核磁共振测井

合集下载

核磁共振测井不止用于井下测量_还可在地面测量岩芯

核磁共振测井不止用于井下测量_还可在地面测量岩芯

82023年4月上 第07期 总第403期能源科技| TECHNOLOGY ENERGY3月4日至13日,中国石油集团测井有限公司(简称中油测井)使用该企业自主知识产权的移动式全直径岩心核磁共振设备,在大港油田张巨河某重点评价井完成现场应用和全部解释评价任务,标志着该企业车载快速岩石物理实验室在大港油田首战告捷。

核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。

其中核磁测井(核磁共振测井),是测量地层中的氢核在地磁场中自由旋进的测井方法。

在传统的核磁测井中,现场作业人员需要将核磁仪器使用电缆下入井筒中。

中油测井天津分公司解释评价工程师宋宏业介绍传统核磁测井方法时表示,在地磁场的作用下,地层中那些自旋轴与地磁场不完全重合的氢核绕地磁场旋进。

如果在下井仪器中用极化线圈产生与地磁场垂直的强脉冲磁场(与地磁场比较而言),迫使氢核的自旋轴离开地磁场的方向,当极化磁场去掉后,它们绕地核磁共振测井不止用于井下测量 还可在地面测量岩芯通讯员 常洁芮磁场旋进并逐渐恢复到原有状态。

氢核的旋进在感应线圈中产生逐渐衰减的射频信号,其幅度取决于地层中自由流体的氢核数,称自由流体指数,而束缚水或死油对核磁测井不起明显作用。

井眼产生的信号衰减很快,可以通过延迟测量时间将其影响减至最小。

根据自由流体指数可获得岩石的自由流体孔隙度,配合其他资料可计算渗透率。

如果进而测量热弛豫时间,则可以区别油和水。

较传统的核磁测井方法相比,移动式全直径岩心核磁共振测井是车载岩石物理实验室搭载的移动式全直径岩心核磁共振测井仪器,能够实现在现场对刚出筒的岩心进行快速、连续、无损、高精度的一维T2与二维T1-T2核磁共振测量与资料快速处理解释,并获取可靠的地层孔隙度、孔隙结构、流体性质、含油饱和度等信息。

打个最恰当的比喻,在医院是把患者推进医疗核磁检测仪进行检测,而在井场,是把从地层取得的岩芯有序排入核磁共振测井仪进行检测。

在此次施工中,技术人员对钻井取心所获得的岩芯进行核磁共振测量,细化岩性综合分析,并结合显示情况,优化后续测量模式和井段,对于进一步系统掌握该区域产层岩性特点、分析储层物性主控因素有着重要意义。

《核磁共振测井全》课件

《核磁共振测井全》课件

储层表征
核磁共振测井提供了详细的储 层性质描述,包括孔隙结构、 孔隙度分布和岩石类型,有助 于优化开发和生产侵入性测量
核磁共振测井是一种非 侵入性测量技术,不需 要采集样品,可以在井 内直接获取地层信息。
2 高分辨率
核磁共振测井具有高分 辨率,可以获取细微的 地质和储层参数变化, 提供精确的地质解释。
3 仪器限制
核磁共振测井仪器的尺 寸和功耗限制了其在特 定井眼中的应用,需要 克服相关的工程和技术 问题。
核磁共振测井的案例研究
1
海上油气勘探
核磁共振测井在海上油气勘探中的应用,帮助发现油气藏和优化产能,提高勘探 和开发效率。
2
储层评估
核磁共振测井在储层评估方面的应用,提供可靠的地质参数和流体信息,指导油 气勘探和开发决策。
3
井间连通性
核磁共振测井用于评估油井间的连通性,检测压力变化和流体移动,帮助优化油 藏生产。
核磁共振测井的未来发展
先进测井技术
未来的核磁共振测井技术将更 加先进,实时、高分辨率、多 参数测量等特性将得到进一步 增强。
人工智能应用
结合人工智能技术,核磁共振 测井可以进行更精确的数据处 理和解释,提高解释的速度和 准确性。
环境友好型
未来的核磁共振测井技术将更 加环境友好,减少对地下水资 源和环境的影响。
《核磁共振测井全》PPT 课件
核磁共振测井是一种用于获取地下岩石和流体性质的非侵入性测量技术。通 过应用核磁共振原理,可以获得有关地下油气储层的重要信息。
什么是核磁共振测井?
1 原理解释
2 数据获取
核磁共振测井利用原子核的自旋和磁矩之 间的相互作用来研究储层的性质。它基于 核磁共振现象,通过识别和分析样品中的 核自旋状态来获取相关信息。

