平行线构造与等积变形—专题笔记

合集下载

相交线与平行线知识点归纳总结

相交线与平行线知识点归纳总结

名师总结优秀知识点《相交线与平行线》知识点总结段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.一:相交线三、平行线( 1 )相交线的定义1、在同一平面内,两条直线的位置关系有两种:平行和相交.两条直线交于一点,我们称这两条直线相交.相对的,我们称这两( 1)平行线的定义 :在同一平面内 ,不相交的两条直线叫平行线.条直线为相交线.记作: a∥ b;读作:直线 a 平行于直线 b .( 2 )两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.( 2)同一平面内,两条直线的位置关系:平行或相交,对于这一( 3 )在同一平面内,两条直线的位置关系有两种:平行和相交知识的理解过程中要注意:( 4 )对顶角:有一个公共顶点,并且一个角的两边分别是另一个①前提是在同一平面内;角的两边的反向延长线,具有这种位置关系的两个角,互为对顶②对于线段或射线来说,指的是它们所在的直线.角.∠ 1 和∠ 3,∠ 2 和∠ 4 是对顶角 .( 3)平行公理:经过直线外一点,有且只有一( 5 )邻补角:只有一条公共边,它们的另一边互为反向延长线,条直线与这条直线平行.具有这种关系的两个角,互为邻补角.2如图,过点 P 只有直线 a 与直线 b平行如图:∠ 1 和∠ 2,∠ 2 和∠ 3 是邻补角 .( 4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,( 6 )对顶角的性质:对顶角相等.(如图∠ 1 =∠ 3,13它是“能但只能画出一条”的意思.∠2=∠ 4)4( 5)平行公理的推论:如果两条直线都与第三条直线平行,那么( 7 )邻补角的性质:邻补角互补,即和为180°.这两条直线也互相平行.(如图∠ 1+∠ 2 = 180 °)如图,如果 a ∥ c, b∥ c,那么 a ∥c( 8 )邻补角、对顶角成对出现,在相交直线中,一个角的邻补角2、同位角、内错角、同旁内角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的( 1)同位角:两条直线被第三条直线所截形成的角中,若两个角一种位置关系.它们都是在两直线相交的前提下形成的。

2023年超用心相交线和平行线知识点总结

2023年超用心相交线和平行线知识点总结

相交线和平行线知识点总结在平面内不重叠旳两条直线相交与平行旳两种位置关系: 相交与平行。

在初中, 我们会愈加深入地研究角度旳关系。

角度旳关系和直线旳位置关系亲密有关。

5.1相交线一、邻补角与对顶角有关测试:(1) .若三条直线交于一点, 则共有对顶角(平角除外)( )A.6对B.5对C.4对D.3对(2)下列各图中, 与是对顶角旳是( ).直线AB.CD相交于点O, ⑴假如, 那么;⑵假如旳2倍大, 那么二、两条直线相交旳特殊位置: 垂线⑴定义, 当两条直线相交所成旳四个角中, 有一种角是直角时, 就说这两条直线互相垂直, 其中旳一条直线叫做另一条直线旳垂线, 它们旳交点叫做垂足。

符号语言记作:如图所示:AB⊥CD, 垂足为O⑵垂线性质1: 过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点旳所有线段中, 垂线段最短。

简称:垂线段最短。

有关测试:(1)如图, 点O 是直线CD 上一点, , , 求旳度数.(2)三角形ABC 中, , cm ,cm,cm.那么点B 到直线 AC 旳距离是___________, A.B 两点旳距离是________.怎样理解“垂线”、“垂线段”、“两点间距离”、“点到直线旳距离”这些相近而又相异旳概念分析它们旳联络与区别⑴垂线与垂线段 区别: 垂线是一条直线, 不可度量长度;垂线段是一条线段, 可以度量长度。

