 在棱下(如L 、M 点),即不满足不述条件,且'x =i 或'y = i 时,'''y x k =12; (3) 在面上(如N 点)好不满足上述条件时, '''y x k =24.),(0022'2'"''''p i i y x k C i x iy i yx =++-=∑∑==i C 表示在边长为2pa 的晶胞最外层,即与参考离子相距pa 的6个面上的离子对马德隆常数的贡献,应取负号,与iA 的不同在于"''y x k的取值: (1) 在角上, "''y x k =''y x k /8; (2) 在棱上, "''y x k =''y x k /4; (3) 在面上, "''y x k=''y x k /2.),()5.0(5.05.05.05.022'2''''''''p i i y x k D i x i y yx i =-++=∑∑-=-=i D 表示在边长为2a p )1(+的晶胞最外层,即与参考离子相距(p +0.5)a 的离子层对马德隆常数的贡献,应取正号,与i B 的不同在于'''''yx k 的取值: (1) 在角上, '''''y x k ='''y x k /8; (2) 在棱上, '''''y x k ='''y x k /4; (3) 在面上, '''''y x k ='''y x k /2.表2.1给出了计算结果,给出的μ是由分别对应2p 和2p+1的1μ和2μ求得的,实际上, 1μ和2μ只需对应边长相近的埃夫琴晶胞即可,如取对应2p 和2p-1的埃夫琴晶胞也可得到一样的收敛结果,由以上数据可见,马德隆常数μ随晶胞边长的增大而迅速收敛.该方法适用于NaC1结构以外离子晶体马德隆常数的计算.6.只计及最近邻间的排斥作用时,一离子晶体离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±-=-)2(,)1(,)(22r e R e e r u R ρλ(1)最近邻(2)最近邻以外 式中ρλ,是常数,R 是最近邻距离,求晶体平衡时,原子间总的互作用势.[解 答]设离子数目为2N,以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示为U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑-ρλR j j e R a e 2' (∑表示最近邻)=N ,2⎥⎦⎤⎢⎣⎡+--ρλμR e Z R e其中⎪⎪⎭⎫⎝⎛±=∑j ia 1'μ 为马德隆常数,+号对应于异号离子,-号对应于同号离子;Z 为任一离子的最近邻数目,设平衡时R=R 0 ,由平衡条件,02020=⎥⎦⎤⎢⎣⎡+=-ρρλμR R e Z R e N dRdU 得.0202ρλμρR e Z R e -=平衡时的总相互作用为.1)(0020200⎪⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡+-=-R R e N e Z R e N R U R ρμλμρ 7. 设离子晶体中,离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±+-=最近邻以外最近邻,,)(22re R b R e r u m(1) 求晶体平衡时,离子间总的相互作用势能)(0R U (2) 证明: )(0R U 11-⎪⎪⎭⎫⎝⎛∝m mZ μ其中μ是马德隆常数,Z 是晶体配位数 [解答](1)设离子数目为2N , 以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑m j j R b R a e 2'(∑表示最近邻) =N ,2⎥⎦⎤⎢⎣⎡+-m R b Z Re μ其中⎪⎪⎭⎫ ⎝⎛±=∑j i a 1'μ,为马德隆常数,+号对应于异号离子,-号对应于同号离子.Z 为任一离子的最近邻数目,设平衡时R=R 0由平衡条件,0102020=⎥⎦⎤⎢⎣⎡-=+m R R Zmb R e N drdUμ得10-m R Zmb=2e μ即1120-⎪⎪⎭⎫ ⎝⎛=m e Zmb R μ.