《角平分线》练习题(含答案)
角平分线专项练习30题(有答案)ok
角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。
角平分线模型对应练习(含答案)
角平分线模型对应练习1.如图,在ABC 中,ABC ∠的平分线与ACB ∠的外角平分线相交于D 点,50A ∠=,则(D ∠= ) A .1?5B . 25C . 30D . 302.如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是△A 1BD 的角平分线CA 2是△A 1CD 的角平分线,BA 3是A 2BD△的角平分线,CA 3是△A 2CD 的角平分线,若△A 1=α,则△A 2013为( ) A .B .C .D .3.如图,在∆ABC 中,∠A=80︒,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为() A .54B .58C .516D .5324.如图,已知BD ,CD 分别是ABC ∠和ACE ∠的角平分线,若45A ∠=︒,则D ∠的度数是( ) A .20 B .22.5 C .25 D .305.已知,如图△ABC 中,△A=50°,BE 、CD 分别是△ABC 、△BCE 的角平分线,则△CDE=__°.6.如图,在△ABC 中,△ABC ,△ACB 的角平分线相交于O 点. 如果△A=α,那么△BOC 的度数为____________.7.如图,在△ABC 中,BO 、CO 分别平分△ABC 、△ACB .若△BOC=110°,则△A=_____.8.如图,在△ABC 中,AI 和CI 分别平分△BAC 和△BCA ,如果△B=58°,那么△AIC=____________.9.如图,在△ABC 中,△B =42°,△ABC 的外角△DAC 和△ACF 的平分线交于点E ,则△AEC =____________.10.如图,在ABC 中,B ∠,C ∠的外角平分线相交于点O ,若74A ∠=,则O ∠=________度.11.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.12.如图,ABC 中,30B ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠的度数为________.13.已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”. 在图2中,△DAB 和△BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .若△DAO=50°,△OCB=40°,△P=35°,△D = _________参考答案1.B【解析】【分析】根据角平分线的定义和三角形的外角的性质即可得到△D=12△A.【详解】解:△△ABC的平分线与△ACB的外角平分线相交于D点,△1=12△ACE,△2=12△ABC,又△D=△1-△2,△A=△ACE-△ABC,△△D=12△A=25°.故选B【点睛】此题综合考查了三角形的外角的性质以及角平分线定义,熟练掌握这些知识是解答此题的关键.2.D【详解】试题分析:根据角平分线的定义可得△A1BC=△ABC,△A1CD=△ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得△ACD=△A+△ABC,△A1CD=△A1BC+△A1,整理即可得解,同理求出△A2,可以发现后一个角等于前一个角的,根据此规律即可得解.解:△A1B是△ABC的平分线,A1C是△ACD的平分线,△△A1BC=△ABC,△A1CD=△ACD,又△△ACD=△A+△ABC,△A1CD=△A1BC+△A1,△(△A+△ABC)=△ABC+△A1,△△A1=△A,△△A1=α.同理理可得△A2=△A1=α则△A 2013=.故选D .点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键. 3.C 【详解】△△ABC 与△ACD 的平分线交于点A 1, △△A 1BC=12△ABC ,△A 1CD=12△ACD , 由三角形的外角性质,△ACD=△A+△ABC , △A 1CD=△A 1+△A 1BC ,△12(△A+△ABC )=△A 1+△A 1BC=△A 1+12△ABC , 整理得,△A 1=12△A=12×80°=40°,同理可得△A 2=12△A 1=12×40°=20°;……其规律为:△A n =(12)n △A=(802n )o . 当n=8时,∠A 8=(12)3△A=(8802)o =(516)o .故选C. 【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的12是解题的关键. 4.B 【分析】由外角关系与角平分线定义得2321A ∠=∠+∠和31D ∠=∠+∠可推出2A D ∠=∠即可. 【详解】解:1∠,2∠,3∠,4∠如图所示,△BD 是ABC ∠的角平分线, △12∠=∠,△CD 是ACE ∠的角平分线, △ 34∠=∠,△ 3412A ∠+∠=∠+∠+∠,31D ∠=∠+∠, △ 2321A ∠=∠+∠,23212D ∠=∠+∠, △ 2A D ∠=∠, △ 45A ∠=, △ 14522.52D ∠=⨯=. 故选择:B . 【点睛】本题考查角平分线的定义,三角形的外角的性质,掌握角平分线的定义,三角形的外角的性质,会利用外角构造等式解决问题是关键. 5.65 【解析】试题分析:根据三角形内角和定理可得:△ABC+△ACB=180°-50°=130°,根据角平分线的性质可得:△DBC+△DCB=130°÷2=65°,则根据三角形的外角的性质可得:△CDE=△DBC+△DCB=65°. 6.90°+12α 【解析】△△ABC 、△ACB 的角平分线相交于点O ,△△OBC=12△ABC ,△OCB=12△ACB , △△OBC+△OCB=12(△ABC+△ACB)=12(180°-△A)=90°-12△A ,△在△OBC 中,△BOC=180°-△OBC -△OCB ,△△BOC=180°-(90°-12△A)=90°+12△A=90°+12.7.40°【分析】先根据角平分线的定义得到△OBC=12△ABC,△OCB=12△ACB,再根据三角形内角和定理得△BOC+△OBC+△OCB=180°,则△BOC=180°﹣12(△ABC+△ACB),由于△ABC+△ACB=180°﹣△A,所以△BOC=90°+12△A,然后把△BOC=110°代入计算可得到△A的度数.【详解】解:△BO、CO分别平分△ABC、△ACB,△△OBC=12△ABC,△OCB=12△ACB,而△BOC+△OBC+△OCB=180°,△△BOC=180°﹣(△OBC+△OCB)=180°﹣12(△ABC+△ACB),△△A+△ABC+△ACB=180°,△△ABC+△ACB=180°﹣△A,△△BOC=180°﹣12(180°﹣△A)=90°+12△A,而△BOC=110°,△90°+12△A=110°△△A=40°.故答案为40°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.8.119°【详解】试题分析:根据△B=58°以及△ABC的内角和定理可得△BAC+△BCA=180°-58°=122°,根据角平分线的性质可得:△IAC+△ICA=122°÷2=61°,则根据△IAC的内角和定理可得:△AIC=180°-61°=119°.考点:(1)、角平分线的性质;(2)、三角形内角和定理9.69°.【解析】试题分析:△AEC=180°-△EAC-△ECA,因为△ABC的外角△DAC和△ACF的平分线交于点E,所以△EAC=12△DAC,△ECA=12△ACF,所以△AEC=180°-12△DAC-12△ACF=12(360°-△DAC-△ACF)=12(180°-△DAC+180°-△ACF)=12(△BAC+△ACB)=12(180°-△B)=69°.10.53【解析】【分析】根据三角形的内角和定理,得△ACB+△ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得△OCB+△OBC=127°;最后根据三角形的内角和定理,得△O=53°.【详解】解:△△A=74°,△△ACB+△ABC=180°-74°=106°,△△BOC=180°-12(360°-106°)=180°-127°=53°.故答案为53【点睛】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即△BOC=90°-1 2△A.11.14040【解析】【分析】首先根据三角形内角和求出△ABC+△ACB的度数,再根据角平分线的性质得到△IBC=1 2△ABC,△ICB=12△ACB,求出△IBC+△ICB的度数,再次根据三角形内角和求出△I的度数即可;根据△ABC +△ACB 的度数,算出△DBC +△ECB 的度数,然后再利用角平分线的性质得到△1=12△DBC ,△2=12ECB ,可得到△1+△2的度数,最后再利用三角形内角和定理计算出△M 的度数. 【详解】 △△A =100°.△△ABC +△ACB =180°﹣100°=80°. △BI 、CI 分别平分△ABC ,△ACB ,△△IBC =12△ABC ,△ICB =12△ACB ,△△IBC +△ICB =12△ABC +12△ACB =12(△ABC +△ACB )=12×80°=40°,△△I =180°﹣(△IBC +△ICB )=180°﹣40°=140°;△△ABC +△ACB =80°,△△DBC +△ECB =180°﹣△ABC +180°﹣△ACB =360°﹣(△ABC +△ACB )=360°﹣80°=280°.△BM 、CM 分别平分△ABC ,△ACB 的外角平分线,△△1=12△DBC ,△2=12ECB ,△△1+△2=12×280°=140°,△△M =180°﹣△1﹣△2=40°. 故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出△ABC +△ACB 的度数. 12.75︒ 【分析】本题先通过三角形内角和求解△BAC 与△BCA 的和,继而利用邻补角以及角分线定义求解△EAC 与△ECA 的和,最后利用三角形内角和求解此题. 【详解】 △30B ∠=︒,△+150BAC BCA ∠∠=︒,又△180BAC DAC ︒∠=-∠,=180BCA FCA ∠-∠︒, △210DAC FCA ∠+∠=︒.△三角形的外角DAC ∠和ACF ∠的平分线交于点E , △12EAC DAC ∠=∠,12ECA ACF ∠=∠, △+105EAC ECA ∠∠=︒, 即18010575AEC ∠=︒-︒=︒. 故填:75︒. 【点睛】本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可. 13.30° 【解析】△△DAB 和△BCD 的平分线AP 和CP 相交于点P ,△DAO=50°,△OCB=40°, △△DAP=△PAB=25°,△DCP=△PCB=20°,在△DAM 和△PCM 中,根据三角形的内角和定理可得△DAM+△D=△DCP+△P ,即可求得△D=30°.点睛:本题考查了三角形内角和定理,角平分线的定义,对顶角相等的性质,整体思想的利用是解题的关键.。
人教版八年级上册《角平分线、三角形内角和定理》综合考察练习题(含答案)
人教版八年级上册《角平分线、三角形内角和定理》综合考察练习题姓名学号(含答案)一.选择题1.三角形的两边长为6cm和3cm,则第三边长可以为()A.2 B.3 C.4 D.102.若一副三角板按如图所示放置,则∠EGA的度数为()A.30°B.45°C.60°D.75°3.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.4.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,交边BC于点E,连接DE.若∠ABC =40°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°5.如图,在△ABC中,∠B=45°,∠C=30°,延长线段BA至点E,则∠EAC的度数为()A.105°B.75°C.70°D.60°6.一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225° C.∠α+∠β=270°D.∠α=∠β7.如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数为()A.20°B.25°C.35°D.40°8.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°9.如果一个正多边形的内角和是外角和的3倍,那么这个正多边形的边数为()A.5 B.6 C.7 D.810.如图,在△ABC中,∠B+∠C=α,按图进行翻折,使B'D∥C'G,B'E∥FG,则∠C'FE 的度数是()A.B.90°﹣C.α﹣90°D.2α﹣180°11.在直角三角形中,锐角α是另一个内角的一半,则锐角α的度数为.12.如图,在△ABC中内接一个正五边形ADEFG,则∠ABC=°.13.如图,C是线段AB上一点,∠DAC=∠D,∠EBC=∠E,AO平分∠DAC,BO平分∠EBC.若∠DCE=40°,则∠O=°.14.如图,已知△ABC,∠B的角平分线与∠C的外角角平分线交于点D,∠B的外角角平分线与∠C的外角角平分线交于点E,则∠E+∠D=.15.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE 和∠ACE,若∠A=40°,则∠F=°.16.如图,BD为△ABC的角平分线,若∠ABC=60°,∠ADB=70°.(1)求∠C的度数;(2)若点E为线段BC上任意一点,当△DEC为直角三角形时,则∠EDC的度数为.17.如图,在△ABC中,∠BAC:∠B:∠C=3:5:7,点D是BC边上一点,点E是AC边上一点,连接AD、DE,若∠1=∠2,∠ADB=102°.(1)求∠1的度数;(2)判断ED与AB的位置关系,并说明理由.18.如图,在四边形ABCD中,AB∥CD,对角线AC与BD相交于点E,且∠DAC=∠DCA.(1)求证:AC平分∠BAD;(2)若∠AEB=125°,且∠ABD=2∠CBD,DF平分∠ADB交AB边于点F,求∠BDF﹣∠CBD 的值.19.