核磁共振测井原理

核磁共振测井原理

核磁共振测井原理
核磁共振测井(NMR)是一种地球物理测井技术,利用磁共振现象分析电磁信号来获取地下岩石中的孔隙结构和流体含量信息。

NMR测井原理基于核磁共振现象,即在强磁场中放置原子核会产生共振吸收现象。

在NMR测井中,沿井壁发射一系列短脉冲电磁信号,这些信号会激发旋转相干磁矩,进而引起共振吸收现象,并使得磁共振信号能够被测量。

这些信号可以表征岩石中的孔隙结构和流体含量。

NMR测井技术常见的参数包括自由液体体积(FFV),有效孔隙度、孔隙尺度和流体饱和度。

其中最重要的参数为FFV,它表征了岩石中的自由水体积。

知道FFV,可以确定孔隙中不同类型液体的含量,如水、油、混合物等。

有效孔隙度和孔隙尺度表征了岩石中的孔隙结构,可用于评估岩石的渗透性和储层质量。

流体饱和度则表征了岩石中所含流体的百分比,用于确定油田储层中可采储量和开发方案。

核磁共振测井的基本原理

核磁共振测井的基本原理

核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。

当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。

核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。

核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。

感应线圈的作用是把发射出去的核磁共振信号接收下来。

一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。

这些铁屑和颗粒对核磁共振信号会产生很大的干扰。

当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。

在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。

—— 1 —1 —。

核磁共振测井技术

核磁共振测井技术

MBMW m
TMA X T 2cutoff
S(T2 )dT2
有效孔隙体积
MPHE e
TMA X 4
S (T2
)dT2
总孔隙体积
MSIG t
TMA X T min
S
(T2
)dT2
渗透率
k c4 NMR ( FFI )2 BVI
目录
一、核磁共振测井简介 二、核磁共振测井测量及提供的信息 三、核磁共振测井提供的成果图件 四、核磁共振测井技术的应用
核磁共振测井技术的应用
储层识别及储层物性参数计算——划分常规测井曲线无法识别的储层
核磁共振测井技术的应用
储层识别及储层物性参数计算——直接区分可动流体和束缚流体
幅度 孔吼分布频率
各部分孔隙体积分布位置
孔吼半径(um)
1
1.6
2.5
4
6.3
10
16
25
10
岩样号:NP1-X
8
孔径分布
T2谱分布
6
毛管束 缚体积
T2很长且幅度大,短T2很少或没有
驱替和渗吸都已起到作用,大、小孔隙都已排油, 它吸水能力强,含水率高,已成了注入水凸进优势 通道,即“大孔道”,对于这样的层应控制注水速 度,以防注入水的低效和无效循环。
中水淹 弱水淹
T2很长但幅度变低,短T2多
这样的储层其大孔道中的油在水驱过程中驱动力的 作用下已经排出,而小孔道中仍存在残余油,这些 油要靠毛管力吸水排油的渗吸作用排出,注水时应 降低水驱速度,在低渗流速度下,发挥毛管力的吸 水排油作用,取得最佳驱油效果。
有效孔隙度
总孔隙度
核磁共振测井提供的成果
流体性质评价成果

核磁共振测井简介

核磁共振测井简介

引言核磁共振测井是一种适用于裸眼井的测井新技术,是目前唯一可以直接测量任意岩性储集层自由流体(油、气、水)渗流体积特性的测井方法,有明显的优越性。

本文主要讲解了核磁共振测井的发展历史、基本原理、基本应用、若干问题及展望。

发展历史核磁共振作为一种物理现象,最初是由Bloch和Purcell于1946年发现的,从而揭开了核磁共振研究和应用的序幕。

1952 年,Varian 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。

1956 年,Brown 和Fatt研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。

1960年,Brown 和Gamson研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。

但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。

因此,这种类型的核磁共振测井仪器难以推广。

1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。

这个方案后来成为核磁共振测井大规模商业化应用的基础。

但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。

1985 年,ZviTaicher和Schmuel提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。

1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。

此后,核磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。

核磁测井

核磁测井
解释方法考虑了砂泥岩地层泥质附加导电 的影响。
计算有效孔隙系统下的含水饱和度Sw 核需要常规电阻率、中子、密度测井曲线 磁测井直接提供了束缚水饱和度Swir 油层: Sw= Swir
无可动水 或 可动水含量少
识别高束缚水饱和度的低阻油层和泥质含 量高、物性差的低阻油层十分有效
赵71井 10号层
30 30
20 20
R=10.4396μ m
10 双组孔径发育 10
以大孔径为主
00
25 2.5
0.16 0.063
Shg(%)
核 磁 测 井 成 果 与 压 汞 资 料 R(μm)
赵61井 7号层
40 40 20 20 00
Shg(%)
2.5
6.3 2.5
0.16
1.0
00.4.063
1200
T 2,log
0.9
五、估计流体粘度
CMR对储层 的综合评价
六、其他应用
•低阻油层的评价 •中低孔、低渗储层的评价 •薄层评价
赵 低阻油层 113 井
典型油层
赵113井 32、33层 合试累计
产油51.9t 气3340m3
赵80井核磁解释成功实例
油61.2 气107207
3. 体积弛豫
–邻近分子的自旋运动产生的局部磁场 波动造成的。
孔隙尺寸与T2的关系
颗粒表面弛豫示意图
六、核磁共振资料的处理
由回波串得到如下信息:
–T2分布谱 –孔隙度MPHI、可动流体体积MBVM
、不动流体体积MBVI等
测量的是NMR 信号幅度, 需要的是T2分 布曲线
总衰减是所有孔径中流体衰减之和
侯 101 井 25

