有机小分子荧光探针的研究ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、激基缔合物(excimer/exciplex)
13
1 光诱导电子转移(PET, photo-induced electron transfer)
光诱导电子转移是指电子给体或电子受 体受光激发后,激发态的电子给体与电子 受体之间发生电子转移的过程。
识别基团与被分析物结合之前,荧光基 团受激发,最终被光激发到激发态的电子 不能跃迁到基态,使得荧光基团的荧光淬 灭。而识别基团与被分析物结合后,PET过 程受阻,荧光基团的荧光得以恢复。
6
作为荧光基团的香豆素和作为识别基团的邻氨基苯硫
醚以席夫碱相连,加入锌离子后,与硫醚上的硫原子、席 夫碱上的氮原子及香豆素上的氧原子配位得到结构2,抑 制了席夫碱上C=N键的旋转,实现了荧光从无到有的变化
1
2
基于键合-信号输出法设计的锌离子荧光探针
7
2、置换法
识别基团 结合荧光基团
被分析物
识别基团
当识别基团与被分析物结合后,识别基团HOMO轨道能量降低,使 PET过程受阻,这样荧光基团的激发态电子可以返回基态,荧光恢复 。
Analyte
strongly fluorescent
识别基团决定了探针分子的选择性和特异性,报告基 团则决定了识别的灵敏度,而连接体部分则可起到分 子识别枢纽的作用。
4
荧光分子探针的设计原理
荧光分子探针的设计原理主要有以下几种: 键合-信号输出法、置换法和化学计量计法。 1、键合-信号输出法
荧光 连接体 识别 被分析物
灵敏度高 选择性好 使用方便 成本低 不需预处理 不受外界电磁场影响 远距离发光
3
荧光分子探针的结构
荧光分子探针通常由 三部分组成:
Fluorephore Spacer
识别基团(receptor)
hv
报告基团(fluorophore)
连接体部分(spacer)
F
S
Receptor R
12
荧光探针的响应机理
荧光分子探针主要有如下几种响应机理:
1、光诱导电子转移(PET, photo-induced electron transfer)
2、分子内电荷转移(ICT, intramolecular charge transfer)
3、荧光共振能量转移(FRET, fluorescence resonance energy transfer)
基团
基团
信号输出
键合-信号输出法是指将探针中的识别基团和荧光基团 通过共价键连接起来设计荧光探针的方法。
5
当识别基团与被分析物结合时会引起荧 光基团的化学环境发生变化,通过颜色的 改变、光谱的移动、荧光强度的增减等现 象来表现,这些变化可被裸眼或者仪器识 别。这是目前为止在设计荧光探针中应用 最广泛的方法 。
一、探针分子和被分析物发生化学反应后形成共价化合物(I); 二、被分析物催化探针分子反应生成两种新物质(II)。 一般而言,基于化学计量计原理设计的荧光分子探针通常具有不
可逆性和较好的选择性。
11
基于化学计量计法设计的次氯酸根离子荧光探针
根据次氯酸根可以氧化羟胺的特性,设计合成 了化合物5,当次氯酸根存在时可氧化羟胺结构, 使罗丹明开环,从而形成结构6,最终进一步水解 为罗丹明6G本身7,而产生强烈的荧光。而其它氧 化性分子没有这样的特性,Leabharlann Baidu此可以实现对水相 中次氯酸根的高选择性检测。
结合被分析物
基于置换法设计的荧光探针
荧光基团
该原理是利用识别基团分别与荧光基团和被分析物结合能 力的不同来实现对被分析物的检测。
识别基团和荧光基团形成络合物,当被分析物加入到该体系中时,由 于识别基团与被分析物的结合能力要强于识别基团与荧光基团的结合能力, 因此被测物将荧光基团置换出来,从而引起了整个体系荧光等化学参数的 变化,进而为仪器或者裸眼识别,该原理常用于设计阴离子荧光探针。
9
3、化学计量计法
探针分子 被分析物
新物质A
探针分子 被分析物
中间体
新物质B 新物质C
基于化学计量计设计的荧光探针 (I)被分析物和探针分子反应形成了共价化合物; (II)被分析物催化探针分子反应生成两种新物质
