数学建模试题卷及答案

合集下载

《第三章 数学建模活动(二)》试卷及答案_高中数学必修_北师大版_2024-2025学年

《第三章 数学建模活动(二)》试卷及答案_高中数学必修_北师大版_2024-2025学年

《第三章数学建模活动(二)》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、某工厂生产一批产品,原计划每天生产100件,10天完成。

后来由于提高效率,每天多生产了20件,实际用了8天完成。

设提高效率后每天生产的件数为x件,那么x的值是:A、60B、80C、100D、1202、在解决实际问题时,建立数学模型的一般步骤不包括以下哪一项?()A. 确定问题背景和目标B. 收集和整理数据C. 建立数学模型D. 进行实验验证3、某工厂生产一批产品,已知生产这种产品需要原材料A和B,其中原材料A的用量与原材料B的用量成比例。

若生产100个产品需要原材料A和原材料B分别为10kg 和20kg,那么生产200个产品需要原材料A和原材料B分别为多少kg?A、20kg和40kgB、30kg和60kgC、40kg和80kgD、50kg和100kg4、在解决数学建模问题时,以下哪项步骤是错误的?A、明确问题背景和目标B、建立数学模型C、收集和分析数据D、求解数学模型,得到结果但不进行验证5、某工厂计划生产一批产品,已知生产这批产品需要投入的原材料费用为3000元,人工费用为1000元,其他费用为500元。

如果每件产品的利润为10元,要使得利润总额达到10000元,至少需要生产多少件产品?A. 500件B. 1000件C. 1500件D. 2000件6、在解决数学建模问题时,以下哪种方法不是常用的策略?()A、建立数学模型B、分析模型,提出假设C、进行数据收集和整理D、进行数学推导,得出结论7、某市为了改善交通状况,计划在一条长为10公里的主干道上增设若干个公交站点。

根据交通流量分析,每两个站点之间的平均距离不宜小于1公里也不宜大于2公里。

如果这条主干道的起点和终点都设有一个站点,那么最多可以设置多少个站点?最少可以设置多少个站点?A. 最多11个站点,最少6个站点B. 最多12个站点,最少5个站点C. 最多11个站点,最少5个站点D. 最多10个站点,最少6个站点8、下列关于函数模型y=ae^(bx)+c(a、b、c为常数,且a>0,b≠0)的说法中,正确的是:A. 当a=1,b=0,c=0时,该函数表示一个常数函数B. 当a=1,b=1,c=0时,该函数表示一个指数函数C. 当a=1,b=0,c=1时,该函数表示一个一次函数D. 当a=1,b=-1,c=1时,该函数表示一个二次函数二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些选项属于数学建模的基本步骤?()A. 提出问题B. 收集数据C. 建立模型D. 求解模型E. 验证模型F. 模型应用2、某工厂为了提高产品质量,计划对生产流程进行优化。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

《数学建模》考试试卷与参考答案

《数学建模》考试试卷与参考答案

《数学建模》试卷 第 1 页 共 4 页《数学建模》试题一、填空题(每题5分,满分20分):1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 .2. 设年利率为0.05,则10年后20万元的现值按照复利计算应为 .3. 所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .4. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .二、分析判断题(每题10分,满分20分):1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。

2. 某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?表1单位:元/件上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由。

三、计算题(每题20分,满分40分):1. 有一批货物要从厂家A 运往三个销售地B 、C 、D ,中间可经过9个转运站.,,,,,,,,321321321G G G F F F E E E 从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、8;从密线封层次报读学校专业姓名317《数学建模》试卷 第 2 页 共 4 页1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷及答案_高中数学选择性必修第三册_人教A版_2024-2025学年

《数学建模》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、一个长方体的长、宽、高分别为3, 4, 5,求其体积。

A、60B、20C、12D、92、在建立数学模型时,以下哪种方法通常用于确定数学模型的形式?()A. 观察法B. 理论分析法C. 统计分析法D. 模拟法3、在建立数学模型的过程中,以下哪个步骤不是必须的?A、收集数据B、提出假设C、建立方程D、验证模型4、某中学数学建模小组对某一社区的家用车流量进行了模型分析。