于是,晶体平衡时离子间总的相互作用势能0U =).1(000--=⎥⎦⎤⎢⎣⎡+-m R NZbR b Z R Zmb N m m m(2)晶体平衡时离子间的相互作用势能可进一步化为0U =.)()()1()1(1111121211--------=⎪⎪⎭⎫ ⎝⎛--m m m m mm m m m m mb Ze Nbm e Zmb ZNbm μμ由上式可知 .110-⎪⎪⎭⎫⎝⎛∝m mZ U μ8.一维离子链,其上等间距载有正负2N 个离子,设离子间的泡利排斥只出现在最近邻离子之间,且为b/R n,b,n 是常R 是两最近邻离子的间距,设离子电荷为q ,(1) 试证明平衡间距下 )(0R U =;114212002⎪⎭⎫⎝⎛--n R n Nq πε(2) 令晶体被压缩,使0R )1(0δ-→R , 试证明在晶体被压缩单位长度的过程中外力作功的主项为c 2δ其中c=;21)1(02R n q n -(3) 求原子链被压缩了2)1(0<<e e NR δδ时的外力[解答](1) 因为离子间是等间距的,且都等于R ,所以认定离子与第j 个离子的距离j r 总可表示成为R a r j j =ja 是一整数,于是离子间总的互作用势能⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛±-=⎥⎥⎦⎤⎢⎢⎣⎡+=∑∑n i in j j j R b a R q N r b r q N R U 214242)('202'0πεπεμ,其中+、-分别对应相异离子和相同离子的相互作用.一维离子晶格的马德隆常数(参见本章习题2)为=⎪⎪⎭⎫ ⎝⎛±∑i ia 1'21n2. 利用平衡条件0)(0=R dRR dU得到b=nq 01-n 0241n2R πε,)(R U =⎪⎪⎭⎫ ⎝⎛---n n nR R R Nq 102141n22πε. 在平衡间距下⎪⎭⎫⎝⎛--n R Nq R U 1141n22)(0020πε.(2) 将互作用势能在平衡间距附近展成级数Λ+-⎪⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+=202200)(21)()()(0R R dR U d R R dR dU R U R U R R 由外力作的功等于晶体内能的增量,可得外力作功的主项为W=20220)(21)()(0R R dR U d R U R U R-⎪⎪⎭⎫ ⎝⎛=-, 其中利用平衡条件,将R=R )1(0δ- ,代入上式,得到W=δδπε)2(421)1(2102002NR R n q n ⎥⎥⎦⎤⎢⎢⎣⎡-. 晶体被压缩单位长度的过程中,外力作的功的主项δ02W NR =δπε⎥⎥⎦⎤⎢⎢⎣⎡-2002421)1(21R n q n 令c=202421)1(R n q n πε-(CGS)得到在晶体被压缩单位长度的过程中,外力作的功的主项为2δc . (3)设e δδ=时外力为F e ,由于在弹性范围内,外力与晶格的形变成正比,所以 F= )2(0δαNR , F e = )2(0e NR δα,其中α为比例系数离子链被压缩e NR δ02过程中外力作的功W e =δδαδδd NR NR Fdx e eNR e 020002)]2([0⎰⎰== e e e F NR NR δδα022022121)2(=.由于 W e =)2(20e eNR c δδ,所以离子链被压缩了e NR δ02时的外力为F e =202)1(21R n n q c ee δδ-=.9.设泡利排斥项的形式不变,讨论电荷加倍对NaC1晶格常数,体积弹性模量以及结合能的影响。