联络: 具有垂直于已知直线旳共同特性。

(垂直旳性质) ⑵两点间距离与点到直线旳距离 区别: 两点间旳距离是点与点之间, 点到直线旳距离是点与直线之间。

联络: 都是线段旳长度;点到直线旳距离是特殊旳两点(即已知点与垂足)间距离。

⑶线段与距离 距离是线段旳长度, 是一种量;线段是一种图形, 它们之间不能等同。

三. 平行线1.平行线旳概念: 同一平面内两条直线旳位置关系有两种 1.相交;2.平行 在同一平面内, 不相交旳两条直线叫做平行线, 直线与直线互相平行, 记作∥。

思维数学-等积变形

思维数学-等积变形

等积变形知识精讲三角形和平行四边形的关系非常紧密.回想它们的面积公式,如果我们把一个平行四边形沿对角线分成两块,那么每个三角形的面积正好是平行四边形的一半. 如图除了上面这种情形外,如图2中的阴影三角形由于和平行四边形底、高都相同, 所以面积也是平行四边形的一半.〔注意:长方形也是平行四边形〕例题1如图,平行四边形A8CD的面积是100平方厘米,石是其中的任意一.那么图中阴影局部面积是多少平方厘米?「分析」辅助线把整个图形分成了左右两个平行四边形,两个阴影三角形与它们分别有什么关系呢?练习1如图,石是平行四边形A8C.中的任意一点,△AEO与△七8c的面积和是40平方厘米,那么图中阴影局部的面积是多少?如图3,两条平行线间有四个三角形;三角形三角形243、三角形阪43和三角形NAB.它们的底相同.都是A8;高相等,都是两条平行线间的距离,所以这四个三角形的面积是相等的.进一步,我们可以在直线ON上任取假设干个点, 这些点分别与A、8两点形成假设干个同底等高的三角形,这些三角形的面积都是相等的.我们把这种“底相同,高相等〞的情况简称为“同底等高〞,“同底等高〞是我们敢早碰到的三角形等积变形的情形,而“等高〞放常见的情况就是平行线间的距离相等.如果两个三角形同底等高,那么它们的面积相等.利用平行线间的距离相等,构造同底等高的三角形,是很常见的三角形等积变形.例题2如图,平行四边形A8CQ的底边AO长20厘米,高.“为9厘米,E是底边8c 上任意的一点.那么两个阴影三角形的面积之和是多少平方厘米?「分析」能否通过等积变形,把两个三角形变成一个三角形呢?练习2如图,平行四边形A8CD的面积是100平方厘米.那么阴影局部的面积是多少平方厘米?H Dr c如图,A8E厂和8EF都是长方形.A8的长是4厘米,8c的长是3厘米.那么图中阴影局部的面积是多少平方厘米?「分析」能否通过等积变形.把上层与下层的三角形分别变成一个三角形呢?练习3如图,A8C.和C0E尸都是平行四边形,四边形A8FE面积为60平方厘米.请问:阴影局部面积是多少平方厘米?在利用同底等高三角形计算面积的题目中,就重要的一步就是去找其中的平行线, 进而寻找同底等高、面积相等的三角形■例题4如图,梯形A8c.中,石是对角线AC上的一点..石和A3平行.那么与△ AOC面积相等的三角形一共有哪几个?「分析」要找同底等高面积相等的三角形,首先必须找到平行线哦!如图,梯形A8C.中,共有几个三角形?其中面积相等的三角形共有哪几对?画辅助线是解决几何问题最常用、最重要的方法之一.一条好的辅助线.往往能把无从下手的复杂题目变得非常简单.一般我们习惯把辅助线画出虚线.在上一讲中,我们已经接触过了一些需要画辅助线解决的题目,在利用同底等高三角形计算面积的题目中,我们往往需要自己画出平行线去构造、寻找同底等高的三角形,进而进行面积转化.挑战极限例题5如图,大正方形的边长是10厘米,小正方形的边长是8厘米.求阴影局部的面积?「分析」图中的三角形底、高都是未知并且不可求的,能否通过等积变形,寻找与它们同底等高、面积相等的三角形呢?记得先找平行线哦.如图,梯形A3C0中,对角线相交于.点,由A0与8C行,那么就有△A8C与△ O8C同底等高、面积相等;△A3.与△AC.同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢?我们观察一下.△48.与43.£〕都包含有4 08.,而△A8C与△88面积相等,那么就有△ABO与△80面积相等.我们把梯形中出现的这三对三角形面积相等称作“梯形的两翼相等〞,由于△ A8O与△80恰好如同两片翅膝一般,有的时候我们也称其为“蝴蝶模型〞.“蝴蝶模型〞在几何中应用非常广泛,尤其是在高年级学习比例之后,而且,应用蝴蝶模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题6如图,长方形A8CZ〕内的阴影局部的面积之和为70.A3=8, AO=15,那么四边形EFGO的面积是多少?「分析」能否应用“蝴蝶模型〞,使得三块别离的三角形合并呢?作业1、如图,梯形A3CE是由正方形A8C.和等腰直角三角形C0E构成的.等腰直角三角形的斜边是10厘米,那么ABCE的面积是多少平方厘米?2、如图,长方形A88 的面积为6,那么平行四边形的面积是多少?3、如图,一个长方形被分成4个不同的三角形,红色三角形的面积是9平方厘米,黄色三角形的面积是21平方厘米,绿色的三角形面积是10平方厘米.那么蓝色三角形的面积是多少平方厘米?4、如图,长方形的长为16,宽为5.那么阴影三角形的面积和为多少?5、如图,直角梯形ABC.中,CD=30, 30=40, 8.和CO垂直.那么三角形A8C 的面积是多少?。