核磁共振成像测井作业技术规范

核磁共振成像测井作业技术规范

核磁共振成像测井作业技术规范1 引言核磁共振成像测井是在自然界物质间中引入一个强磁场,利用磁场和静态磁场引起核磁共振现象,来对几何异常结构进行成像,探测出围绕不同类型油气藏的空间结构信息,以指导油田勘探开发工作。

本文意在就核磁共振成像测井作业技术规范,提出相关详细资料,供大家参考。

2 技术规范要求(1)核磁共振成像测井规划阶段应付地球物理勘探的任务、具体的实施方法、地质问题的解决、技术风险分析等,并做好项目技术报告和施工组织方案;(2)测井仪器设备应符合国家质量标准及其安全法规的要求,设备安装和测试应符合国家相关规定;(3)对水泥环封承受力应符合国家规定,水泥环筒材质和尺寸应符合国家质量标准;(4)布井方式应符合国家标准,埋设区域采用专人负责,应按测井仪器的要求进行布井,质量应符合国家标准的要求;(5)测井作业应按照相关国家标准及行业规范要求进行,保证测井仪器测数据准确;同时,应配备安全装置,保证作业安全;(6)作业完成后,应对测井结果进行专业审查和重判,确保数据的准确性和质量;3 安全措施(1)作业前,应明确工作人员和项目负责人的职责,并制订好安全卫生操作规程。

(2)应根据区域的地质情况,把握安全防范的措施;(3)应严格按照国家的法律法规,把握安全防范的措施;(4)干涉测井应采用安全健康的手段,配备充足的安全防护服以及完善的管理措施,保障工作人员的安全;(5)应对作业周边地区进行密切监察,及时发现和纠正安全隐患;(6)在作业完成后,应保证现场整洁,应及时进行清理,也应当按要求拆除测井用的管道、仪器及环境处理,关闭口径大小,恢复原有状态。

4 总结核磁共振成像测井是一项重要的油气勘探技术,能够更加准确地对油气藏进行探测,对油气勘探行业有着重要的意义,必须要遵守相关技术规范要求,并落实安全措施,才能取得预期的效果。

核磁共振测井技术的现代应用趋势

核磁共振测井技术的现代应用趋势

核磁共振测井技术的现代应用趋势核磁共振测井技术(Nuclear Magnetic Resonance Logging)是一种应用于地球物理勘探领域的重要技术。

通过测量岩石中原子核自旋的共振现象,它可以提供有关地下岩石储层的重要信息。

在过去几十年中,核磁共振测井技术得到了广泛的应用和发展,为石油勘探、地质学研究以及地下水资源评估等领域提供了重要的帮助。

本文将探讨核磁共振测井技术在现代中的应用趋势。

一、高分辨率成像随着仪器设备的不断改进和技术的发展,核磁共振测井技术的分辨率得到了显著提高。

传统的测量方法主要关注岩石样品中液态水的分布,但现代的核磁共振测井技术已经可以提供更加详细的成像信息。

通过对地下储层中油、水、气等不同成分的测量和分析,可以获得更准确、更细致的地下岩石结构图像。

这种高分辨率成像技术可以帮助勘探人员更好地理解地下岩石储层的特征,提高勘探和开发效率。

二、多参数测量发展传统的核磁共振测井技术通常只能提供岩石储层的孔隙度信息,但现代核磁共振测井技术已经实现了多参数测量。

除了孔隙度,核磁共振测井技术现在还可以测量地下储层中的渗透率、饱和度、岩石孔隙结构等多个参数。

这些参数可以提供更全面、更准确的地下岩石特征信息,有助于勘探人员更好地评估岩石储层的潜力和开发价值。

三、非侵入式测井传统的测井技术通常需要进行试井操作,即在地下储层中打孔取样来获取岩石信息。

然而,这种试井操作会对地下储层造成一定的破坏,且操作成本较高。

与传统试井相比,核磁共振测井技术具有非侵入性的优势。

通过无需打孔取样直接对地下储层进行测量,核磁共振测井技术能够实现对地下岩石的准确评估,提高勘探效率的同时减少对地质环境的破坏。

四、多尺度测量与高精度定量随着核磁共振测井技术的发展,现代测井仪器已经可以实现多尺度测量和高精度定量。

不同尺度的地下岩石结构对储层特征的影响是不同的,因此,进行多尺度测量能够提供更全面的岩石信息。

与此同时,高精度定量分析也是核磁共振测井技术的重要发展方向。

核磁共振测井术语

核磁共振测井术语

核磁共振测井5.1 核磁共振 nuclear magnetic resonance(NMR)一种物理现象,是指原子核在静磁场中吸收电磁能,由稳定的射频磁场激发,使原于核能级发生跃迁的现象。