医科大学精品课件:固体物理作业及答案

医科大学精品课件:固体物理作业及答案

久期方程变为
E eikb 0 eikb* E
E2 ( )E ( 2 ) 0
E ( )2 42
2
2
6.5 一维单原子链,原子间距a,总长度为L=Na
1) 用紧束缚近似方法求出与原子s态能级相对应的能带函数
2) 求出其能态密度函数
的表达式
3) 如每个原子s态中只有一个电子,计算T=0K时的费密能级
6.4 由相同原子组成的一维原子链,每个原胞中有两个原子,
原胞长度为a,原胞内两个原子的相对距离为b :
(1) 根据紧束缚近似,只计入近邻相互作用,写出原子 s态
相对应的晶体波函数的形式。
(2) 求出相应能带的 E (K) 函数。
黄昆书 4.6 题
解:这是相同原子组成的一维复式格子,设第一套原子格点位置为xn,则第二套原子 格点位置为xn+b
解:(1)
势能的平均值
势能的平均值

V a2 m2 b2 m 2
96
6
在近自由电子近似模型中,势能函数的第n个傅里叶系数
第一个带隙宽度
Eg1 2V1
8b2
3
m 2
a2
2 3
m 2
第二个带隙宽度
Eg2 2V2
b2
2
m 2
a2
16
2
m 2
6.3 设有二维正方晶格,晶体势场为
U (x, y)
—— s态原子能级相对应的能带函数
—— s原子态波函数具有球对称性
—— 任选取一个格点为原点 —— 最近邻格点有12个
O
12个最邻近格点的位置
O
—— 类似的表示共有12项 —— 归并化简后得到面心立方s态原子能级相对应的能带
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Homework 2
1.Ultraviolet light of wavelength 350nm falls on a potassium surface. The maximum energy of the photoelectrons is 1.6eV . what is the work function of potassium? Above what wavelength will no photoemission be observed? 解:爱因斯坦光电效应方程:212
mv h ν=-Φ; Q 219191 1.6 1.6 1.610 2.56102
k E mv E eV J --==-=-=⨯⨯=⨯ 348
9196.62610310 1.6 1.949635010 1.610k k c
h E h E eV νλ---⨯⨯⨯Φ=-=-=-=⨯⨯⨯ Q 0h ν<Φ当时,电子无法脱离金属表面
1410151.9496= 4.7142104.1356674310eV s h eV s
ν--Φ<=⨯⨯g 8
0140c
3.010636.37.
4.714210nm λν⨯>==⨯即 故当0636.37nm λ>时,观察不到光电效应。

2. Reflection High Energy Electron Diffraction(RHEED) has become a commonplace technique for probing the atomic surface structures of materials. Under vacuum conditions an electron-beam is made to strike the surface of the sample under test at a glancing angle(θ<10。

略射角). The beam reflect off the surface of the material and subsequently strikes a phosphorescent screen. Because of the wave-like nature of the electrons, a diffraction pattern characteristic of the first few atomic layers is observed on the screen if the surface is fat and the material is crystalline. With a distance between atomic planes of d=0.5nm ,a glancing angle of 1。

, and an operating de Broglie wavelength for the electrons of 2dsinθ ,compute the electron energy employed in the technique .
解:根据波粒二象性知:h
h p p λλ=⇒= ①
而2
2122k p E mv p m
==⇒=② 根据题意知:2sin d λθ= ③
联立①②③得:
2342
23092(6.62610)2(2sin )20.9109410(20.510sin1?k h E m d θ---⨯==⨯⨯⨯⨯⨯⨯)
解得: 167.91210k E J -=⨯
故电子的能量为167.91210k E J -=⨯
3. An electron is confined to a 1 micron layer of silicon. Assuming that the semiconductor can be adequately described by a one-dimensional quantum well with infinite walls,(一维无限深方势阱) calculate the lowest possible energy within the material in units of electron volt. If the energy is interpreted as the kinetic energy of the electron, what is the corresponding electron velocity? The effective mass of electrons in silicon is 0.26 m 0, where m 0=9.11*10-31kg is the free electron rest mass 。

解:很明显此问题属于一维无限深方势阱问题
根据一维无限深方势阱的能量公式:22
2
(1,2,3)8n h E n m a ⨯==±±±•••⨯⨯ Q 最低的能量,很明显1n =±时,能量E 取得最小值。

则2342
2316219
0(6.62610)880.269.1110(110) 1.610h E eV m a ----⨯==⨯⨯⨯⨯⨯⨯⨯⨯⨯ 解得:61.44810E eV -=⨯
故最低能量61.44810E eV -=⨯.
若将此部分的能量解释为电子的动能,
根据*212
k
E m v =(其中
*m 为电子的有效质量) 则1398.664/v m s === 故1398.664/v m s =
故电子的速度为1398.664/v m s =。

相关文档
最新文档