第四章波形估计(最佳线性估计、滤波)-Read

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章波形估计(最佳线性估计、滤波) 参量估计-静态估计-随机参量,非随机参量 波形估计-动态估计-随机过程

线性滤波理论是用来估计信号的波形或系统的状态 最佳估计-仅当高斯随机过程的特殊情况 线性最佳估计,最佳线性滤波-最小方差准则

最佳线性滤波要解决的问题:给定有用信号与加性噪声混合的信号波形,寻求作用于此混合波形的一种线性运算,得到的结果将是信号与噪声的最佳分离。 最佳-使估计的均方误差最小。 ☆维纳滤波(Wiener Filtering)-1940

平稳随机过程的最佳线性滤波,必需存储所用到的全部数据,计算量太大,不适于实时处理。 ☆卡尔曼滤波(Kalman Filtering)-1960

将状态变量引入滤波理论,利用递推算法,便于实时处理,并可处理非平稳随机过程。

§4-1、线性变换与正交原理

一、 线性变换

估值(t)Z

ˆ为观测信号Z(t)的线性变换,故可写成: [])14(Z(t)L (t)Z

ˆ---= 式中算子]L[∙表示线性变换,估计准则是线性最小均方误差 因此,定义误差:

2)--(4-(t)Z

ˆ-Z(t)e(t)= 希望导出估计准则]L[∙,使下列均方误差最小: []3)--(4-(t)Z ˆ-Z(t)e(t)E 22⎥⎦

⎤⎢⎣⎡=E 由于变换是线性的,则对于所有的常数a 1,a 2和过程Z 1(t)和Z 2(t)有:

若][L 1∙和][L 2∙是两个线性变换,即: 则其差的变换也是线性变换,即:

[][])74(L L ]L [12---∙-∙=∙

将(4-5)和(4-6)代到(4-7)式中,即可证明,对于线性变换有: {}[]{})84(E L ]L [---∙=∙E

式中算子]E[∙表示数学期望。

若X(t)在区间[t i ,t f ]对所有的ξ与Z(ξ)正交,即: []9)--(4-],[,0)(),(E f i t t t X Z ∈∀=ξξ 则对于Z(ξ)的任何线性变换,在区间ξ∽[t i ,t f ]对X(t)也正交。若L[Z(ξ)]是Z(ξ)的线性变换,因为线性变换和期望是可以交换的,故有:

[]()[]()[])54((t)Z a (t)Z a L 21211122111---+=+t Z L a t Z L a []()[]()[])64((t)Z a (t)Z a L 22212122112---+=+t Z L a t Z L a []()[]()[])44((t)Z a (t)Z a L 22112211---+=+t Z L a t Z L a

[]{}[]{}[]{}10)

-(4--,],[,0]

0[)(),()(),(L E )(,)(L E f i t t L t X Z E L t X Z t X Z ∈∀--====ξξξξ二、正交原理

线性变换]L[∙是最小均方误差估值,当且仅当误差e(t) 在区间ξ∽[t i ,t f ]对Z(ξ)正交。

证明:假若所有过程Z(t)=Y(t)+V(t)是实的、平稳的。

考虑线性变换][L 1∙,对所有ξ,[])(ˆ)Z(L 1t Y

=ξ,于是均方误差[]

)(ˆ)()(,(t)e E 121t Y t Y t e -=是最小,则 [])114()(ˆ)Z(L 1---=t Y

ξ 是最佳估值,且

[]()[]{}

)124..(0)Z()((t)e E 221m -=-==ξεL t Y E 考虑线性变换][L 2∙,对所有ξ,[])(ˆ)Z(L 2t Y

=ξ,则误差[]

)(ˆ)()(,(t)e E 222t Y t Y t e -=对所有ξ与数据Z(ξ)正交,即:

[][]{}

)134.(0)Z(,)(ˆ)()Z(,(t)e E 2-=-=ξξt Y

t Y E

误差e 1(t)可用 e 2(t)表示,如

()[]

()[]()[]

{}()[]()[]()[]

()[])144()()()()()(212212211---+=-+=--+=-=ξξξξξξξZ L t e Z L Z L t e Z L Z L Z L t Y Z L t Y t e

由式(4-7) 差的变换也是线性变换。将式(4-14)代入式(4-12),由最佳估值,线性均方误差变成: ()[]

{}()[]

{}[][][]{}

)154....()]([)]([),(2(t)e E )Z()()Z()(222

22

22

1m -++=+=-=ξξξξεZ L E Z L t e E L t e E L t Y E

因为e 2(t)对数据Z(ξ)正交,也就对L[Z(ξ)]正交,如方程(4-9)所示,于是

[])164...(0)]([),(2-=ξZ L t e E

则最小均方误差简化为:

[][]{})174....()]([(t)e E 2

2

2m -+=ξεZ L E 其中[]

(t)e E 22为估计值][L 2∙的均方误差。因此 [][]{}

[])184.((t)e E )]([(t)e E 22

22

2m -=+=ξεZ L E

当且仅当非负值[]{}

2)]([ξZ L E 为零,即: [][])194(0L L ]L [12---=∙-∙=∙

这就证明了上述正交原理;对于误差与数据正交,线性变换导致最小均方误差线性估计值,反之亦然。 维纳滤波器的推导可以用正交原理的方法,也可采用其他的方法,如变分法等。

§4-2维纳滤波(平稳随机过程的最佳线性滤波) 滤波的条件及要求:

⑴有用信号s(t)是随机过程+加性噪声n(t)—输入x(t) 并假设s(t),n(t)是联合宽平稳的,具有已知的自相关函数和互相关函数(或对应的谱密度函数); ⑵滤波器是线性时不变的h(t)—H(ω)

⑶输出是宽平稳的,即稳态滤波的含义。理论上可认为输入信号x(t)是在t=-∞时加入的,因此,在任何有限时刻t ,输出y(t)是宽平稳的。

⑷选取滤波器的h(t)H(ω),使估计的均方误差最小。 α<0-平滑,α=0-滤波、去噪,α>0-预测。

相关文档
最新文档