10
化学计量计法是利用探针分子和被分析物之 间发生的特定化学反应(一般是不可逆反应) 来改变探针所处的化学环境,从而对被分析物 进行识别的一种方法。根据化学计量计法设计 的探针可以称为化学计量计,主要包括两种类 型:
14
PET识别分析物理论示意图
PET过程可以用前线轨道理论具体解释:当识别基团 不存在时,荧光团被光激发后,其最高占据轨道(HOMO) 的一个电子跃迁到最低空轨道(LUMO),能够产生荧光;
若外来识别基团的HOMO或LOMO轨道介于荧光团两轨 道能量之间,此时就可以发生识别基团与荧光团之间的电 子转移而导致荧光的猝灭。即PET过程阻止了荧光团的一 个电子从激发态到基态的非辐射跃迁途径,降低了荧光团 的量子产率,表现为荧光强度的减弱或淬灭。
15
PET1 识别基团对荧光团的PET过程发生和受阻的前线轨道理论解释
第一种是识别基团对荧光基团的电子转移(PET1),如图1.9所示, 即识别基团的HOMO轨道介于荧光基团的HUMO和LUMO轨道之间,当被 分析物不存在时,荧光基团被激发后,识别基团的HOMO轨道的电子转移 到荧光基团的HOMO轨道,致使荧光基团被激发到LUMO轨道上的电子无 法回到基态而难以产生荧光,导致荧光淬灭,即PET1过程发生。
8
Cu2+
CN-
Cu(CN)2
3
4
化合物3以氟硼荧为荧光团修饰了DPA为识别基团,探 针本身荧光很强,但与铜离子络合后可形成结构3,从而淬 灭了氟硼荧的荧光,加入氰根离子后,由于铜离子与氰根离 子的结合常数更大,从而把作为荧光基团的氟硼荧衍生物从 络合状态中置换出来得到结构4,使之进入溶液,荧光恢复, 而其它的阴离子没有这样的现象,因此可以实现对氰根离子 的检测。
有机小分子荧光探针的研究
1
什么是荧光探针?
荧光探针是建立在光谱化学和光学波导 与测量技术基础上,选择性的将分析对象 的化学信息连续转变为分析仪器易测量的 荧光信号的分子测量装置。
荧光探针受到周围环境的影响,使其 发生荧光发射发生变化,从而使人们获知 周围环境的特征或者环境中存在的某种特 定信息
2
荧光分子探针的优点
13
1 光诱导电子转移(PET, photo-induced electron transfer)
光诱导电子转移是指电子给体或电子受 体受光激发后,激发态的电子给体与电子 受体之间发生电子转移的过程。
识别基团与被分析物结合之前,荧光基 团受激发,最终被光激发到激发态的电子 不能跃迁到基态,使得荧光基团的荧光淬 灭。而识别基团与被分析物结合后,PET过 程受阻,荧光基团的荧光得以恢复。
6
作为荧光基团的香豆素和作为识别基团的邻氨基苯硫
醚以席夫碱相连,加入锌离子后,与硫醚上的硫原子、席 夫碱上的氮原子及香豆素上的氧原子配位得到结构2,抑 制了席夫碱上C=N键的旋转,实现了荧光从无到有的变化
1
2
基于键合-信号输出法设计的锌离子荧光探针
7
2、置换法
识别基团 结合荧光基团
被分析物
识别基团
当识别基团与被分析物结合后,识别基团HOMO轨道能量降低,使 PET过程受阻,这样荧光基团的激发态电子可以返回基态,荧光恢复 。
Analyte
strongly fluorescent
识别基团决定了探针分子的选择性和特异性,报告基 团则决定了识别的灵敏度,而连接体部分则可起到分 子识别枢纽的作用。
4
荧光分子探针的设计原理
荧光分子探针的设计原理主要有以下几种: 键合-信号输出法、置换法和化学计量计法。 1、键合-信号输出法
荧光 连接体 识别 被分析物
灵敏度高 选择性好 使用方便 成本低 不需预处理 不受外界电磁场影响 远距离发光
3
荧光分子探针的结构
荧光分子探针通常由 三部分组成:
Fluorephore Spacer
识别基团(receptor)
hv
报告基团(fluorophore)
连接体部分(spacer)
F
S
Receptor R
12
荧光探针的响应机理
荧光分子探针主要有如下几种响应机理:
1、光诱导电子转移(PET, photo-induced electron transfer)