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC 的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵∠BAE、∠CBF、∠ACD是△ABC的三个外角.∴.∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵.∴∠BAE+∠CBF+∠ACD=360°请把证法1补充完整,并用不同的方法完成证法2.20.(1)已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把“AD⊥BC于D改为“F是AE上一点,FD⊥BC于D“,试用x、y表示∠DFE=:(3)在图3中,若把(2)中的“点F在AE上“改为点F是AE延长线上一点”,其余条件不变,试用x、y表示∠DFE=;(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y表示∠P=.参考答案一.选择题1.解:设第三边为x,则3<x<9,所以符合条件的整数可以为4,故选:C.2.解:∵∠ACF=∠ACB=90°,∠F=45°,∴∠2=∠1=45°,∵∠A=30°,∴∠AGE=30°+45°=75°,故选:D.3.解:线段BE是△ABC的高的图是选项A.故选:A.4.解:∵∠B=40°,∠C=50°,∴∠BAC=90°,∵∠ABF=∠EBF,BF=BF,∠BFA=∠BFE=90°,∴△BFA≌△BFE(ASA),∴BA=BE,∵BD=BD,∴△BDA≌△BDE(SAS),∴∠BED=∠BAD=90°,∴∠CED=90°,∴∠CDE=90°﹣50°=40°,故选:B.5.解:∵在△ABC中,∠B=45°,∠C=30°,∴∠EAC=∠C+∠B=45°+30°=75°,故选:B.6.解:∵∠α=60°+45°=105°,∠β=90°+30°=120°,∴∠α+∠β=105°+120°=225°,故选:B.7.解:∵∠ACB=90°,∴∠A+∠B=90°,∵△CDB′是由△CDB翻折得到,∴∠CB′D=∠B,∵∠CB′D=∠A+∠ADB′=∠A+20°,∴∠A+∠A+20°=90°,解得∠A=35°.故选:C.8.解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.9.解:设正多边形的边数为n,由题意得:(n﹣2)•180°=3×360°,解得:n=8,故选:D.10.解:设∠ADB′=γ,∠AGC′=β,∠CEB′=y,∠C′FE=x,∵DB′∥GC′,∴γ+β=∠B+∠C=α,∵EB′∥FG,∴∠CFG=∠CEB′=y,∴x+2y=180°①,∵γ+y=2∠B,β+x=2∠C,∴γ+y+β+x=2α,∴x+y=α②,②×2﹣①可得x=2α﹣180°,∴∠C′FE=2α﹣180°.故选:D.二.填空题(共5小题)11.解:①当锐角α是直角的一半时,α==45°;②当锐角α是另一锐角的一半时,α=(90°﹣α),此时α=30°.综上所述,锐角α的度数为45°或30°.故答案是:45°或30°.12.解:∵五边形ADEFG是正五边形,∴∠ADE=∠DEF=540°÷5=108°,∴∠BDE=∠BED=72°,∴∠ABC=180°﹣∠BDE﹣∠BED=36°,故答案为:36.13.解:∵∠DCE=40°,∴∠ACD+∠BCE=180°﹣∠DCE=180°﹣40°=140°,∵∠DAC=∠D,∠EBC=∠E,∴2∠DAC+2∠CBE=180°×2﹣140°=220°,∴∠DAC+∠CBE=110°,∵AO平分∠DAC,BO平分∠EBC,∴==55°,∴∠O=180°﹣(∠OAB+∠OBA)=180°﹣55°=125°,故答案为:125.14.解:∵BD,BE分别是∠B的角平分线和外角平分线,∴∠DBE==90°,∴∠D+∠E=180°﹣∠DBE=180°﹣90°=90°.故答案为:90°.15.解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=140°﹣90°=50°,∵BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,∴∠FBD+∠FCD=×50°=37.5°,∴∠FBC+∠FCB=37.5°+90°=127.5°,∴∠F=180°﹣127.5°=52.5°,故答案为52.5.三.解答题(共5小题)16.解:(1)∵BD为△ABC的角平分线,∠ABC=60°∴∠DBC=∠ABC=30°,又∵∠ADB是△BDC的外角,∠ADB=70°,∴∠ADB=∠DBC+∠C,∴∠C=∠ADB﹣∠DBC=40°;(2)情况一,如图1,则∠CDE=90°;情况二:如图2,当∠CED=90°时,∠EDC=90°﹣∠C=90°﹣40°=50°,综上所述,∠EDC的度数为90°或50°,故答案为:50°或90°.17.解:(1)∵∠BAC:∠B:∠C=3:5:7,∴设∠BAC=3x,∠B=5x,∠C=7x,∴3x+5x+7x=180°,解得:x=12°,∴∠BAC=36°,∠B=60°,∠C=84°,∵∠ADB=102°,∴∠1=∠ADB﹣∠C=102°﹣84°=18°;(2)ED∥AB.理由:∵∠1=∠2,∴∠2=18°,∵∠BAC=36°,∴∠BAD=∠BAC﹣∠1=36°﹣18°=18°,∴∠2=∠BAD,∴ED∥AB.18.解:(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠DAC=∠DCA,∴∠BAC=∠DAC,∴AC平分∠BAD;(2)∵∠BAC=∠DAC,∠DAC+∠ADB=∠AEB=125°,∴∠ADB=125°﹣∠BAC,又∵DF平分∠ADB交AB边于点F,∴∠BDF=,由∠AEB=125°可得∠BAC=55°﹣∠ABD,∵∠ABD=2∠CBD,∴∠BAC=55°﹣2∠CBD,∴,∴∠BDF﹣∠CBD==35°.19.证明:证法1:∵∠BAE、∠CBF、∠ACD是△ABC的三个外角.∴∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2.∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°.∴∠BAE+∠CBF+∠ACD=360°;证法2:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.故答案为:∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2;∠1+∠2+∠3=180°.20.(1)解:∵∠B=70°,∠C=40°,∴∠BAC=180°﹣70°﹣40°=70°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=×70°=35°,在Rt△ABE中,∠BAE=90°﹣70°=20°,∴∠EAD=∠BAD﹣∠BAE=35°﹣20°=15°,(2)∵∠BAD=∠BAC=(180°﹣x﹣y),∴∠AEB=180°﹣∠B﹣∠BAD=180°﹣x﹣(180°﹣x﹣y)=90°﹣x+y,∴∠DFE=90°﹣∠AEB=90°﹣90°+x﹣y=(x﹣y).故答案为(x﹣y).(3)∵∠BAD=∠BAC=(180°﹣x﹣y),∴∠AEB=180°﹣∠B﹣∠BAD=180°﹣x﹣(180°﹣x﹣y)=90°﹣x+y,∴∠DEF=∠AEB=90°﹣x+y,∴∠DFE=90°﹣∠DEF=90°﹣90°+x﹣y=(x﹣y).故答案为(x﹣y).(4)∵∠BAD=∠BAC=(180°﹣x﹣y),∴∠PAF=(180°﹣x﹣y),∴∠P=180°﹣45°﹣[180°﹣(180°﹣x﹣y)﹣x]=(3x﹣y).故答案为(3x﹣y).。
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。
三角形中线高角平分线的30题(有答案)ok
题(有答案)三角形高中线角平分线专项练习30题(有答案)1.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).2.如图,AD为△ABC的中线,BE为三角形ABD中线,中线,的度数;(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;边上的高;(2)在△BED中作BD边上的高;边的距离为多少?(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,的长.求AB和AC的长.4.如图△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求的大小.∠B的大小.5.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.的大小.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.是否相等?若相等,请说明理由.6.在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD和∠DAE的度数.的度数.7.在△ABC中.中.(如图)(1)若∠A=60°,AB、AC边上的高CE、BD交于点O.求∠BOC的度数.(如图)(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC= _________°,再用你已学过的数学知识加以说明.,再用你已学过的数学知识加以说明.(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=_________°.8.在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点.的交点.的度数.求∠ABE、∠ACF和∠BHC的度数.9.如图,△ACB中,∠ACB=90°,∠1=∠B.的高;(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.的长.10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.的度数.11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.的平分线.(1)求∠DAE的度数;的度数;是哪几个三角形的高.(2)指出AD是哪几个三角形的高.12.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,的度数.求∠ABE、∠ACF和∠BHC的度数.13.如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线为角平分线的度数;(1)求∠EAD的度数;的关系并说明理由.(2)寻找∠DAE与∠B、∠C的关系并说明理由.14.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.的度数.15.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,的角平分线,的度数.(1)若∠B=47°,∠C=73°,求∠DAE的度数.的代数式表示)(2)若∠B=α°,∠C=β°(α<β),求∠DAE的度数(用含α、β的代数式表示)16.如图,在△ABC中,AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.的度数.17.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.18.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?确吗?为什么?19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.长.20.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)之间有何数量关系,请写出来,并说明其中的道理.(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.40°60°90°120°∠BAC的度数的度数∠BIC的度数∠BDI的度数21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA 的度数.的度数.22.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,填空:是高,填空:(1)BE=_________=_________(2)∠BAD=__________________(3)∠AFB=_________=90°(4)S△ABC=_________S△ABE.23.如图,BM是△ABC的中线,AB=5cm,BC=3cm,那么△ABM与△BCM的周长是差是多少?的周长是差是多少?24.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.的长.25.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?的边长的差吗?26.如图,在△ABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由.,请说明理由.27.如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.的角平分线,对吗?说明理由.28.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,的长.求AC的长.29.如图所示,AD是△ABC的中线,AE是△ACD的中线,已知DE=2cm,求BD,BE,BC的长.的长.30.如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.的周长的差.参考答案:1.(1)∵∠B=70°,CD ⊥AB 于D , ∴∠BCD=90°﹣70°=20°,在△ABC 中,∵∠A=30°,∠B=70°, ∴∠ACB=180°﹣30°﹣70°=80°, ∵CE 平分∠ACB , ∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE ﹣∠BCD=40°﹣20°=20°, ∴∠BCD=∠ECD ;(2)∵CD ⊥AB 于D ,DF ⊥CE 于F , ∴∠CED=90°﹣∠ECD=90°﹣20°=70°, ∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B 相等的角有:∠CED 和∠CDF . 