第五章相交线与平行线知识点整理

第五章相交线与平行线知识点整理

相交线与平行线知识点整理5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:⑵如果αβ∠∠与是对顶角,那么一定有αβ∠=∠;反之如果αβ∠=∠,那么αβ∠∠与不一定是对顶角; ⑶如果αβ∠∠与互为邻补角,则一定有180αβ∠+∠=︒;反之如果180αβ∠+∠=︒,则αβ∠∠与不一定是邻补角。

⑷两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作: 如图所示:AB ⊥CD ,垂足为O ⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:直线,垂足,直角记号⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画直线,不要画成给人的印象是线段的线。

4、点到直线的距离∙PABOABC DO直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

记得时候应该结合图形进行记忆。

如图,PO⊥AB,同P到直线AB的距离是PO的长。

PO是垂线段。

PO是点P到直线AB所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。

联系:具有垂直于已知直线的共同特征。

(垂直的性质)⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。

联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

平行线背景下的等积变形教学设计(简案)

平行线背景下的等积变形教学设计(简案)

《平行线背景下的等积变形》简案百善中心学校 黄光怀一、教学目标1. 课程标准(2011版)要求:结合实际情境,经历设计解决问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题,发展应用意识和能力。

2. 目标解析: A .了解① 知道平行线具有等积变形的功能,并能说出平行线等积变形的理由。

② 利用平行线直接转化三角形的面积。

B .理解① 在具体问题中,能发现或构造平行线进行等积变形。

② 会利用“等积变形”求图形面积,体会利用平行线等积变形的优越性。

C .掌握① 利用平行线等积变形的基本步骤和策略。

② 在利用平行线等积变形的过程中感受“转化与化归”、“类比”等数学思想方法。

二、教学过程1.复习引路,提出问题问题1:一个三角形的面积如何计算?图1问题2:如图1,现在有这样的两个△ABC 和△DBC ,其中点A ,D 在直线l 1上,点B ,C 在直线l 2上,且直线l 1∥l 2 。

(1)S △DBC 与S △ABC 有怎样的数量关系?为什么?(2)当点D 在直线l 2上运动时,S △DBC 与S △ABC 是否还能保持(1)中的数量关系?说说你的理由.(3)在直线l 1外,是否还能找到点D 的位置,使S △DBC =S △ABC ,说说你的理由。

2. 经历活动,建立模型【活动一】 如图2,已知△ABC,请作出一个三角形。

要求同时满足以下两个条件:(1) 与△ABC 有一条公共边; 图 2ABC l 1 l 2(2) 与△ABC 的面积相等且形状不同。

1. 由浅入深,识别模型(1) 如图3,等边△ABC 和等边△DCE 的面积分别为3和5,点B 、C 、E 在一直线上,则△ADE 的面积为_____________。