核磁共振测井中主要应用的是地层岩石中的氢核。

5.2 核磁共振成像测井 nuclear magnetic resonance imaging logging利用核磁共振现象进行的成像测井方法。

5.3 拉摩尔方程 Larmor equation拉摩尔方程如式(3);ƒ=ㄚB0∕2π (3)式中:ƒ——拉摩尔频率,MHz;ㄚ——旋磁比,MHz/TB0——磁感应强度,Gauss。

5.4 拉库尔频率 Larmor frequency原子核绕外加磁场进动的频率,由拉摩尔方程确定。

5.5 磁矩 magnetic moment原子核磁性质的量度,是引起离子在静磁场中排列的原因。

5.6 旋磁比 gyromagnetic ratio(ㄚ)核磁矩与角动量的比值,是原子核磁场强度的量度,对于确定的原子核,旋磁比是个常数。

5.7 磁化系数 magnetic susceptibility(x)表示物质磁化能力的参数。

岩石中孔隙流体与骨架磁化系数不同,将产生内部梯度磁场。

5.8 磁化矢量 magnetization描述原子核在外加静磁场作用下有序排列,是核磁矩的宏观表现,是核磁共振实验中观测到的物理量。

5.9 顺磁物质 paramagnetic materials在地层中能够被磁化的微量金属物质。

在核磁共振测井时,即使有少量的顺磁物质存在,也会急剧降低物质的弛豫时间。

5.10 核磁敏感体积厚度 sensitive-volume thickness核磁共振测井仪器能够提供的地层信息的厚度,受静磁场强度、梯度、射频磁场的频率及频带等的影响。

5.11 CPMG脉冲序列 Carr-Purcell-Meiboom-Gill pulse sequence(CPMG)测量T2弛豫时间的脉肿序列,由四位科学家名字的第一个字母缩写而成。

核磁测井原理与解释

核磁测井原理与解释
RF脉冲及相关的自旋回波就是所谓的Carr-Purcell-Meiboom(CPMG)序列,这是应用最广泛的NMR测井序列。自旋回波信号的包络线随特征时问常数(7"2)以指数规律衰减,称为横向弛豫时间或自旋一自旋弛豫(衰减)时间。外推到零时间(紧跟9O。脉冲)的自旋回波衰减曲线的幅度就等于推导的NMR总孔隙度(假设流体含氢指数等于1)。
反演结果是幅度A(T2),单位为孔隙度单位,对应于每个T2值。A(T2)对T2的半对数图称为分布。T2分布以下的面积等于NMR总孔隙度。
在饱和水的岩石中,T2分布定性地与孔隙大小分布有关。值一般从小于lms到几秒不等,相差几个数量级。在沉积岩中看到的T2值分布很宽,是由孔隙大小分布很宽引起的,T2分布中的每个T2的一阶近似值与孔隙直径大小成正比。因此,T2分布中的小T2值与小孔隙中水的信号有关,反之,大T2值与来自大孔隙中的水的信号相对应。
核磁共振测井技术的进展
关键词:核磁共振测井,测量原理,测井解释,储层评价
1历史回顾
人们第一次认识核磁共振(NMR)的潜在价值是在20世纪50年代,在60年代早期研制出核磁测井(NML)仪。NML仪因其许多局限性最终在80年代末停止了服务。尽管它有诸多局限性,但为支持NML测井而进行的实验研究,预见了今天仍在进行的多种地层评价,其中包括估算渗透率、孔隙大小分布、自由流体体积、原油黏度和润湿性。
2.3测前设计的重要性测前设计是进行一次成功的NMR测井的重要部分。测前设计包括服务公司和用户之间的紧密联系。服务公司已开发了施工设计软件,包括仪器配置,软件可以根据用户的目标来选择最优的NMR信号采集模式、测量参数和测井速度。电缆式NMR测井仪的测速取决于所采用的测井模式。决定测速最重要的因素之一是需要多长的极化时问,这取决于T的大小。含气和低黏度油的地层(值为几秒)需要很长的极化时间,结果会使测速降低(一般测速是76~274m/h)。在许多地层(如油的黏度大于10mPa·S的泥质砂层),测速可达548m/h或更快些。