2.(1)∵∠BED 是△ABE 的一个外角,的一个外角, ∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF 即是△BED 中BD 边上的高.边上的高. (3)∵AD 为△ABC 的中线,BE 为三角形ABD 中线, ∴S △BED =S △ABC =×60=15; ∵BD=5,∴EF=2S △BED ÷BD=2×15÷5=6, 即点E 到BC 边的距离为6.3.∵AD 是BC 边上的中线,边上的中线, ∴BD=CD ,∴△ABD 的周长﹣△ADC 的周长=(AB+AD+BD )﹣(AC+AD+CD )=AB ﹣AC=4,(2分)分) 即AB ﹣AC=4①, 又AB+AC=14②, ①+②得.2AB=18, 解得AB=9,②﹣①得,2AC=10, 解得AC=5,∴AB 和AC 的长分别为:AB=9,AC=5. 4.∵DE 是CA 边上的高,边上的高, ∴∠DEA=∠DEC=90°, ∵∠A=20°,∴∠EDA=90°﹣20°=70°, ∵∠EDA=∠CDB ,∴∠CDE=180°﹣70°×2=40°,在Rt △CDE 中,∠DCE=90°﹣40°=50°, ∵CD 是∠BCA 的平分线,的平分线,∴∠BCA=2∠DCE=2×50°=100°,在△ABC 中,∠B=180°﹣∠BCA ﹣∠A=180°﹣100°﹣20°=60°.故答案为:60 5.(1)∵∠B=30°,∠C=70° ∴∠BAC=180°﹣∠B ﹣∠C=80° ∵AE 是角平分线,是角平分线, ∴∠EAC=∠BAC=40°∵AD 是高,∠C=70° ∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC ﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC ﹣∠DAC=∠BAC ﹣(90°﹣∠C )①把∠BAC=180°﹣∠B ﹣∠C 代入①,整理得,整理得 ∠EAD=∠C ﹣∠B ,∴2∠EAD=∠C ﹣∠B .6.∵AD 是高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°; ∵∠B=20°,∠C=60°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣20°﹣60°=100°, ∵AE 是角平分线,是角平分线, ∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAE ﹣∠CAD=50°﹣30°=20°. 7.(1)∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°, 又∵∠BAC=60°,∴∠ABD=180°﹣∠ADB ﹣∠A=180°﹣90°﹣60°=30°, ∴∠BOC=∠EBD+∠BEO=90°+30°=120°; (2)如图所示:)如图所示:∠BAC+∠BOC=180°;理由如下:∵BD 、CE 分别是边AC ,AB 上的高,上的高, ∴∠ADB=∠BEC=90°,∵∠ABD=180°﹣∠ADB ﹣∠BAD=180°﹣90°﹣∠BAD=90°﹣∠BAD ,∠O=180°﹣∠BEO ﹣∠DBA=90°﹣∠DBA=90°﹣(90°﹣∠BAD )=∠BAD , ∵∠BAC=180°﹣∠DAB , ∴∠BAC=180°﹣∠O , ∴∠BAC+∠O=180°; (3)由(1)(2)可得∠BAC+∠BOC=180°.8.∵BE是AC上的高,上的高,∴∠AEB=90°,∵∠ABC=60°,∠ACB=50°,∴∠A=180°﹣60°﹣50°=70°,∴∠ABE=180°﹣90°﹣70°=20°,∵CF是AB上的高,上的高,∴∠AFC=90°,∴∠ACF=180°﹣90°﹣70°=20°,∵∠ABE=20°,∴∠EBC=∠ABC﹣∠ABE=60°﹣20°=40°,∵∠ACF=20°,∠ACB=50°,∴∠BCH=30°,∴∠BHC=180°﹣40°﹣30°=110°.9.(1)∵∠1+∠BCD=90°,∠1=∠B ∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC •BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===10.∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC ∴∠BAE=15°∴∠AED=∠B+∠BAE=41°11.(1)∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD=30°,∴∠BAC=50°+30°=80°,∵AE是∠BAC的平分线,的平分线,∴∠BAE=40°,∴∠DAE=50°﹣40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.的高.12.∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.13.(1)∵在△ABC中,∠BAC=180°﹣∠C﹣∠B=180°﹣20°﹣60°=100°,又∵AE为角平分线,为角平分线,∴∠EAB=∠BAC=50°,在直角△ABD中,∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠EAB﹣∠BAD=50°﹣30°=20°;(2)根据(1)可以得到:∠EAB=∠BAC=(180°﹣∠B﹣∠C)∠BAD=90°﹣∠B,则∠EAD=∠EAB﹣∠BAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠B )=(∠B﹣∠C).14.∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°15.(1)∵∠B=47°,∠C=73°,∴∠BAC=180°﹣47°﹣73°=60°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣47°=43°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=30°,∴∠DAE=∠BAD﹣∠BAE=43°﹣30°=13°;(2))∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AD是△ABC的BC边上的高,边上的高,∴∠BAD=90°﹣α°,∵AE是∠BAC的角平分线,的角平分线,∴∠BAE=∠BAC=(180°﹣α°﹣β°),∴∠DAE=∠BAD﹣∠BAE=90°﹣α°﹣(180°﹣α°﹣β°),=90°﹣α°﹣90°+α°+β°,=(β﹣α)°16.∵∠B=60°,∠C=45°,∴∠BAC=180°﹣60°﹣45°=75°,∵AD为∠BAC的角平分线,的角平分线,∴∠BAD=∠CAD=∠BAC=37.5°,在△ABD 中,∠ADB=180°﹣∠BAD ﹣∠B=82.5°, 则∠ADC=180°﹣∠ADB=97.5°. 17.∵∠ACB=90°, ∴∠1+∠3=90°, ∵CD ⊥AB , ∴∠2+∠4=90°,又∵BE 平分∠ABC , ∴∠1=∠2, ∴∠3=∠4, ∵∠4=∠5, ∴∠3=∠5,即∠CFE=∠CEF.18.(1)在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣50°﹣80°=50°; ∵AD 是角平分线,是角平分线, ∴∠DAC=∠BAC=25°;在△ADC 中,∠ADC=180°﹣∠C ﹣∠DAC=75°; 在△ADE 中,∠DAE=180°﹣∠ADC ﹣AED=15°. (2)∠DAE=180°﹣∠ADC ﹣AED=180°﹣∠ADC ﹣90°=90°﹣∠ADC=90°﹣(180°﹣∠C ﹣∠DAC )=90°﹣(180°﹣∠C ﹣∠BAC )=90°﹣[180°﹣∠C ﹣(180°﹣∠B ﹣∠C )]=(∠C ﹣∠B ). (3)(2)中的结论仍正确.)中的结论仍正确.∠A ʹDE=∠B+∠BAD=∠B+∠BAC=∠B+(180°﹣∠B ﹣∠C )=90°+∠B ﹣∠C ;在△DA ʹE 中,∠DA ʹE=180°﹣∠A ʹED ﹣∠A ʹDE=180°﹣90°﹣(90°+∠B ﹣∠C )=(∠C ﹣∠B ). 19.∵AB=6cm ,AD=5cm ,△ABD 周长为15cm , ∴BD=15﹣6﹣5=4cm , ∵AD 是BC 边上的中线,边上的中线, ∴BC=8cm ,∵△ABC 的周长为21cm , ∴AC=21﹣6﹣8=7cm . 故AC 长为7cm . 20.(1)填写表格如下:)填写表格如下:∠BAC 的度数40° 60° 90°120° ∠BIC 的度数的度数 110°120°135°150°∠BDI 的度数110° 120° 135°(2)∠BIC=∠BDI ,理由如下:,理由如下:∵△ABC 的三条内角平分线相交于点I , ∴∠BIC=180°﹣(∠IBC+∠ICB ) =180°﹣(∠ABC+∠ACB ) =180°﹣(180°﹣∠BAC ) =90+∠BAC ; ∵AI 平分∠BAC , ∴∠DAI=∠DAE . ∵DE ⊥AI 于I , ∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC . ∴∠BIC=∠BDI .21.∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°, 又∵AD 是高,是高, ∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°, ∵AE 、BF 是角平分线,是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°, ∴∠DAE=∠DAC ﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°, ∴∠DAC=30°,∠BOA=120°. 故∠DAE=5°,∠BOA=120°. 22.(1)∵AE 是中线,是中线, ∴BE=CE=BC , (2)∵AD 是角平分线,是角平分线, ∴∠BAD=∠CAD=∠BAC , (3)∵AF 是高,是高,∴∠AFB=∠AFC=90°,(4)S △ABC =,S △ABE =,∵BC=2BE,∴S△ABC=2S△ABE,故答案为CE,BC,∠CAD,∠BAC,∠AFC,2 23.∵BM是△ABC的中线,的中线,∴MA=MC,∴C△ABM﹣C△BCM=AB+BM+MA﹣BC﹣CM﹣BM =AB﹣BC=5﹣3=2cm.答:△ABM与△BCM的周长是差是2cm.24.方法1:由题意知:AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得:2AB+2AD+BC=60③,③﹣①得:2AD=26,∴AD=13cm.方法2:∵AB=AC,D是中点,且AB+AC+BC=34,∴BD=BC,AB=(AB+AC),∴AB+BD=(AB+AC)+BC=(AB+AC+BC)=17cm (周长的一半).∵AB+BD+AD=30cm,AD=30﹣17=13cm.25.能..能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为5 26.∵AD是BC边上的中线,∴BD=DC,∵AC=AB,AD=AD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.27.错误..错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是∠BAC的平分线.的平分线.28.∵AD是BC边上的中线,边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.29.∵AD是△ABC的中线,AE是△ACD的中线,的中线, ∴BD=CD=2DE=4cm,∴BE=BD+DE=6cm,∴BC=2BD=8cm.30.∵AD是△ABC中BC边上的中线,边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=1.。
角平分线性质的应用练习题(含答案)