(2) 如图4,正方形ABCD 和正方形GCEF 的边长分别为a 和b ,点B 、C 、E 在一条直线上,则△AGE 的面积为_________.图3 图4 图5(3) 如图5,正方形ABCD ,正方形BEFG ,正方形PQFM 的边长分别为a ,b ,c ,顶点A 、B 、E 在同一条直线上,顶点G 、F 、Q 也在同一条直线上,点G 在线段DP 上,则△DEP 的面积为______。

戴宁老师春季班巩固复习题.第1讲.等积变形

戴宁老师春季班巩固复习题.第1讲.等积变形

第1讲 等积变形一、知识回顾1、三角形里的等积模型(1)两个三角形,如果底边相等,高也相等,那么它们的面积相等;两个三角形,如果底相等,一个的高是另一个的n 倍,那么它的面积也是另一个的n 倍; 两个三角形,如果高相等,一个的底是另一个的n 倍,那么它的面积也是另一个的n 倍。

(2)连结三角形任意两边中点,这条连线叫做三角形的中位线;三角形的中位线平行于三角形与它不相交的那条边,且中位线长度是这条边长的一半; 每个三角形都有三条中位线;一个三角形的三条中位线将这个三角形分成大小、形状完全相同的四个三角形。

2、平行线间的等积变换三角形的面积公式是2S =⨯÷底高.从这个公式我们发现:三角形的面积大小,取决于三角形的底与高的乘积. 如果三角形的底不变,高越大(小),三角形的面积就越大(小); 如果三角形的高不变,底越大(小),三角形的面积就越大(小).平行线之间的等积变形,如下图,ABC,ABD,ABE,∆∆∆夹在一组平行线之间,有公共的底边CD,那么ABC ABD ABE S S S ==∆∆∆.进一步推出当直线AB 与CD 平行时,有AOD BOC S S =成立。

这其实就是我们五年级即将学到的“梯形蝴蝶模型”中的重要结论。

技巧:固定住三角形的一条边不动,把另一个顶点在与固定住的边平行的直线上来回移动,三角形面积不变。

ODCB二、经典练习【例1】如图,在ABC 中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与ABE 等积的三角形一共有哪几个三角形?(不包括本身) 【考点】等底等高的三角形面积相等【巩固】在例1的图中画出:三角形ABD 的BD 边上的高、三角形ACD 的CD 边上的高、三角形EBD 的BE 边上的高。

【例2】如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上. (1)求三角形ABD 的面积是三角形ADC 面积的多少倍? (2)求三角形ABC 的面积是三角形ADC 面积的多少倍?【考点】两三角形高相等,底边的倍数关系等于面积的倍数关系EDCBA C DBA【巩固】如图所示,将一个长AD 为18厘米的长方形,分成一个三角形和一个梯形,而且梯形的面积是三角形的5倍。

【精心整理】平行线的性质知识点总结、例题解析

【精心整理】平行线的性质知识点总结、例题解析

平行线的性质知识点总结、例题解析知识点1【平行线的性质】(1)性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等.∵AB∥CD∴∠2=∠3(2)性质2:两条平行线被地三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补.∵AB∥CD∴∠2+∠4=180°(3)性质3:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等。

∵AB∥CD∴∠1=∠2【例题1】如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠AEC的度数。

【答案】∠ADE=80°;∠AEC=124°【例题2】如图,平行线AB。

CD被直线AE所截,若∠1=110°,则∠2等于()A、70B、80C、90D、110【答案】A【例题3】如图,已知AB∥CD,∠1=150°,∠2=______【答案】30°【例题4】在平面内,将一个直角三角板按如图所示摆放在一组平行线上:若∠1=55°,则∠2的度数是_______【答案】35°【例题5】如图所示,已知∠AOB=50 °,PC ∥OB ,PD 平分∠OPC ,则∠APC=______ °,∠PDO=______°【答案】50 ,50 ;【例题6】如图所示,OP∥QB∥ST,若∠2=110°,∠3=120°,则∠1的度数为________【答案】10°【例题7】如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF【答案】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【例题8】如图,已知AB∥CD,∠B=40°CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数。