核磁共振测井原理与应用书pdf

核磁共振测井原理与应用书pdf

核磁共振测井原理与应用一、核磁共振基本原理核磁共振(NMR)是物理学中的一种现象,其基本原理是原子核在磁场中的磁矩与射频脉冲之间的相互作用。

核磁共振在测井中的应用得益于其独特的物理性质,可以对地层岩石和流体进行无损检测。

二、核磁共振测井技术核磁共振测井技术利用了在地磁场中自由氢核(如H)的磁矩进动与射频脉冲的相互作用。

当射频脉冲停止后,氢核将恢复到原来的状态,这一过程中产生的信号可以被检测并用于分析地层性质。

核磁共振测井技术可以分为静态测量和动态测量两种。

三、岩石孔隙结构分析核磁共振测井可以提供关于岩石孔隙结构的详细信息。

通过测量地层中氢核的弛豫时间,可以推断出孔隙的大小、分布以及连通性,从而评估储层的渗透率和油气储量。

四、地层流体识别与分类核磁共振测井可以区分油、水、气等不同的流体,这是由于不同流体中氢核的弛豫时间不同。

此外,通过测量束缚流体和自由流体的比率,可以评估油藏的驱替效率和水淹程度。

五、地层参数反演通过核磁共振测井数据,可以反演地层的多种参数,如孔隙度、渗透率、含水饱和度等。

这一过程涉及到复杂的数学模型和算法,是核磁共振测井数据处理的关键环节。

六、测井数据处理与解释核磁共振测井数据处理包括原始数据的预处理、参数反演、解释和后处理等多个环节。

解释人员需要具备丰富的地质和测井知识,以便正确地解释测井数据,提供准确的储层评价结果。

七、核磁共振测井应用实例核磁共振测井在油气勘探和开发中得到了广泛应用。

例如,在评估油田的储层质量、监测注水作业效果、确定剩余油分布等方面发挥了重要作用。

具体实例包括评估某油田的储层孔隙结构和含油性、监测某气田的产气能力等。

这些实例证明了核磁共振测井在油气勘探和开发中的实用价值。

八、未来发展趋势与挑战随着技术的不断进步和应用需求的增加,核磁共振测井在未来将面临一些发展趋势和挑战。

例如,发展更高分辨率和灵敏度的核磁共振测井仪器、提高数据处理和解释的自动化程度、解决复杂地层和油藏条件下的应用问题等。

第3章_3核测井-3.4核磁共振测井

第3章_3核测井-3.4核磁共振测井

脉冲时间加倍,磁场旋转 180°,此时称做 180° 脉冲.
一个90° 脉冲加载之后, 会发生两个过程:
z
z
B0
y x x y
B0
XY平面,旋转开始,并逐步 发散开去 这就是横向弛豫,弛豫时间用 T2描述.
同时,它们也开始在磁场 方向重新排列(重极化) 这就是纵向弛豫,弛豫时 间用 T1描述.
4、核磁共振现象 氢核(质子)本身带电,质子具有自旋性,可
静态磁场使氢原子核进动产生的磁场方向
与其相同 (原子核被极化)。
只要静态磁场保持,任何刺激之后,氢核 将努力回复到该状态(它是一种低能态)。
静态磁场中的这种排列一旦 完成,我们就可以用射频脉冲磁场 加载到核子上:
射频磁场使极化场发生旋转 脉冲持续时间控制旋转角度的
大小.
当脉冲长度刚好使极化场旋转 90°,我们称之为 90°脉冲.
形成磁场,即质子具有一定的磁矩。在Z轴施加外加
磁场后(B0),氢核绕外磁场方向转动,这个转动
称为进动,进动频率0为:
0 B0
式中 :γ—氢核的旋磁比; B0—外加磁场的磁感应强度。
静磁场中质子的旋转和进动
4、核磁共振现象

核有磁性,没有外 磁场作用,核自旋 的方向是杂乱的。
4、核磁共振现象
优点:
1.迄今唯一能够直接测量储集层自由流体孔隙度的测井方法
2.测量准确可靠 3. 可以得到不受岩石骨架岩性影响的地层总孔隙度,还可以
准确地给出各种孔隙度参数,准确地区分不同的孔隙度成分, 如自由流体孔隙度、毛细管孔隙度、粘土束缚水孔隙度及微 孔隙度等。
4.还可提供束缚流体与可动流体相对体积,储层油气类型、孔 隙尺寸分布、渗透率、原油粘度、含油气饱和度和产能性质 等多种重要参数。