专题5:角平分线性质的应用【典例引领】例:在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=√3,AN=√2+1,则BM=,CF=.【强化训练】1.(2017辽宁省葫芦岛市)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=√3,请直接写出线段AD和DF的长.2.(2017辽宁省抚顺市,第25题,12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.3.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.4.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=√2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③专题5:角平分线性质的应用【典例引领】例: 在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题: (1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=√3,AN=√2+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+√33或1﹣√33【分析】(1)由等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,可得BM=MN ,∠BMN=135°,又∠EMF=135°,可证明的△BME ≌△NMF ,可得BE=NF ,NC=NM=BM 进而得出结论; (2)①如图②时,同(1)可证△BME ≌△NMF ,可得BE ﹣CF=BM , ②如图③时,同(1)可证△BME ≌△NMF ,可得CF ﹣BE=BM ; (3) 在Rt △ABM 和Rt △ANM 中,,可得Rt △ABM ≌Rt △ANM ,后分别求出AB 、 AC 、 CN 、BM 、 BE 的长,结合(1)(2)的结论对图①②③进行讨论可得CF 的长. 【解答】(1)证明:∵△ABC 是等腰直角三角形, ∴∠BAC=∠C=45°,∵AM 是∠BAC 的平分线,MN ⊥AC , ∴BM=MN ,在四边形ABMN 中,∠,BMN=360°﹣90°﹣90°﹣45°=135°, ∵∠ENF=135°,, ∴∠BME=∠NMF , ∴△BME ≌△NMF , ∴BE=NF ,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【强化训练】1.(2017辽宁省葫芦岛市)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=√3,请直接写出线段AD和DF的长.【答案】(1)①BC=BD;②AD+AC=√3BE;(2)AD=5√3,DF=31√37.【分析】(1)①结论:BC=BD.只要证明△BGD≌△BHC即可.②结论:AD+AC=√3BE.只要证明AD+AC=2AG=2EG,再证明EB=√32BE即可解决问题;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH,AH,BC,CH,AD的长,由sin∠ACH=AKAC =BHBC,推出AK的长,设FG=y,则AF=2√3﹣y,BF=√4+y2,由△AFK∽△BFG,可得AFBF =AKBG,可得关于y的方程,求出y即可解决问题.【解答】(1)①结论:BC=BD,理由:如图1中,作BG⊥AM于G,BH⊥AN于H,∵∠MAN=60°,PA平分∠MAN,BG⊥AM于G,BH⊥AN于H,∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC;②结论:AD+AC=√3BE,∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BE•cos30°=√32BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH ﹣CH=2AG=√3BE,∴AD+AC=√3BE;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K,由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=2√3,BC=BD=√BH2+CH2=√31,CH=DG=3√3,∴AD=5√3,∵sin∠ACH=AKAC =BHBC,∴√3=√31,∴AK=√3√31,设FG=y,则AF=2√3﹣y,BF=√4+y2,∵∠AFK=∠BFG,∠AKF=∠BGF=90°,∴△AFK∽△BFG,∴AFBF =AKBG,∴√3−y√4+y2=2√3√312,解得y=10√37或3√10(舍弃),∴DF=GF+DG=10√37+3√3,即DF=31√37.2.(2017辽宁省抚顺市,第25题,12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.【答案】(1)AB=PB;(2)存在;(3)k=0.5.【分析】试题分析:(1)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;(2)存在.证明方法类似(1);(3)连接BQ.只要证明△ABP∽△OBQ,即可推出APOQ=ABOB,由∠AOB=30°,推出当BA⊥OM时,ABOB的值最小,最小值为0.5,由此即可解决问题;【解答】解:(1)连接:AB=PB.理由:如图1中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(2)存在,理由:如图2中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(3)连接BQ.易证△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴APOQ=ABOB,∵∠AOB=30°,∴当BA⊥OM时,ABOB的值最小,最小值为0.5,∴k=0.5.3.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.【答案】(1)2-√2;(2)2-√2;(3)3√2-4.【分析】(1)求出BC=BE,根据勾股定理求出BD,即可求出DE;(2)求出△FEB≅△ECD,根据全等三角形的性质得出BF=DE即可;(3)延长GE交AB于F,证△GDE∼△FBE,得出比例式,代入即可求出答案.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=,在Rt△ACD中,由勾股定理得:BD==2,∴DE=BD﹣BE=2﹣;(2)∵FE⊥CE,∴∠CEF=90°,∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,∵∠FBE=∠CDE=45°,BE=BC=CD,∴△FEB≌△ECD,∴BF=DE=2﹣;(3)延长GE交AB于F,由(2)知:DE=BF=2﹣,由(1)知:BE=BC=,∵四边形ABCD是正方形,∴AB∥DC,∴△DGE∽△BFE,∴=,∴=,解得:DG=3﹣4.4.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE=√2OC;当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.①②③【答案】图②中OD+OE=√2OC成立.证明见解析;图③不成立,有数量关系:OE-OD=√2OC【分析】当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC与OD、OE的关系;最后转化得到结论.【解答】图②中OD+OE=√2OC成立.证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.有△CPD≌△CQE,∴DP=EQ,∵OP=OD+DP,OQ=OE-EQ,又∵OP+OQ=√2OC,即OD+DP+OE-EQ=√2OC,∴OD+OE=√2OC.图③不成立,有数量关系:OE-OD=√2OC过点C分别作CK⊥OA,CH⊥OB,∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,∴CK=CH,∠CKD=∠CHE=90°,又∵∠KCD与∠HCE都为旋转角,∴∠KCD=∠HCE,∴△CKD≌△CHE,∴DK=EH,∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,由(1)知:OH+OK=√2OC,∴OD,OE,OC满足OE-OD=√2OC.。
人教版八年级数学上册《12.3 角平分线性质》培优练习卷(含答案)
人教版2020年八年级数学上册《角平分线性质》培优练习卷一、选择题1.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°2.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是( )A.∠CEO=∠DEO B.CM=MD C.∠OCD=∠ECD D.S四边形OCED=CD•OE3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4B.5C.6D.75.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个6.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A. 6B. 3C. 2D. 1.57.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对8.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定9.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30° C.35° D.40°10.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D,∠ABD1与∠ACD1的角平分1线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.56° B.60° C.68° D.94°11.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD12.如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题13.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是.14.如图,AD是△ABC的角平分线,DE⊥AB于E,若AB=18,AC=12,△ABC的面积等于36,则DE= .15.若△ABC的周长为41 cm,边BC=17 cm,AB<AC,角平分线AD将△ABC的面积分成3:5的两部分,则AB= cm.16..如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为.三、解答题19.如图所示,已知AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.20.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.21.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.22.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.24.(1)如图1,△ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.①求证:OE=BE;②若△ABC 的周长是25,BC=9,试求出△AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC 与∠PAC的数量关系式.参考答案1.D2.答案为:C.3.C4.D5. 答案为:A;6. 答案为:D;7.A.8.C9.C10.A11.B12.答案为:D.13.答案为:3cm.14.答案为:2.4.15.答案为:9;16.答案为:125°.17.答案为:36.18.答案为:6;19.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.20.证明:(1)过O点作OE⊥AC于点E.∵∠ABD=90°且OA平分∠BAC∴OB=OE,又∵O是BD中点∴OB=OD,∴OE=OD,∵OE⊥AC,∠D=90°∴点O在∠ACD 的角平分线上∴OC平分∠ACD.(2)在Rt△ABO和Rt△AEO中∵∴Rt△ABO≌Rt△AEO(HL),∴AB=AE,在Rt△CDO和Rt△CEO中∵∴Rt△CDO≌Rt△CEO(HL),∴CD=CE,∴AB+CD=AE+CE=AC.21.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.22.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.24.(1)∵BO平分∠ABC,∴∠EBO=∠OBC,∵EF∥BC,∴∠EDB=∠OBC,∴∠EOB=∠EBO,∴OE=BE(2)△AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16(3)延长BA,证明P点在∠BAC外角的角平分线上,从而得到2∠PAC+∠BAC=180°。
《角平分线的性质》拓展练习(含答案)
《角平分线的性质》拓展练习(含答案)
1.(中)已知点A (m 2-5,2m +3)在第三象限角平分线上,则m =( )
A .4
B .-2
C .4或-2
D .-1
2.(中)在直角△ABC 中,∠B =30°,∠CAE =∠BAE ,ED ⊥AB 于D ,则下列结论⑴AC =AD ;⑵AE =BE ;⑶AD =BD ;⑷CE =DE 其中正确的有( )
A
C B
E D
A .⑴⑵⑶⑷
B .⑴⑵⑷
C .⑵⑶⑷
D .⑴⑵⑶
3.(中)如图,在正方形ABCD 中,点E ,F 分别在CD ,BC 上,且BF =CE ,连结BE 、AF 相交于点G ,则下列结论:(1)BE =AF (2)∠DAF =∠BEC (3)∠AFB +∠BEC =90 (4)AG ⊥BE ,正确的个数是( )
G
E
F C B
A
《
A .1
B .2 D .4 4.(中)如图,已知△AB
C ,求作一点P ,使P 到∠A 的两边的距离相等,且PA=PB .下列确定P 点的方法正确的是( )
A .P 为∠A 、∠
B 两角平分线的交点;
B .P 为∠A 的角平分线与AB 的垂直平分线的交点;
C .P 为AC 、AB 两边上的高的交点;
D .P 为AC 、AB 两边的垂直平分线的交点;
参考答案:
1.B 2.A 3.C 4.B。
人教版 初中数学八年级上册 12.3角平分线的性质 同步练习(含答案)