相交线和平行线学霸笔记

相交线和平行线学霸笔记

相交线和平行线学霸笔记全文共四篇示例,供读者参考第一篇示例:相交线和平行线是几何学中的基本概念,是我们在课堂上经常接触的内容。

了解这些概念不仅有助于我们解决各种几何问题,也能帮助我们更好地理解几何学的原理和规律。

在本篇笔记中,我们将详细介绍相交线和平行线的定义、性质以及相关定理,希望能够对你的学习有所帮助。

一、相交线的定义相交线是指在同一平面上相交的两条直线。

当两条直线在同一平面上相交时,它们有一个公共点,这个点就是它们的交点。

根据交点的不同位置,相交线可以分为以下几种情况:1. 相交于交点的两条直线称为异面直线,它们在交点处的夹角不为180度。

2. 相交于一点的两条直线称为共面直线,它们在交点处的夹角为180度。

3. 相互交叉的两条直线称为交叉线,它们在交点处的夹角小于180度。

1. 平行线的斜率相等。

如果两条直线的斜率相等,并且它们在同一平面上没有交点,那么这两条直线就是平行线。

斜率的定义是直线上任意两个点的纵坐标差值和横坐标差值的比值。

2. 平行线之间的夹角为等角。

如果两条直线与一条直线相交,且分别与该直线的两个角相等,那么这两条直线就是平行线。

这个定理叫做同位角定理,也是平行线的一个重要性质。

三、平行线的性质平行线有许多重要的性质,下面我们将介绍其中几条:如果两条平行线相交,那么它们与交点相对的两个夹角是锐角。

这是平行线的一个重要性质,也是我们在解决几何问题时经常会用到的知识点。

3. 平行线的倒数产品是-1。

第二篇示例:相交线和平行线是几何学中非常基础的概念,而且在日常生活中也经常会遇到。

了解相交线和平行线的性质不仅有助于我们解决数学问题,还能帮助我们更好地理解周围的世界。

在本文中,我们将详细介绍相交线和平行线的性质,以及它们在数学中的应用。

让我们来看看相交线的性质。

相交线是指在平面上相互交叉的两条直线。

当两条直线相交时,它们会形成一对相交角。

相交角是指由相交线所形成的两个角,它们的顶点位于相交线的交点处。

人教版七年级数学下册 第五章 相交线与平行线 全章知识点归纳总结

人教版七年级数学下册 第五章 相交线与平行线 全章知识点归纳总结

相交线与平行线 全章知识点归纳总结5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线. 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.画法:⑴一靠:用三角尺一条直角边靠在已知直线上,A B C D O⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆.如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长.PO 是垂线段.PO 是点P 到直线AB 所有线段中最短的一条.现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b . 2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行. 因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行 4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥aPA BOa bc∴b ∥c 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.5、三线八角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角.如图,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做同位角(位置相同) ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内)内且交错)③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角.④三线八角也可以成模型中看出.同位角是“A ”型;内错角是“Z ”型;同旁内角是“U ”型.6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如:如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8.我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图.如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.ab l1 2 3 4 5 6 7 81 6 B A D23 45 7 89 F EC A B2 1 A C 1 7A B C D 2 6A DB F 1 BAF E5 8 C注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行几何符号语言:∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行.平行线的判定是写角相等,然后写平行.注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”.上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”.⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种: ① 如果两条直线没有交点(不相交),那么两直线平行.② 如果两条直线都平行于第三条直线,那么这两条直线平行.典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线.⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交. ⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏. ⑵正确⑶不正确,正确的说法是“过直线外一点”而不是“过一点”.因为如果这一点不在已知直线上,是作不出这条直线的平行线的.典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;A B C DE F 1 2 3 4⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠3+∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3平行线的性质1、平行线的性质:性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号语言: ∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补) 2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离.注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离.3、命题:⑴命题的概念:判断一件事情的语句,叫做命题. ⑵命题的组成每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显.对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式. 注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.A B C DE F 1 2 3 4 A E G BC FH D4、平行线的性质与判定①平行线的性质与判定是互逆的关系 两直线平行同位角相等;两直线平行内错角相等; 两直线平行同旁内角互补.其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.典型例题:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等,两直线平行) ∴∠2=∠C (两直线平行 同位角相等) 注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了.典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65°求∠2、∠3的度数 解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等)∵AB ∥DF (已知) ∴AB ∥DF (已知)∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等 2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化.②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.典型例题:如图,△ABC 经过平移之后成为△DEF ,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______. ⑶点_____的对应点是点F ;⑷线段AB 的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;A D F BE C 1 2 3⑹∠A的对应角是______.⑺____的对应角是∠F.解答:⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB.思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答.。