核磁共振测井常用发射序列研究

核磁共振测井常用发射序列研究

核磁共振测井常用发射序列研究核磁共振测井(NMR)是一种在地球物理勘探中广泛应用的技术,用于研究地下岩石的孔隙结构、流体含量和流体类型。

在核磁共振测井过程中,常用的发射序列是关键的环节之一、发射序列的选择和优化直接影响到测井数据的质量和解释结果的准确性。

核磁共振是电子和核子之间通过交换磁矩进行相互作用的一种现象。

核磁共振测井利用这种现象,通过应用电磁脉冲来激发样品中的核自旋,然后测量其返回到基态时所产生的信号。

不同的发射序列可以产生不同的测量效果,因此需要根据具体的测井目的和地质情况来选择合适的序列。

在核磁共振测井中,最常用的发射序列包括连续波(CW)、脉冲叠加(SP)和递增脉冲序列(T1IR)。

连续波序列是最简单的发射序列,它通过不间断地激励和测量核自旋,可以提供较好的信号分辨率,适用于测量流体饱和度和孔隙度。

脉冲叠加序列则通过多个脉冲进行叠加,可以得到更高的信噪比和更短的测量时间,适用于高精度测量和水合物含量估算。

递增脉冲序列则通过逐渐增加脉冲间歇时间,可以获取不同自旋组分的弛豫时间分布,用于解析不同孔隙流体。

此外,还有一些其他发射序列被广泛应用于核磁共振测井中。

例如,双量子共振(DQ)序列可以交叉激发两个不同化学势能的核自旋,用于测量流体类型和饱和度。

强制恒定梯度(CPIG)序列则通过在激发和检测之间施加恒定的磁场梯度,可以提高信号强度并增强流体鉴别能力。

相位交替(PA)序列则通过改变脉冲相位来增强信号强度,适用于低信噪比条件下的测量。

在研究核磁共振测井常用发射序列时,还需要考虑到地层的特性和目标测量参数。

不同的发射序列在测量效果上存在一定的差异,有些序列可能对一些地层特性更敏感,而有些则对其他参数更具有优势。

因此,在选择和优化发射序列时,需要结合地质学和物理学知识,根据地层条件和测井目的来进行综合考虑。

总之,核磁共振测井常用发射序列的研究是核磁共振测井技术发展中的重要问题之一、选择和优化适合的发射序列对于获得高质量的测井数据和准确的解释结果至关重要。

核磁共振成像测井作业技术规范

核磁共振成像测井作业技术规范

核磁共振成像测井作业技术规范核磁共振成像测井(NMRWellLogging)是一种非常先进的测井技术,可以用于采集准确的测井信息,以更好地评估油田矿床和流体。

本文旨在介绍核磁共振成像测井作业技术规范。

一、定义核磁共振成像测井(NMR Well Logging)是一种以核磁共振技术(NMR)为基础的、从地层探测电磁属性的新技术,该技术可以提供准确的、可靠的、全方位的小孔压力测井数据。

二、作业准备1.定测井方位:作业前需要确定测井方位,确定具体要施工的岩层,并进行深度的估计,以便为作业安排做好准备。

2.磁共振仪器的准备:核磁共振成像测井作业前需要准备核磁共振仪器,包括原子核磁共振仪器(NMR)、回旋共振仪器(CPM)和磁共振仪器(MRI)等。

3. 仪器调试:在仪器准备完成后需要对仪器进行调试,确保仪器正常工作,以及可以正常测量。

三、作业步骤1.动仪器:在仪器调试完成后,需要把仪器下到指定深度,启动仪器,开始测量准备。

2.量:对指定深度层位进行测量,并将测量结果进行数据处理,以获得更加准确的地层参数信息。

3.止仪器:在测量完毕后,需要停止仪器,并拔出仪器,以停止测量作业。

四、作业质量检查1.查仪器:在拔出仪器后,需要对仪器进行检查,以确保仪器在使用过程中没有出现故障。

2.据处理:数据处理和检查也是作业质量管理的重要部分,由于计算机科学家们近几十年来不断研发新的算法,在数据处理和数据检查方面也有了很大的进步,可以很好地帮助我们确保测井作业的质量。

3.量评价:在数据处理完成后,还需要对测井作业的质量进行评价,可以通过深度分布和电磁参数分析来评价测井数据的精度。

五、安全措施1. 仪器安全:在测井作业前,需要对仪器进行安全检查,确保其在降深过程中没有损坏,以防止出现意外。

2. 个人安全:为确保测井队员的人身安全,还需要严格遵守当地政府关于涉及安全的规定,并建立相应的安全管理制度。

3.境安全:作业期间应该保持清洁的环境,并减少环境污染,以防止出现意外。

核磁共振成像测井

核磁共振成像测井

a
9
9
2.2 用核磁共振测井研究岩石孔隙结构
实验研究表明:岩石孔隙流体的T2与孔隙直径相对应,小孔对应 短T2 ,大孔对应长T2 。当孔隙中为单相流体时,可直接刻度为孔隙 孔径大小,进而通过T2分布确定不同孔径大小的孔隙度。【1】
a
10
10
2.3 测量可动流体、毛细管束缚水和泥质束缚水
根据不同的孔径大小,利用实验分析确定的截止值,确定地层束缚 流体体积和自由流体体积,进而确定地层渗透率。【1】核磁测井估算渗 透率的前提是,核磁测井信息必须真实反映地层的孔隙度参数。【4】
时间,M0、T1、T2就是核磁共振测井要测量和研究的对象。【1】
z
z
B0
B0
y
x
横向弛豫(T2)。在XY平面, 旋转开始,并逐步发散开去。
y
x
纵向弛豫(T1)也开始在磁场 方向重新排列(重极化)。
a
3
3
核磁共振测井原理
完整的过程如下:
a
4
4
核磁共振测井应用
目前,在全世界范围内提供商业服务的核磁共振测井仪主要 有3种类型:
不同流体有不同的核磁共振特性,表1【3】是某地区在一定条 件下测得的不同流体的核磁共振特性,从中不难看出,水与烃(油、 气)的差别很大,油与气的差别很大,液体(油、水)与气体的扩散 系数差别也很大,利用流体的这些差别,以不同的方式观测和识别 孔隙流体类型。【1】
a
12
12
文献参考
[1] 赵永刚等.核磁共振测井技术在储层评价中的应用.天然气工业,2007,27(7) :42-44. [2] 陈杰等.储层岩石孔隙结构特征研究方法综述.特种油气藏,2005,12(4),11-15. [3] 齐宝权. NMR测井识别储层流体性质的方法及应用.西南石油学院学报,2001,23(1),18-21. [4] 莫修文.核磁测井资料的解释方法与应用.测井技术,1997,21(6):424-431. [5] 周红涛.核磁共振和MDT测井在塔河油田碎屑岩储层评价中的应用. 石油物探,2011,50(5 ),526-530. [6]原宏壮等,测井技术新进展综述。地球物理学进展.2005,20(3),786-795.