人教版初中数学八年级上册12.3角平分线的性质同步练习(含答案)一、选择题(本大题共7道小题)1. 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 42. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm4. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.15. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__⊗__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.⊗表示∠AOB6. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.57. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.56二、填空题(本大题共5道小题)8. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.9. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.10. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.11. 将两块大小一样的含30°角的三角尺ABD和ABC如图所示叠放在一起,使它们的斜边AB重合,直角边不重合,当OD=4 cm时,点O到AB的距离为________ cm.12. 如图,请用符号语言表示“角的平分线上的点到角的两边的距离相等”.条件:____________________________________.结论:PC=PD.三、解答题(本大题共2道小题)13. 探究题如图,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC 上(BD<BE),且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.14. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,BE=FC.求证:BD=FD.人教版 初中数学八年级上册 12.3角平分线的性质 同步练习-答案一、选择题(本大题共7道小题)1. 【答案】B【解析】如解图,过点P 作PG ⊥OA 于点G ,根据角平分线上的点到角的两边距离相等可得,PG =PD =2.2. 【答案】A3. 【答案】C4. 【答案】C[解析] 如图,过点P 作PE ⊥OB 于点E.∵P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,PE ⊥OB ,∴PE =PD =2.5. 【答案】D6. 【答案】D[解析] 如图,过点D 作DH ⊥AC 于点H.又∵AD 是△ABC 的角平分线,DF ⊥AB , ∴DF =DH.在Rt △ADF 和Rt △ADH 中,⎩⎨⎧AD =AD ,DF =DH ,∴Rt △ADF ≌Rt △ADH(HL). ∴S Rt △ADF =S Rt △ADH .在Rt △DEF 和Rt △DGH 中,⎩⎨⎧DE =DG ,DF =DH ,∴Rt △DEF ≌Rt △DGH(HL). ∴S Rt △DEF =S Rt △DGH .∵△ADG 和△AED 的面积分别为60和35, ∴35+S Rt △DEF =60-S Rt △DGH .∴S Rt △DEF =12.5.7. 【答案】B [解析] 如图,过点D 作DH ⊥AB 于点H.由作法得AP 平分∠BAC.∵DC ⊥AC ,DH ⊥AB ,∴DH =DC =4. ∴S △ABD =12×16×4=32.5道小题)8. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.9. 【答案】(1)BC CD (2)AB AD10. 【答案】15[解析] ∵AD 平分∠BAC ,∠C =90°,DE ⊥AB ,∴DC =DE =5cm.∴BD =2CD =10 cm ,则BC =CD +BD =15 cm.11. 【答案】4[解析] 过点O 作OH ⊥AB 于点H.∵∠DAB =60°,∠CAB =30°,∴∠OAD =∠OAH =30°. ∵∠ODA =90°,∴OD ⊥AD.又∵OH∵AB ,∵OH =OD =4 cm.12. 【答案】∵AOP =∵BOP ,PC∵OA 于点C ,PD∵OB 于点D 三、解答题(本大题共2道小题)13. 【答案】解:∠BDP +∠BEP =180°.证明:过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N. ∵BP 是∠ABC 的平分线, ∴PM =PN.在Rt △DPM 和Rt △EPN 中, ⎩⎨⎧PD =PE ,PM =PN ,∴Rt △DPM ≌Rt △EPN(HL). ∴∠ADP =∠BEP.∵∠BDP +∠ADP =180°, ∵∵BDP +∵BEP =180°.14. 【答案】证明:∵AD 平分∠BAC ,DE ⊥AB ,∠C =90°, ∴DC =DE.在△DCF 和△DEB 中,⎩⎨⎧DC =DE ,∠C =∠BED =90°,FC =BE ,∵∵DCF∵∵DEB(SAS).∵BD =FD.。
角平分线的性质专项练习(含解析)
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
《角平分线》计算题及答案(提高)
《角平分线》计算题及答案(提高)1.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC度数是α,∠MON的大小是否发生改变?为什么?2.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.3.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.4.(1)如图①,∠AOB和∠COD都是直角,请你写出∠AOD和∠BOC之间的数量关系,并说明理由;(2)当∠COD绕点O旋转到如图②所示的位置时,上述结论还成立吗?并说明理由.(3)如图③,当∠AOB=∠COD=β(0°<β<90°)时,请你直接写出∠AOD和∠BOC之间的数量关系.(不用说明理由)5.小丽将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,求∠CBD的度数.6.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.7.小倩把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,∠AOD与∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,∠AOD和∠BOC的和是多少度?8.如图,点C 为线段AB 上一点, AC ︰CB =3︰2,D 、E 两点分别为AC 、AB 的中点,若线段DE =2cm ,求AB 的长.9.如图,点C 是线段AB 上一点,线段AC =8,BC =20,点N 为AC 的中点,点M 是线段CB 上一点,且CM :BM =1:4,求线段MN 的长.10.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB.若AB =24 cm ,求线段CE 的长.《角平分线》计算题参考答案1.解:(1)∵∠AOB 是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM 是∠BOC 的平分线,ON 是∠AOC 的平分线,∴,.∴∠MON=∠MOC ﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC 的大小发生改变时,∠MON 的大小不发生改变.∵=,又∠AOB 是直角,不改变,∴. 2.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =45°. (2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12α. (3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.3.解:设∠ABE =2x°,则∠CBE =5x°,∠ABC =7x°.因为BD 为∠ABC 的平分线,所以∠ABD =12∠ABC =72x°, 所以∠DBE =∠ABD -∠ABE =72x°-2x°=32x°=21°. 所以x =14,所以∠ABC =7x°=98°.4.解:(1)∠AOD 与∠BOC 互补.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°,所以∠BOD =∠AOD -∠AOB =∠AOD -90°,∠BOD =∠COD -∠BOC =90°-∠BOC ,所以∠AOD -90°=90°-∠BOC ,所以∠AOD +∠BOC =180°,所以∠AOD 与∠BOC 互补.(2)成立.理由:因为∠AOB ,∠COD 都是直角,所以∠AOB =∠COD =90°.因为∠AOB +∠BOC +∠COD +∠AOD =360°,所以∠AOD +∠BOC=180°,所以∠AOD与∠BOC互补.(3)∠AOD+∠BOC=2β.5. 90°6.解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.7.解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.8. 8cm9.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4. 因为点M 是线段CB 上一点,且CM :BM =1:4,所以CM =15BC =15×20=4. 所以MN =MC +CN =4+4=8.即线段MN 的长为8.10.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm). 所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm), 所以CE =DE -CD =14.4-4=10.4(cm).。
八年级数学上册角平分线历年真题练习题(含答案)
八年级数学上册角平分线历年真题练习题(含答案)一.选择题(共10小题)1.(2015?茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA 于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.3选A【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.2.(2015?天台县模拟)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O到△ABC三顶点的距离一定相等【考点】角平分线的性质.【分析】根据角平分线的定义与性质即可判断.【解答】解:∵三角形角平分线的性质为:三角形的三条角平分线在三角形内部且相交于一点,到三角形三条边的距离相等,∴A、B、C三个选项均正确,D选项错误.故选D.【点评】此题考查了角平分线的性质,熟记性质是解题的关键.3.(2015?茂名校级一模)如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.7【考点】角平分线的性质.【专题】常规题型.【分析】由角平分线的性质可得点D到AB的距离等于CD,根据已知求得CD即可.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离等于CD,∵BC=10,BD=6,∴CD=BC﹣BD=10﹣6=4,∴点D到AB的距离是4.故选A.【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.4.(2015?泰安样卷)如图,Rt△ABC中,∠C=90°,∠B=45°,AD 是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,再判断出△BDE是等腰直角三角形,根据等腰直角三角形的性质可得BE=DE,然后根据AE=AB﹣BE计算即可得解.【解答】解:∵AD是∠CAB的平分线,DE⊥AB,∠C=90°,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵∠B=45°,DE⊥AB,∴△BDE是等腰直角三角形,∴BE=DE=m,∵AE=AB﹣BE=a﹣m,∴AC=a﹣m.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的判定与性质,熟记性质是解题的关键.5.(2015?河北模拟)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BC?DE=×5×3=7.5.故选:A.【点评】本题考查了角平分线的性质.角的平分线上的点到角的两边的距离相等.6.(2015?芜湖三模)△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:2【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得点P到△ABC 三边的距离相等,然后根据等高的三角形的面积的比等于底边的比解答.【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等高的三角形的面积的比等于底边的比,熟记性质并判断出点P到△ABC三边的距离相等是解题的关键.7.(2015?江西校级模拟)如图,在△ABC中,∠C=90°,AD平分∠CAB,已知CD=3,BD=5,则下列结论中错误的是()A.AC=6 B.AD=7 C.BC=8 D.AB=10【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,由角平分线的性质可知CD=DE=3,由勾股定理求出BE的长,再由相似三角形的判定定理得出△BED∽△BCA,故可得出AC及AB的长,在Rt△ACD中,根据勾股定理求出AD的长即可.【解答】解:∵CD=3,BD=5,∴BC=CD+BD=3+5=8,故C正确;过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE=3.在Rt△BDE中,∵BD=5,DE=3,∴BE===4.∵∠B=∠B,∠DEB=∠C,∴△BED∽△BCA,∴==,即==,解得AB=10,AC=6,故A,D正确;在Rt△ACD中,∵AC=6,CD=3,∴AD===3,故B错误.故选B.【点评】本题考查的是角平分线的性质,根据题意构造出直角三角形,利用勾股定理求解是解答此题的关键.8.(2015春?成都校级期末)如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点 D.△ABC三条角平分线的交点【考点】角平分线的性质;作图—应用与设计作图.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选D.