借助平行线实现等积变形

借助平行线实现等积变形

新课
自主完成、小组合作讨论
解析: 由于AC∥DE,所以
可以借助平行线实现 等积变形,于是△ADE 的面积就等于△DCE的 面积!
自主完成、 小组合作、 精讲解析
感谢聆听,敬请指正
BAOTUWANG POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
借助平行线实现等积变形
中考综汇报合人:复代用名习
教学目标:
1、通过中考真题,让学生了解利用平行线实现 等积变形在综合题目中的应用 2、学会利用平行线实现等积变形的方法 3、利用平行线实现等积变形在圆中问题的应用
一、引入(淄博中考题)
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与 y轴交于点C,其中A(-3,0),C(0,-2) (1)求这条抛物线的函数表达式; (2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标; (3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴 于点E.连接PD、PE.设CD的长为m,△PDE的 面积为S.求S与m之间的函数关系式. 试说明S是否存在最大值?若存在, 请求出最大值;若不存在,请说明理由.
汇报人:代用名

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A, B两点,与y轴交于点C,其中A(-3,0),C(0,-2) (3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作

平行线知识点

平行线知识点

引言概述:平行线是几何学中的重要概念,它具有广泛的应用。

在我们的日常生活中,许多事物都涉及到平行线,例如建筑设计、道路规划、电路布线等。

了解平行线的性质和应用,对于我们理解空间关系,解决实际问题具有重要意义。

本文将详细阐述平行线的知识点,分为引言概述、正文内容、总结三个部分。

正文内容:一、平行线的定义和性质1.1定义:平行线是在同一个平面上,不相交且永不相交延长的直线。

a)平行线与同一平面内的任意一条直线的交角为对顶角。

b)平行线与同一平面内的交角相等的两条直线平行。

c)平行线的两条边与同一平面内的一条直线分别相交,那么对应的内角互补。

d)平行线的两条边与同一平面内的一条直线分别相交,那么对应的外角相等。

二、平行线的证明方法2.1直角三角形的证明法:通过证明直角三角形的对边平行,可以得出直角三角形两条边上的点是平行线。

2.2使用平行线的性质:利用平行线的性质证明两条线段平行,可以通过证明其交角相等或者对应的内角互补来推断。

2.3使用反证法:通过假设两条线段不平行,然后推导出矛盾的结论,从而证明两条线段是平行线。

三、平行线的应用3.1建筑设计中的应用:在建筑设计中,平行线的概念常常用于确定建筑物的构造和设计。

例如,在绘图过程中使用平行线来绘制建筑平面图、立面图等。

3.2道路规划中的应用:在道路规划中,平行线的概念可用于确定道路的宽度和布局。

通过保持道路平行,可以提供良好的交通流畅性和安全性。

3.3电路布线中的应用:在电路布线中,平行线可以用于控制信号的传输和减小电磁干扰。

通过将平行线的路径保持一致,可以有效地减少电路中的环流和干扰。

四、平行线的相关定理4.1外角定理:如果两条平行线被一条横切线所切,那么这条横切线所对应的外角与这两条平行线的内角是互补的。

4.2内角定理:如果两条平行线被一条横切线所切,那么这条横切线所对应的内角与这两条平行线的对应内角相等。

4.3夹角定理:如果两条平行线被一条横切线所切,那么这条横切线的两边与这两条平行线之间的夹角互补。

第三讲 等积变形

第三讲  等积变形
答案:连接 .由于 与 是平行的,所以 也是梯形,那么 .
根据蝶形定理, ,故 ,
所以 (平方厘米).
2.右图中 是梯形, 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.
答案:连接 .由于 与 是平行的,所以 也是梯形,那么 .
∵在正方形 中, 边上的高,
∴ (三角形面积等于与它等底等高的平行四边形面积的一半)
同理, .
∴正方形 与长方形 面积相等. 长方形的宽 (厘米).
2.在边长为6厘米的正方形 内任取一点 ,将正方形的一组对边二等分,另一组对边三等分,分别与 点连接,求阴影部分面积.
答案;(法1)特殊点法.由于 是正方形内部任意一点,可采用特殊点法,假设 点与 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的 和 ,所以阴影部分的面积为 平方厘米.
答案;连接 .
∵ ,
∴ ,
又∵ ,
∴ ,∴ , .
B
6.如图,以正方形的边 为斜边在正方形内作直角三角形 , , 、 交于 .已知 、 的长分别为 、 ,求三角形 的面积.
答案;如图,连接 ,以 点为中心,将 顺时针旋转 到 的位置.
那么 ,而 也是 ,所以四边形 是直角梯形,且 ,
所以梯形 的面积为:
根据面积比例模型, 的面积为 .
A
1.如图所示,正方形 的边长为 厘米,长方形 的长 为 厘米,那么长方形的宽为几厘米?
答案;本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.
证明:连接 .(我们通过 把这两个长方形和正方形联系在一起).

北师大版八年级上册数学[平行线的性质知识点整理及重点题型梳理](提高版)

北师大版八年级上册数学[平行线的性质知识点整理及重点题型梳理](提高版)