核磁共振测井资料解释与应用

核磁共振测井资料解释与应用

核磁共振测井资料解释与应用核磁共振测井(Nuclear Magnetic Resonance Logging,简称NMR 测井)是一种常用的地质测井技术,利用核磁共振原理对地下岩石进行非侵入性测量,可获取地层各种物理和化学参数的连续变化情况。

NMR测井资料是分析地层组成、孔隙结构和流体性质等信息的重要工具,在油气勘探、地下水资源评价和地质储层评价等领域有广泛的应用。

NMR测井资料提供了多个参数,包括有效孔隙度、孔隙尺度分布、孔隙直径、孔隙连通性和时间常数等。

根据这些参数,可以评估岩石孔隙结构特征,如孔隙度、孔隙分布、孔隙连通性,进而判断流体的储存和流动情况。

此外,NMR测井资料还可以提供岩石矿物组成信息,以及含油气饱和度、流体相态(油、气、水)比例和流体饱和度等。

NMR测井资料在油气勘探中的应用主要有以下几个方面:1.矿石特性评估:NMR测井资料可以获取到岩石的孔隙结构参数,如孔隙度、孔隙连通性等,进而评估储层的孔隙度分布、孔隙尺度、孔隙连通性等。

这些参数对于判断储层的储存和流动能力非常重要,对油气资源的评估和开发有着重要的指导意义。

2.资源评价和储量估算:NMR测井资料可以提供岩石中流体的类型、饱和度和流体饱和度等参数,这些参数对于评估油气资源的潜力和储量有着重要的作用。

结合地震和地质资料,可以对储层进行综合评价和储量估算,为油气勘探和开发决策提供科学依据。

3.储层评价和改造:NMR测井资料可以提供储层的孔隙结构参数,如孔隙度、孔隙连通性等,对于储层的评价和改造有着重要的作用。

通过对NMR测井资料的分析,可以确定储层的渗透率、孔隙度分布、孔隙连通性等,进而指导油气勘探和生产管理。

4.地下水资源评价:NMR测井资料可以提供地层中含水饱和度、孔隙结构和含水层分布等参数,对地下水资源的评价和开发有着重要的作用。

利用NMR测井资料,可以评估地下水资源的潜力和可开发性,从而指导地下水资源的开发和管理。

总之,NMR测井资料是一种重要的地质测井技术,可以提供地层的孔隙结构、流体性质和岩石组成等信息。

核磁共振测井技术2

核磁共振测井技术2

4、利用NMR测井识别油、气、水层
利用储层流体的不同弛豫特性和扩散特性,有 可能区分油、气、水层。
5、NMR测井和其他测井资料的综合应用
(1)、束缚流体测井。
(2)、CMR测量与电磁波传播EPT、超热中 子孔隙度测井APT结合可确定地层粉砂含量。
(3)、在墨西哥湾将NMR测井和传统的密度 、中子感应测井相结合,在高束缚水低阻油层 和油基泥侵入地层评价取得了好的效果。
谢谢!!
§2核磁共振测井的基本原理
氢核的自旋量子数I = 1/ 2 , 2 I + 1 = 2 ,所以其在 外磁场中仅有两个取向,即:顺磁场方向和逆磁场方 向。氢核与电磁场的作用强度和方向可用一组核磁 矩(M)的矢量参数来表示。在没有任何外场的情况 下,核磁矩(M)是无规律地自由排列的。沿着磁场 方向排列。当氢核的核磁矩处于外加静磁场B0中, 它将受到一个力矩的作用,自旋系统被极化(M重 新排列取向),从而会像倾倒的陀螺绕重力场进行 一样,绕外加磁场方向进动,进动频率ω0(拉莫尔频 率) , ω0与磁场强度B0 成正比
T2分布提供了有关储层岩石和流体性质非常有 用的信息,这也是NMR测井图上的基本输出。 NMR测井的其他输出大部分可根据T2分布计算出 来。根据NMR回波数据计算出的T2分布可用来计 算NMR总孔隙度、束缚流体孔隙度和自由流体孔 隙度,也能用来计算渗透率、评价储层质量
§3 核磁共振测井的仪器
核磁共振成像测井仪( MRIL—Prime ) 脉冲核磁共振(CMR)测井仪 MR 扫描仪
当储层孔隙空间充满油时 ,T2 分布测量数据取决于 原油粘度和组分。焦油和 重质稠油受其分子结构的 影响,衰减速度较快(即 T2 时间较短)
轻质油和凝析油的T2 时间谱与充满盐水的 较大孔隙的T2 时间 谱相叠合。储层中油 水混合条件下的T2 时间同时取决于孔隙 尺寸和流体特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
Magnetization
N N S N S
S S
N
S N S
N S
S S
f
N S
S
M = N ×
N
N
S
N
N
Many spins
z
Bo
8
M
y
S t
x
S
N
S
g
2
h I ( I + 1) B 3 KT
2
o
12
Nuclear Magnetism
单个自旋
自旋I=1/2的氢核,在外加磁场中,能级分裂成两个
Why NMR Logging …?
Sensitive volumes are poorly defined
f Neutron
Bore hole fluids effects Mud cake effects Rugosity effects Depth of investigation mismatch Vertical resolution mismatch
核磁共振测井
1
Why NMR Logging
2
Why NMR Logging…?
Formation
What will the reservoir produce?
Porosity f
f Neutron