【点评】本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.9.(2015秋?平南县月考)如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADBC.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即DE平分∠ADB;在△ACD中,CD+AC>AD所以ED+AC>AD.故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.10.(2015春?吉州区期末)在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点 B.N点 C.P点 D.Q点【考点】角平分线的性质.【专题】网格型.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.【点评】本题主要考查平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.二.填空题(共10小题)11.(2015?连云港)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.【考点】角平分线的性质.【分析】估计角平分线的性质,可得出△ABD的边AB上的高与△ACD 的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.12.(2015?聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.【考点】角平分线的性质.【分析】求出∠ABC,求出∠DBC,根据含30度角的直角三角形性质求出BC,CD,问题即可求出.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=180°﹣30°﹣90°=60°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=30°,∴BC=AB=3,∴CD=BC?tan30°=3×=,∵BD是∠ABC的平分线,又∵角平线上点到角两边距离相等,∴点D到AB的距离=CD=,故答案为:.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.13.(2015?萝岗区一模)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D到BC的距离为3,则BD= .【考点】角平分线的性质.【分析】根据角平分线的性质得到AD=3,由勾股定理求得BD.【解答】解:∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,点D到BC的距离为3,∴AD=3,∵AB=4,∴BD==5.【点评】本题主要考查了角平分线的性质,由已知能够注意到D到BC 的距离即为DE长是解决的关键.14.(2015?绿园区一模)如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为.【考点】角平分线的性质;垂线段最短.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小.结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小.∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=8,∴DP=8.故答案为:8.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.21·*教育网15.(2015春?苏州校级期末)如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为.【考点】角平分线的性质;全等三角形的判定与性质;勾股定理.【分析】分析已知条件,根据勾股定理可求得CA的长,△CAD≌△EAD,则DE=DC,在△BED中,BE=AB﹣AE,DE=DC,△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB.【解答】解:△ABC中,∠C=90°,CA=CB,AB=6根据勾股定理得2CB2=AB2,∴CB=3,∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB∴∠DEA=90°=∠C∴△CAD≌△EAD(AAS)∴AC=AE=3,DE=CD∴EB=AB﹣AE=6﹣3故△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB=6﹣3+3=6.【点评】此题考查了全等三角形的判定及性质,应用了勾股定理,三角形周长的求法,范围较广.16.(2015春?晋江市期末)如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=50°,则∠ABC= (度).【考点】角平分线的性质.【分析】根据到角的两边的距离相等的点在角平分线上可得BD平分∠ABC,再根据∠DBC=50°可得答案.【解答】解:∵DE⊥AB于点E,DF⊥BC于点F,且DE=DF,∴BD平分∠ABC,∴∠ABC=2∠DBC,∵∠DBC=50°,∴∠ABC=100°,故答案为:100.【点评】此题主要考查了角平分线的性质,关键是掌握到角的两边的距离相等的点在角平分线上.17.(2015秋?蓟县期中)如图,在Rt△ABC中,已知∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若△BDE的周长为8,则AB的长为8 .18.(2015秋?镇海区校级月考)如图,BD是△ABC的角平分线,DE ⊥BC于E,若S△ABC=60cm2,AB=12cm,BC=18cm,则S△DBC= ,DE= .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得点D到AB的距离等于点D到BC的距离,即DE的长度,再根据等高的三角形的面积的比等于底边的比求出S△ABD:S△DBC,然后求解即可,再利用三角形的面积公式列式计算即可求出DE.【解答】解:∵BD是△ABC的角平分线,DE⊥BC,∴点D到AB的距离等于点D到BC的距离,即DE的长度,∵AB=12cm,BC=18cm,∴S△ABD:S△DBC=AB:BC=12:18=2:3,∵S△ABC=60cm2,∴S△DBC=60×=36cm2,∵DE⊥BC,∴BC?DE=36,即×18?DE=36,解得DE=4cm.故答案为:36cm2;4cm.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,等高的三角形的面积的比等于底边的比,熟记各性质是解题的关键.19.(2014秋?定兴县期末)如图,点P是∠BAC的平分线上一点,PE ⊥AB,PF⊥AC,E,F分别为垂足,①PE=PF,②AE=AF,③∠APE=∠APF,上述结论中正确的是(只填序号).20.(2013秋?石家庄期末)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.【考点】角平分线的性质.【分析】先根据角平分线的性质求得PE=PF,再利用全等即可判定.【解答】解:∵点P是∠BAC的平分线上一点,PE⊥AB,PF⊥AC∴PE=PF∴Rt△APE≌RT△APF(HL)∴AE=AF,∠APE=∠APF故填①②③.【点评】本题主要考查平分线的性质及三角形全等的判定及性质;由已知求得Rt△APE≌RT△APF是解决的关键.三.解答题(共10小题)21.(2015?路南区二模)在学完全等三角形后,李老师给出了下列题目:求证:角的内部到角的两边距离相等的点在角的平分线上.已知:求证:证明:【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.2-1-c-n-j-y 【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.22.(2015春?泰山区期末)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质证明结论.【解答】已知:PE=PF,PE⊥OA于E,PF⊥OB于F,求证:点P在∠AOB的平分线上.证明:在Rt△POE和Rt△POF中,,∴Rt△POE≌△RtPOF,∴∠EOP=∠FOP,∴点P在∠AOB的平分线上.【点评】本题考查的是角平分线的判定的证明,灵活运用直角三角形全等的判定定理是解题的关键.23.(2015?黄岛区校级模拟)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.【考点】角平分线的性质;线段垂直平分线的性质;作图—应用与设计作图.【分析】根据线段垂直平分线性质作出AB的垂直平分线,根据角平分线性质作出∠BAC的角平分线,即可得出答案.【解答】解:作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,则P为这个中心医院的位置.【点评】本题考查了线段垂直平分线性质,角平分线性质的应用,主要考查学生的理解能力和动手操作能力24.(2015春?澧县期末)如图:在△ABC中,∠C=90° AD是∠BAC 的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点评】本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.25.(2015秋?泰兴市校级月考)如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.【考点】角平分线的性质;全等三角形的性质;直角三角形全等的判定.【专题】证明题.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE (AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴△BDF≌△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.26.(2014秋?芜湖校级期末)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】首先由角平分线的性质可得DE=DF,又有BD=CD,可证Rt△BED≌Rt△DFC(HL),即可得出EB=FC.21·cn·jy·com【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.【点评】此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.27.(2014秋?陇西县期末)如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D.求证:(1)OC=OD;(2)DF=CF.【考点】角平分线的性质;全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】(1)首先根据角平分线的性质可得EC=DE,∠ECO=∠EDO=90°,然后证明Rt△COE≌Rt△DOE可得CO=DO;(2)证明COF≌△DOF可根据全等三角形的性质可得FC=FD.【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∠ECO=∠EDO=90°,在Rt△COE和Rt△DOE中,,∴Rt△COE≌Rt△DOE(HL),∴CO=DO;(2)∵EO平分∠AOB,∴∠AOE=∠BOE,在△COF和△DOF中,,∴△COF≌△DOF(SAS),∴FC=FD.【点评】此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.28.(2014秋?南昌期末)如图,AD是△ABC中∠BAC的角平分线,DE ⊥AB于点E,S△ABC=7,DE=2,AB=4,求:(1)S△ACD;(2)AC的长.【考点】角平分线的性质.网【分析】(1)根据S△ACD=S△ABC﹣S△ABD,利用三角形的面积公式可求解;(2)过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:(1)S△ACD=S△ABC﹣S△ABD=7﹣×4×2=3;(2)如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.∵S△ACD=3,∴×AC×2=3,解得AC=3.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.29.(2014秋?苏州期末)一天,数学老师布置一个思考题,要求每个学习小组课后去讨论.你能和他们一起思考吗?题目是这样的:如图,P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.(1)比较PD与PE的长短,得;(2)在OC上另取一点Q,画QF⊥OA,QG⊥OB,垂足分别为F,G.再比较QF、QG的长短,得;(3)你可以在角平分线OC上再取其它一些点试试,从中你发现了什么?【考点】角平分线的性质.【分析】(1)通过实际操作能得到P点到角的两边距离相等;(2)通过实际操作能得到P点到角的两边距离相等;(3)可以通过证明三角形全等来得到正确的结论;【解答】解:(1)用直尺量得PD=PE;(2)用直尺量得QF=QG;(3)证明:∵P是∠AOB的角平分线OC上一点,∴∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴∠ODP=∠OEP,∴△DOO≌△EPO,∴PD=PE,∴角平分线上的点到角的两边的距离相等.【点评】本题考查了角平分线的性质,通过学生的动手、动脑使得学生更加牢固的掌握了新知识.30.(2014秋?赣州期末)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【考点】角平分线的性质;全等三角形的判定与性质.【专题】几何综合题.【分析】(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,21根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.【解答】(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.22。