2、分子内电荷转移(ICT, intramolecular charge transfer)
3、荧光共振能量转移(FRET, fluorescence resonance energy transfer)
基团
基团
信号输出
键合-信号输出法是指将探针中的识别基团和荧光基团 通过共价键连接起来设计荧光探针的方法。
5
当识别基团与被分析物结合时会引起荧 光基团的化学环境发生变化,通过颜色的 改变、光谱的移动、荧光强度的增减等现 象来表现,这些变化可被裸眼或者仪器识 别。这是目前为止在设计荧光探针中应用 最广泛的方法 。
一、探针分子和被分析物发生化学反应后形成共价化合物(I); 二、被分析物催化探针分子反应生成两种新物质(II)。 一般而言,基于化学计量计原理设计的荧光分子探针通常具有不
可逆性和较好的选择性。
11
基于化学计量计法设计的次氯酸根离子荧光探针
根据次氯酸根可以氧化羟胺的特性,设计合成 了化合物5,当次氯酸根存在时可氧化羟胺结构, 使罗丹明开环,从而形成结构6,最终进一步水解 为罗丹明6G本身7,而产生强烈的荧光。而其它氧 化性分子没有这样的特性,Leabharlann Baidu此可以实现对水相 中次氯酸根的高选择性检测。
结合被分析物
基于置换法设计的荧光探针
荧光基团
该原理是利用识别基团分别与荧光基团和被分析物结合能 力的不同来实现对被分析物的检测。
识别基团和荧光基团形成络合物,当被分析物加入到该体系中时,由 于识别基团与被分析物的结合能力要强于识别基团与荧光基团的结合能力, 因此被测物将荧光基团置换出来,从而引起了整个体系荧光等化学参数的 变化,进而为仪器或者裸眼识别,该原理常用于设计阴离子荧光探针。
9
3、化学计量计法
探针分子 被分析物
新物质A
探针分子 被分析物
中间体
新物质B 新物质C
基于化学计量计设计的荧光探针 (I)被分析物和探针分子反应形成了共价化合物; (II)被分析物催化探针分子反应生成两种新物质
10
化学计量计法是利用探针分子和被分析物之 间发生的特定化学反应(一般是不可逆反应) 来改变探针所处的化学环境,从而对被分析物 进行识别的一种方法。根据化学计量计法设计 的探针可以称为化学计量计,主要包括两种类 型:
14
PET识别分析物理论示意图
PET过程可以用前线轨道理论具体解释:当识别基团 不存在时,荧光团被光激发后,其最高占据轨道(HOMO) 的一个电子跃迁到最低空轨道(LUMO),能够产生荧光;
若外来识别基团的HOMO或LOMO轨道介于荧光团两轨 道能量之间,此时就可以发生识别基团与荧光团之间的电 子转移而导致荧光的猝灭。即PET过程阻止了荧光团的一 个电子从激发态到基态的非辐射跃迁途径,降低了荧光团 的量子产率,表现为荧光强度的减弱或淬灭。
15
PET1 识别基团对荧光团的PET过程发生和受阻的前线轨道理论解释
第一种是识别基团对荧光基团的电子转移(PET1),如图1.9所示, 即识别基团的HOMO轨道介于荧光基团的HUMO和LUMO轨道之间,当被 分析物不存在时,荧光基团被激发后,识别基团的HOMO轨道的电子转移 到荧光基团的HOMO轨道,致使荧光基团被激发到LUMO轨道上的电子无 法回到基态而难以产生荧光,导致荧光淬灭,即PET1过程发生。
8
Cu2+
CN-
Cu(CN)2
3
4
化合物3以氟硼荧为荧光团修饰了DPA为识别基团,探 针本身荧光很强,但与铜离子络合后可形成结构3,从而淬 灭了氟硼荧的荧光,加入氰根离子后,由于铜离子与氰根离 子的结合常数更大,从而把作为荧光基团的氟硼荧衍生物从 络合状态中置换出来得到结构4,使之进入溶液,荧光恢复, 而其它的阴离子没有这样的现象,因此可以实现对氰根离子 的检测。
有机小分子荧光探针的研究
1
什么是荧光探针?
荧光探针是建立在光谱化学和光学波导 与测量技术基础上,选择性的将分析对象 的化学信息连续转变为分析仪器易测量的 荧光信号的分子测量装置。
荧光探针受到周围环境的影响,使其 发生荧光发射发生变化,从而使人们获知 周围环境的特征或者环境中存在的某种特 定信息
2
荧光分子探针的优点