Saturation Sw
f Density
Rw Sw= 2 f Rt
Sw > 60% water oil oil +
7
NMR Physics
核磁共振是磁场中的原子核对电磁波的一种响应,原子 核由质子和中子组成,质子带正电,中子不带电。质子与中 子统称为核子。所有含奇数核子以及含偶数个核子但原子序 数为奇数的原子核,都具有内秉角动量(或叫“自旋”)。 这样的核,自身不停地旋转,犹如一个旋转的陀螺。由于原 子核带有电荷 ,它们的自旋将产生磁场,象一根磁棒,该磁 场的强度和方向可以用核磁矩矢量来表示,即: μ =γ p 式中 μ — 磁矩; p— 自旋角动量; γ — 比例因子,被称 做旋磁比,是磁性核的一个重要性质,每一个核都有一个特 定的值,由实验测定。γ 可以为正,亦可以为负,所以核磁 矩的方向可能与核自旋角动量的方向相同或相反。 当没有外加磁场时,单个核磁矩随机取向,因此, 8 包含大量等同核的系统在宏观上没有磁性。
++ + + + + +
,即高能态和低能态,对应于核自旋进动的不同取向
Gyromagnetic Ratio (g):
Quantum Mech. Classical View View (Energy) (Orientation)
high E
2p m g = h I
determines measurement frequency
h = Plank’s constant I = spin quantum number
DE
low E
Applied Magnetic Field, Bo
13
对于被磁化后的自旋系统,再施加一个与静磁场 垂直、以进动频率 ω 。振荡的交变磁场 B1。从量子 力学的角度说,此时交变场的能量等于质子两个能级 的能量差,会发生共振吸收现象,即处于低能态的核 磁矩吸收交变电磁场提供的能量,跃迁到高能态,磁 化强度相对于外磁场发生偏转,这种现象被称为核磁 共振, 交变电磁场既可以连续地施加,也可以以短脉冲 的形式施加。现代核磁共振仪大多采用脉冲方法。它 具有许多优越性,特别在提高信噪比方面。由于谱仪 的工作频率大多在射频段,故把这样的脉冲电磁波叫 14 做射频脉冲。
4
Why NMR Logging …?
Resistivity log responses Formation model
Water porosity
fw
Complex texture
1. No resolution to capillary bound water; 2. Difficulty to determine clay bound water; 5 3. No sensitive to hydrocarbon types
Rock Properties
Reservoir Understanding
Fluid Properties
The NMR logging provides answers for:
Log Analyst Where are the HC’s ? How much HC ? What type of HC ?
Magnetization
+ + + + + + +
N
S S N S N N N S
9
g
=
2 p h
m
I
S
The Origin of Magnetization
+
10
当核磁矩处于外加静磁场中时,它将受到一个力矩 的作用,从而会象倾倒的陀螺绕重力场进行一样, 绕外加磁场的方向进动,进动频率ω 。又叫Larmor 频率,是磁场强度与核旋磁比的乘积,即: ω o=γ Bo 式中,Bo为外加磁场的强度。由于不同的核 γ 值不 一样,因此,在相同的外加磁场强度中,不同原子 核的进动频率亦不相同。 在外加磁场中,整个自旋系统被磁化,宏观上将 产生一个净的磁矩矢量和。单位体积内,核磁矩的 和,叫做宏观磁化量(M),即: M=∑μ i 这个非零宏观磁化量与外加磁场Bo平行。
f Density
Resistivity Rt
6
Why NMR Logging …?
• Total Porosity • Effective Porosity •Pore Size Distribution • Permeability •CBW / BVI / FFI • Hydrocarbon detection • Hydrocarbon typing
3
Permeability K
Rt
Sw < 40% 40% < Sw < 60% water
Why NMR Logging …?
Neutron / Density log responses Formation model
Complex mineralogy Porosity
f
Solids
1. Less sensitivity to pore fluids than to solid matrix; 2. Radioactivity sources.
Petrophysicist What are the fluids ? What is the reservoir quality? What will flow ? Reservoir Engineer What will produce ? At what rate? Which recovery strategy ?
相关文档
最新文档