最新人教版八年级初二数学上册《角的平分线的性质》同步练习含答案解析
《12.3 角的平分线的性质》一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)根据角平分线性质推出即可;(2)根据角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】首先根据△ABD的面积计算出DE的长,再根据角平分线上的点到角两边的距离相等可得DE=DF,然后计算出DF的长,再利用三角形的面积公式计算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,根据角平分线性质得出DM=DN ,根据三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再根据BC=BD+DE代入数据进行计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】根据三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的角平分线相交于一点作辅助线并判断出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S=AB•DE+BC•DF=90,△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。
【中考数学】《角的平分线》专项练习题2套含答案
角的平分线第1课时角的平分线的性质01基础题知识点1角的平分线的作法1.如果要作已知∠AOB的平分线OC,合理的顺序是(C)①作射线OC;②在OA、OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于12DE长为半径作弧,两弧在∠AOB内交于点C. A.①②③B.②①③C.②③①D.③②①2.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是(A)A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等3.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,不写作法.解:作图略.知识点2角的平分线的性质4.(茂名中考)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P 到边OB的距离为(A)A .6B .5C .4D .35.(怀化中考)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是(B )A .PC =PDB .∠CPD =∠DOPC .∠CPO =∠DPOD .OC =OD6.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,垂足分别为D ,E ,求证:OB =OC.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB , ∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 和△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO(ASA ). ∴OB =OC.知识点3 文字命题的证明7.命题“全等三角形对应边上的高相等”的已知是两个三角形全等,结论是这两个三角形对应边上的高相等.8.(咸宁中考)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:PD =PE .请你补全已知和求证,并写出证明过程.证明:∵PD ⊥OA ,PE ⊥OB , ∴∠PDO =∠PEO =90°. 在△PDO 和△PEO 中,⎩⎨⎧∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP ,∴△PDO ≌△PEO(AAS ). ∴PD =PE. 02 中档题9.(淮安中考)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积为(B )A .15B .30C .45D .6010.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(A) A.M点B.N点C.P点D.Q点11.(湖州中考)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(C)A.8 B.6 C.4 D.212.已知,如图,△ABC的角平分线AD交BC于D,BD∶DC=2∶1,若AC=3 cm,则AB=6_cm.13.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10 cm,求△DEB的周长.解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED.∴AE=AC.∴△DEB 的周长为DE +DB +EB =CD +DB +BE =BC +BE =AC +BE =AE +BE =AB =10 cm .14.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.已知:如图,在△ABC 和△A′B′C′中,∠B =∠B′,∠BAC =∠B′A′C′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的平分线,且AD =A′D′.求证:△ABC ≌△A′B′C′.证明:∵∠BAC =∠B′A′C′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线, ∴∠BAD =∠B′A′D′. ∵∠B =∠B′,AD =A′D′, ∴△ABD ≌△A ′B ′D ′(AAS ). ∴AB =A′B′.在△ABC 和△A′B′C′中,⎩⎨⎧∠B =∠B′,AB =A′B′,∠BAC =∠B′A′C′,∴△ABC ≌△A ′B ′C ′(ASA ). 03 综合题15.(长春中考)感知:如图1,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°.易知:DB =DC.探究:如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°.求证:DB =DC.证明:过点D 分别作DE ⊥AB 于E ,DF ⊥AC 于F. ∵DA 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.∵∠B +∠ACD =180°, ∠ACD +∠FCD =180°, ∴∠B =∠FCD. 在△DFC 和△DEB 中,⎩⎨⎧∠F =∠DEB ,∠FCD =∠B ,DF =DE ,∴△DFC ≌△DEB. ∴DC =DB.第2课时 角的平分线的判定01 基础题知识点1 角的平分线的判定1.如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB.下列条件中:①∠AOC =∠BOC ;②PD =PE ;③OD =OE ;④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有(D )A .1个B .2个C .3个D .4个2.如图,∠AOB =70°,QC ⊥OA 于点C ,QD ⊥OB 于点D ,若QC =QD ,则∠AOQ =35°.3.如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.证明:∵DE ⊥AB ,DF ⊥AC , ∴∠BED =∠DFC =90°.在Rt △DEB 和Rt △DFC 中,⎩⎨⎧BE =CF ,DB =DC ,∴Rt △DEB ≌Rt △DFC.∴DE =DF. ∴AD 是∠BAC 的平分线.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O.求证:(1)当∠1=∠2时,OB =OC ; (2)当OB =OC 时,∠1=∠2.证明:(1)∵∠1=∠2,OD ⊥AB ,OE ⊥AC , ∴OE =OD ,∠ODB =∠OEC =90°. 在△BOD 和△COE 中,⎩⎨⎧∠BOD =∠COE ,OD =OE ,∠ODB =∠OEC ,∴△BOD ≌△COE(ASA ). ∴OB =OC.(2)在△BOD 和△COE 中,⎩⎨⎧∠ODB =∠OEC ,∠BOD =∠COE ,OB =OC ,∴△BOD ≌△COE(AAS ). ∴OD =OE.又∵OD ⊥AB ,OE ⊥AC , ∴AO 平分∠BAC ,即∠1=∠2.知识点2 三角形的角平分线5.到△ABC 的三条边距离相等的点是△ABC 的(B )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .以上均不对6.如图,△ABC 的三边AB ,BC ,CA 的长分别为40,50,60,其三条角平分线交于点O ,则S △ABO ∶S △BCO ∶S △CAO =4∶5∶6.知识点3角的平分线的性质与判定的实际应用7.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.解:图略.提示:∠AOB的平分线与AB的交点即为点M的位置.8.如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.解:△ABC的角平分线的交点就是小亭的中心位置,图略.02中档题9.(永州中考)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△=S△PCD,则满足此条件的点P(D)PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,已知△ABC的周长是20 cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3 cm,则△ABC的面积为30_cm2.11.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.证明:过点D分别作DE⊥AB,DG⊥AC,DF⊥BC,垂足分别为E,G,F.又∵BD平分∠ABC,CD平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD平分∠EAC,即AD是∠BAC的外角平分线.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D移动到什么位置时,AD恰好平分∠BAC,请说明理由.解:当D移动到BC的中点时,AD恰好平分∠BAC.理由:∵D是BC的中点,∴BD=CD.∵DE⊥AB,DF⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C ,∴△DEB ≌△DFC(AAS ).∴DE =DF.又∵DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.03 综合题13.如图,在四边形ABDC 中,∠D =∠B =90°,O 为BD 的中点,且AO 平分∠BAC.求证:(1)CO 平分∠ACD ;(2)OA ⊥OC ;(3)AB +CD =AC.证明:(1)过点O 作OE ⊥AC 于点E ,∵∠B =90°,AO 平分∠BAC ,∴OB =OE.∵点O 为BD 的中点,∴OB =OD.∴OE =OD.又∵∠D =90°,∠OEC =90°.∴CO 平分∠ACD.(2)在Rt △ABO 和Rt △AEO 中,⎩⎨⎧AO =AO ,OB =OE ,∴Rt △ABO ≌Rt △AEO(HL ).∴∠AOB =∠AOE =12∠BOE. 同理,∠COD =∠COE =12∠DOE.∵∠AOC =∠AOE +∠COE ,∴∠AOC =12∠BOE +12∠DOE =12×180° =90°.∴OA ⊥OC.(3)∵Rt △ABO ≌Rt △AEO ,∴AB =AE.同理可得CD =CE.∵AC =AE +CE ,∴AB +CD =AC.。
2022-2023学年八年级数学上《角的平分线的性质》测试卷及答案解析
5.(2021秋•博兴县期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )
A.SASB.ASAC.AASD.SSS
6.(2020秋•大连期末)下列作图语句中,叙述正确的是( )
A.延长线段AB到点C,使BC=AB
参考答案与试题解析
一.选择题(共10小题)
1.(2022春•高陵区期中)如图,在△ABC中,O是在△ABC内一点,且点O到在△ABC三边的距离相等,∠BOC=126°,则∠A的度数为( )
A.72°B.27°C.54°D.108°
【考点】角平分线的性质.
【专题】三角形;推理能力.
【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A.
14.(2021秋•西平县期末)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.
15.所谓尺规作图中的尺规是指:.
16.判断下列作图语句是否正确.
延长线段AB=a.
三.解答题(共4小题)
17.(2021秋•台江区校级期末)如图,在△ABC中,∠C=90°.
【解答】解:∵点O到△ABC三边的距离相等,
∴BO平分∠ABC,CO平分∠ACB,
∴∠A=180°−(∠ABC+∠ACB)=180°−2(∠OBC+∠OCB)=180°−2×(180°−∠BOC)=180°−2×(180°−126°)=72°,
故选:A.
【点评】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.
2.(2022•丽水二模)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )
与角平分线有关的常用结论、辅助线总结与练习(有答案)
与角平分线有关的常用结论、辅助线总结角平分线是我们常见的几何条件,合理的把角平分线和其它条件相结合可以形成新的结论。