北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平行线的性质知识讲解(提高)【学习目标】1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;2. 了解并掌握平行线的性质定理的探究过程;3.了解平行线的判定与性质的区别和联系.【要点梳理】要点一、平行线的公理、定理公理:两条平行线被第三条直线所截,得到的同位角相等.(简记为:两直线平行,同位角相等).定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、平行线的性质定理的探究过程1.两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).321cba因为a∥b,所以∠1=∠2(两直线平行,同位角相等),又∠3=∠1 (对顶角相等)所以∠2=∠3.2.两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).因为a∥b,所以∠3=∠2(两直线平行,内错角相等),又∠3+∠1=180°(补角的定义),所以∠2+∠1=180°.要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性. 要点三、平行线的性质与判定(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.【典型例题】类型一、平行线的性质公理、定理的应用1、如图所示,把一块长方形纸片ABCD沿EF折叠,∠EFG=50°,求∠DEG和∠BGM的大小.【思路点拨】根据平行线的性质可求得∠EFC的度数,然后根据折叠的性质可知∠NFE=∠EFC,∠MEF=∠DEF,继而可求得∠DEG和∠BGM的度数.【答案与解析】解:∵AD∥BC,∠EFG=50°,∴∠EFC=180°-∠EFG=130°,由折叠的性质可知,∠NFE=∠EFC,∠MEF=∠DEF,∴∠DEG=100°,∴∠EGC=180°-100°=80°,则∠BGM=∠EGC=80°(对顶角相等).【总结升华】本题考查了平行线的性质以及折叠的性质,解答本题的关键是由折叠的性质得出∠NFE=∠EFC,∠MEF=∠DEF.举一反三【变式】(2015•洛阳一模)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为度.【答案与解析】∵m∥n,边BC与直线n所夹的角为25°,∴∠BCD=25°.∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACD=60°﹣25°=35°.∵l∥m,∴∠α=∠ACD=35°.故答案为:35.2、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.【思路点拨】本题考查的是平行线的性质以及平行线的判定定理.(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.【答案与解析】解:(1)∠A+∠C+∠P=360;(2)∠A+∠C=∠P;(3)∠A+∠P=∠C;(4)∠C+∠P=∠A.说明理由(以第三个为例):已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不相邻内角之和,可得∠C=∠A+∠P.【总结升华】考生应熟知平行线的有关知识点,这是中考常考的题型.3、(2015•东莞)如图,已知AB∥CD,∠A=36°,∠C=120°,求∠F-∠E的大小.【思路点拨】过E作EG∥AB,过F作FH∥AB,可以求出∠AEG与∠HFC的度数,又EG∥FH,根据两直线平行,内错角相等,∠GEF=∠EFH,所以∠F-∠E=∠HFC-∠AEG.【答案与解析】解:过E作EG∥AB,过F作FH∥AB,∴∠A=∠1,EG∥FH,∵∠A=36°,∴∠1=36°,∵AB∥CD,FH∥AB,∴FH∥CD,∴∠C+∠4=180°,∵∠C=120°,∴∠4=60°,∵EG∥FH,∴∠2=∠3,∴∠F-∠E=(∠3+∠4)-(∠1+∠2),=∠3+∠4-∠1-∠2,=∠4-∠1,=60°-36°=24°.【总结升华】本题主要考查两直线平行内错角相等和同旁内角互补的性质,作平行线把∠F、∠E分成两个角是解题的突破口,也是关键.