一、总结下面我们来看一下常见的和角平分线有关结论或辅助线。
1、如图1,OP 平分∠AOB ,点D 在OA 上,DE ∥OB 交OE 于点E∵OP 平分∠AOB ∴∠DOE =∠EOB∵DE ∥OB ∴∠BOE =∠DEO ∴∠DOE =∠DEO∴OD =DE由此可知,当角平分线和与角的一边平行的直线相交后可以形成等腰三角形。
例题:(2016·四川南充)如图2,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平;再一次折叠,使点D 落到EF 上点G 处,并使折痕经过点A ,展平纸片后∠DAG 的大小为( ) A .30° B .45° C .60° D .75°分析:由题意可得:∠1=∠2,AN =MN ,∠MG A =90°,则NG =12AM ,故AN =NG ,则∠2=∠4,∵EF ∥AB ,∴∠4=∠3,∴∠1=∠2=∠3=13×90°=30°,∴∠DAG =60°.故选:C .2、角平分线遇到垂线:如图3,OP 平分∠AOB ,点D 在OA 上,DP ⊥OP 于点P 。
遇到这种情况,我们可以作辅助线: 延长DP 交OB 于点E ,∵OP 平分∠AOB∴∠DOP =∠EOP ∵DP ⊥OP ∴∠ODP =∠OEP∴OD =OE ∴DP =PE通过上述证明我们可以发现,当角平分线遇到垂线后,可以将垂线延长与角的两边相交,构成等腰三角形,同时,垂足即为等腰三角形底边中点。
例题:如图4,在直角梯形ABCD 中, AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD .求证:AE =BE 分析:由已知,AD ∥BC ,ED 平分∠ADC ,EC 平分∠BCD ,可得DE ⊥EC ,延长DE 交CB 延长线于F ,有上述结论可知,E 为DF 中点,可证△ADE ≌△BFE3、从角平分线做角一边的垂线ED BAO 图1 图2E D P B AO图3 F图4 DPA如图3,OP 平分∠AOB ,PD ⊥OA 于点D 。
角平分线练习题(答案)
角平分线练习题①如图,OM是∠AOB的角平分线,ON是∠BOC的角平分线,若∠AOC=120°,∠CON=38°,求∠AOM的度数。
答案:22°解析:根据OM与ON是角分线,所以∠AOC=2∠MON,∠MON=120°÷2=60°∠BON=∠CON=38°,所以∠AOM=∠BOM=60°-38°=22°②如图,O是直线AB上一点,∠BOC=36°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数。
答案:18°解析:因为AB是直线,所以∠AOB=180°。
∠AOC=∠AOB-∠BOC=180°-36°=144°。
所以∠AOD=144°÷2=72°∠AOE=∠DOE-∠AOD=90°-72°=18°③如图OM是∠AOB的角平分线,ON是∠COD的角平分线,已知∠MON=90°,∠AOD=140°,求∠BOC的度数。
答案:40°解析:根据OM与ON是角分线,可知∠AOD=2∠MON-∠BOC(推导过程略)所以∠BOC=2∠MON-∠AOD=90°×2 - 140°= 40°④已知∠AOB=80°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,求∠MON的度数。
答案:25°或55°解析:由于没有给出具体图形,所以需要分类讨论。
当OC在OA与OB之间时,∠MON=∠MOB-∠NOB=40°-15°=25°当OB在OA与OC之间时,∠MON=∠MOB+∠NOB=40°+15°=55°⑤如图OM是∠AOC的角平分线,ON是∠BOD的角平分线,已知∠BOC=26°,∠AOD=150°,求∠MON的度数。
北师大版八年级数学下册《1.4角平分线》同步练习(含答案)
北师大版八年级数学下册 1.4 角平分线 同步练习一、单选题(共 10 题;共 20 分)1.如图,OP 平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为 A,B。
下列结论中不一定成立的是( )A.PA=PBB.PO 平分∠AOBC.OA=OBD.AB 垂直平分 OP )2.如图, AB∥CD,AP, CP 分别平分∠BAC 和∠ACD, PE⊥AC 于点 E, 且 PE=3cm, 则 AB 与 CD 之间的距离为(A.3 cmB.6 cmC.9 cmD.无法确定3.如图,以∠AOB 的顶点 O 为圆心,适当长为半径画弧,交 OA 于点 C,交 OB 于点 D,再分别以点 C,D 为圆 心,大于 CD 的长为半径画弧,两弧在∠AOB 内部交于点 E,作射线 OE,连接 CD,以下说法错误的是( )A. △ OCD 是等腰三角形 C. CD 垂直平分 OEB. 点 E 到 OA,OB 的距离相等 D. 证明射线 OE 是角平分线的依据是 SSS4.如图,在△ ABC 中,∠ABC 和∠ACB 的平分线相交于点 G,过点 G 作 EF∥BC 交 AB 于 E, 交 AC 于 F, 过点 G 作 GD⊥AC 于 D,下列四个结论:①EF=BE+CF;②∠BGC=90+ AE+AF=n,则△∠A;③点 G 到△ ABC 各边的距离相等;④设 GD=m,=mn.其中正确的结论有()A.1 个B.2 个C.3 个D.4 个5.如图,在△ ABC 中,∠BAC 和∠ABC 的平分线相交于点 O,过点 O 作 EF∥AB 交 BC 于 F,交 AC 于 E,过点 O 作 OD⊥BC 于 D,下列四个结论:① ∠AOB=90°+∠②AE+BF=EF;③当∠C=90°时,E,F 分别是 AC,BC 的中点;④若 OD=a,CE+CF=2b, ) C. ①②④ D. ①③④则 S△ CEF=ab 其中正确的是( A. ①② 则可供选择的地点有( )B. ③④6.如图,直线 l1 , l2 , l3 表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,A.四处B.三处C.两处D.一处7.如图,△ ABC 的三边 AB、BC、CA 长分别是 20、30、40,其三条角平分线将△ ABC 分为三个三角形,则 S△ ABO ︰S△ BCO︰S△ CAO 等于( )A. 1︰1︰1 则 DQ 的最小值( )B. 1︰2︰3C. 2︰3︰4D. 3︰4︰58.如图,在 Rt△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D,若 CD=3,点 Q 是线段 AB 上的一个动点,A. 5B. 4C. 3D. 29.∠AOB 的平分线上一点 P 到 OA 的距离为 4,Q 是 OB 上任一点,则( ) B. PQ>4 D. PQ<4A. PQ≥4C. PQ≤410.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平 分线.如图:一把直尺压住射线 OB,另一把直尺压住射线 OA 并且与第一把直尺交于点 P,小明说:“射线 OP就是∠BOA 的角平分线.”他这样做的依据是()A. 角的内部到角的两边的距离相等的点在角的平分线上 C. 三角形三条角平分线的交点到三条边的距离相等B. 角平分线上的点到这个角两边的距离相等D. 以上均不正确二、填空题(共 6 题;共 8 分)11.如图,要在河流的南边,公路的左侧 M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流 与公路交叉 A 处的距离为 1cm(指图上距离),则图中工厂的位置应在________.12.如图,△ ABC 中,∠ACB=90°,CD⊥AB 于 D,AE 是∠BAC 的平分线,点 E 到 AB 的距离等于 3cm,则 CF=________cm.13.如图,在 Rt△ ABC 中,∠C=90°,AD 是△ ABC 的角平分线,若 CD=4,AC=12,BC=9,则 S△ ABD =________.14.如图, △ ABC 中, ∠A=100°, BI、 CI 分别平分∠ABC, ∠ACB, CM 分别平分∠ABC, 则∠BIC=________, 若 BM、 ∠ACB 的外角平分线,则∠M=________.15.如图,已知相交直线 AB 和 CD 及另一直线 MN,如果要在 MN 上找出与 AB,CD 距离相等的点,则这样的点 至少有________个,最多有________个.16.如图,在△ ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点 A1 , ∠A1BC 的平分线与∠A1CD 的平分线 交于点 A2 , 依此类推….已知∠A=α,则∠An 的度数为________(用含 n、α 的代数式表示).三、解答题(共 6 题;共 55 分)17.如图,直线 l 及 A、B 两点(保留作图痕迹,不写作法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1题D C B A P O 2题D C B A E O 3题D C B A 4题D C B A O 5题C B A O 6题C
B A E
7题D C B A 3218题
10题D C B A γβα9题11题D
C B A 角平分线练习题
1.如图,已知∠CDA =∠CBA=90°,且CD=CB ,则点C 一定在 上,点A 在 上.
2.如图,点P 为∠AOB 的角平分线上一点,PC ⊥AO 于点C ,PD ⊥OB 于点D ,请写出图中所有的相等线段 。
3.如图,AB ∥CD ,AO 、CO 分别平分∠BAC 、∠ACD ,OE ⊥AC 于点E ,且OE=2,则AB 、CD 间的距离为 。
4.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将△ABC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AB 重合,则CD 的长度为 。
5.如图,△ABC 中,∠C=80°,∠BAC 、∠ABC 的角平分线交于点O,则∠OAC+∠OBC= °,∠BOA= °
6.如图,△ABC 中,AB =AC, ∠A=40°,O 为△ABC 内一点,且∠OBC=∠ACO ,则∠BOC 的度数为 。
7.如图,Rt △ABC 中,AC=BC,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,CD=2,则DE= ,BD= ,AC= ,AB= 。
8.如图,∠1=∠2,若∠3=30°,为了使台球反弹后将黑球直接撞入袋中,那么击打白球时必须保证∠1的度数为 。
9.光线以如图所示的角度α照到平面镜Ⅰ上,然后在平面镜Ⅰ、Ⅱ间反射,已知∠α=60°, ∠β=50°,则∠γ的度数为 。
10.如图,△ABC 中,∠C=90°,AD 平分∠BAC ,CD ∶BD=3∶5,BC=24cm,AB=30cm,则S △ABD = 。
11.如图,△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,BC=4,CD=1.5,则AC= 。
12.如图,△ABC 中,M 为BC 的中点,AN 平分∠BAC ,AN ⊥BN 于点N ,AB=6,AC=10,则MN= 。
13.如图,已知AB=AC ,PB=PC ,下列结论:①EB=EC ②AD ⊥BC ③AE 平分∠BAC ④∠PBC=∠PCB ;其中正确的是 (填序号)。
14.如图,已知点C 是∠AOB 的平分线上一点,且点P 、P ’分别在OA 、OB 上,若要得到OP=OP ’,需要添加以下条件中的某一个即可,①∠OCP=∠OCP ’② ∠OPC=∠OP ’C ③PC =P ’C ④PP ’⊥OC 请写出所有符合条件的序号 。
15.如图,△ABC 中,AB =AC,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,给出以下四个结论:①DA 平分∠EDF ②AE=AF ③AD 上的点到B 、C 两点的距离相等 ④到AE 、AF 距离相等的点到DE 、DF 的距离也相等;其中正确的结论有 (填序号)。
16.△ABC中,∠ACB、∠ABC的角平分线交于点O,连接AO、BO、CO,若AB∶
BC∶AC=2∶5∶6,且S△ABO=8,则S△ABC= 。
17.到三角形三个顶点距离相等的点是,到三角形
三边距离相等的点是。
18.在三条交叉公路间建一所加油站,使加油站到三条公路的距离相等,这样的
位置有处。
19.如图,OA=OB,OC=OD,AD、BC交于点P,下面给出四个结论:①∠A=∠B ②
PC=PD ③点P在∠AOB的角平分线上④点O到BC、AD的距离相等;其中正确
的是(填序号)
20.如图,△ABC中,∠ACB=90°,角平分线AD、BE交于点I,连接CI并延长交
AB于点F,下列结论中不正确的是() A.点I在∠ACB的平分线上
B.点F在∠AIB的平分线上
C.∠AIE=45°
D.∠CAD+∠ABE+∠BCF=90°
21.如图,已知∠AOB,OA=OB,点E在OB上,四边形AEBF是矩形,请你只用
无刻度的直尺在图中画出∠AOB的角平分线(保留作图痕迹)。
22.如图所示,OD平分∠AOB,在OA、OB边上取OA=OB,P为OD上一点,且
PM⊥BD,PN⊥AD,垂足分别为M、N
求证:PM=PN
23.如图,BD平分∠ABC,∠BAD+∠BCD=180°
求证:DA=DC
24.如图,△ABC中, AD平分∠BAC,且AB=AC+CD,求∠B∶∠C的值。
25.如图,△ABC中,AB=8㎝,AC=4㎝,∠A的平分线与BC的垂直平分线交于点D,DE⊥AB于点E,DF⊥AC于点F。
⑴求证:AE=AF ⑵求证:BE=CF ⑶求AE的长。
角平分线练习题参考答案
1.∠A 的角平分线上 ∠C 的角平分线上
2.PC=PD OC=OD
3.4
4.3cm
5.50° 130°
6.110°
7.2 22 2+22 4+22
8.60°
9.40° 10.135cm 2 11. 3 12.2
13.①②③④ 14.①②④ 15.①②③④ 16.52
17.三条垂直平分线的交点 三条角平分线的交点 18.4 19.①②③④ 20.B
21.连接AB 、EF 交于点M ,作射线OM 即可
22.略证:∵△OBD ≌△OAD ∴∠BDO=∠ADO 又∵PM ⊥OD PN ⊥AD ∴PM=PN
23.略证:在BC 边上截取BE=BA 证明△ABD ≌△EBD 即可。
24.用截取法。
∠B ∶∠C=1∶2
25.连接BD 、CD 。
AE=2cm。