举一反三【变式】如图,已知且l1∥l2,且l3与l1、l2分别交于A、B两点,点P在直线AB上,(1)当点P在A、B两点之间运动时,问∠1、∠2、∠3之间的数量关系,请说明理由(2)如果点P在A、B两点外侧运动时,试探究∠1,∠2,∠3之间的数量关系(点P与A、B不重合)只要写出结论即可,不必证明.【答案】解:(1)∠1+∠2=∠3;理由:如图1,过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)∠1-∠2=∠3或∠2-∠1=∠3.理由:如图2,当点P在下侧时,过点P作l1的平行线PQ,∵l1∥l2,∴l1∥l2∥PQ,∴∠2=∠4,∠1=∠3+∠4,∴∠1-∠2=∠3;当点P在上侧时,同理可得∠2-∠1=∠3.类型二、平行的性质与判定综合应用4、(2016春•玉州区期末)如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°(1)求∠GFC的度数:(2)求证:DM∥BC.【思路点拨】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠EFG=∠1=35°,再根据角的和差关系可求∠GFC的度数;(2)根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【答案与解析】解:(1)∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC∴BD∥EF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;(2)∵BD∥EF,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC,∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.【总结升华】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.举一反三【变式】如图,已知∠1+∠2=180°,∠DEF=∠A,求证:∠ACB=∠DEB.【答案】证明:∵∠2+∠BDC=180°,∠1+∠2=180°,∴∠1=∠BDC,∴EF∥AB,∴∠DEF=∠BDE,∵∠DEF=∠A,∴∠BDE=∠A,∴DE∥AC,∴∠ACB=∠DEB.5、如图,已知:∠FED=∠AHD,∠GFA=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠FAC,求证:BD∥GE∥AH.【思路点拨】由同位角∠FED=∠AHD,推知AH∥GE,再根据平行线的性质、角平分线的定义证得内错角∠HAC=55°+15°=70°=∠ACB,所以BD∥AH,最后由平行线的递进关系证得BD∥GE∥AH.【答案与解析】证明:∵∠FED=∠AHD,∴AH∥GE,∴∠GFA=∠FAH.∵∠GFA=40°,∴∠FAH=40°,∴∠FAQ=∠FAH+∠HAQ,∴∠FAQ=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°,∵∠HAC=∠QAC+∠HAQ,∴∠HAC=55°+15°=70°=∠ACB,∴BD∥AH,∴BD∥GE∥AH.【总结升华】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.。

平行线知识点+四大模型

平行线知识点+四大模型

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°. (2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .练如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG=100°,∠FGH=140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。

新北师大版八年级数学上册第七章平行线的证明知识点复习

新北师大版八年级数学上册第七章平行线的证明知识点复习

AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。

3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档