若该社区每小)],其中(t)时通过的家用车流量(单位:辆/h)满足以下关系:[f(t)=100+5sin(πt12(单位:小时)是从12:00开始的时间,那么该社区15:00至16:00之间通过的家用车流量估计为多少辆?A、105B、103C、101D、995、在数学建模过程中,以下哪种方法被用于解决实际问题中的系统优化问题?A. 逻辑推理法B. 据统计法C. 线性规划法D. 递归分析法6、某工厂生产某种产品,已知每生产x件产品,需要原材料费1000元,生产成本每件30元。

若工厂以每件50元售出,问工厂至少要生产多少件产品才能保证不亏损?A)25件B)30件C)35件D)40件7、(2019·江苏卷)某校学生在校参加社团活动的频率与每周用于社团活动的平均时间如下表所示:次数1次2次3次4次5次及5次以上时间(小时) 5.5810.51317根据上述数据,若该生下周参加1次社团活动,则其下周用于社团活动的平均时间为 ______ 小时。

A. 9B. 10C. 11D. 128、某城市出租车计费规则如下:起步价为10元,包含前3公里;超过3公里后,每增加1公里加收2元,不足1公里按1公里计算。

若乘客乘坐出租车行驶了x公里(x > 3),则乘客应付的车费y(元)与行驶距离x(公里)之间的函数关系式为:A. y = 10 + 2(x - 3)B. y = 10 + 2xC. y = 2x - 6D. y = 12 + 2(x - 3)二、多选题(本大题有3小题,每小题6分,共18分)1、(5分)以下关于数学建模的说法中,正确的是:A. 数学建模是一种将实际问题转化为数学问题的过程B. 数学建模只适用于数学专业,其他专业无需涉及C. 数学建模需要运用数学知识、计算机技术以及实际应用背景D. 数学建模的目的是为了找到问题的最优解2、某市计划在城市中心建立一个大型公园,以提高市民的生活质量。

(完整版)数学建模模拟试题及答案

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。

为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。

2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。

《数学建模》练习题库及答案.doc

《数学建模》练习题库及答案.doc

一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。

12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。

3.北美地区有几个国家?写出它们的名字。

4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。

5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。

6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。

7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。

15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。

16.将16进制的数字20转化为10进制的数字。

17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。

9•求208素因子分解。

10. 用Lindo 求解下列整数线性规划问题。

max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。

高中数学建模试题及答案

高中数学建模试题及答案

高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。

答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。

答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。

答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。

专科数学建模竞赛试题及答案

专科数学建模竞赛试题及答案

专科数学建模竞赛试题及答案试题:某工厂生产一种产品,该产品由三个不同的生产阶段组成,每个阶段的生产效率和成本不同。

第一阶段的生产效率为每小时生产10个单位,成本为每个单位5元;第二阶段的生产效率为每小时生产8个单位,成本为每个单位6元;第三阶段的生产效率为每小时生产6个单位,成本为每个单位7元。

假设工厂每天工作8小时,并且每个阶段的生产能力是独立的。

问题一:如果工厂希望每天生产至少100个单位的产品,那么每个阶段每天至少需要生产多少单位?问题二:在满足问题一的条件下,工厂每天的生产成本是多少?问题三:如果工厂希望降低生产成本,但每天至少需要生产100个单位的产品,那么每个阶段的生产效率需要提高多少?答案:问题一解答:为了满足每天至少生产100个单位的产品,我们可以设第一阶段每天生产x个单位,第二阶段生产y个单位,第三阶段生产z个单位。

根据题目条件,我们有以下方程组:\[ x + y + z \geq 100 \]\[ \frac{x}{10} + \frac{y}{8} + \frac{z}{6} \leq 8 \]解这个方程组,我们可以得到第一阶段至少需要生产40个单位(因为40是10的倍数且满足总生产量至少100的条件),第二阶段至少需要生产24个单位(因为24是8的倍数且满足总生产量至少100的条件),第三阶段至少需要生产33个单位(因为33是6的倍数且满足总生产量至少100的条件)。

问题二解答:在问题一的基础上,我们可以计算每天的生产成本。

第一阶段的成本为40单位 * 5元/单位 = 200元,第二阶段的成本为24单位 * 6元/单位 = 144元,第三阶段的成本为33单位 * 7元/单位 = 231元。

因此,每天的总生产成本为200元 + 144元 + 231元 = 575元。

问题三解答:为了降低生产成本,我们需要提高每个阶段的生产效率。

假设第一阶段的生产效率提高到每小时生产a个单位,第二阶段提高到每小时生产b个单位,第三阶段提高到每小时生产c个单位。

数学模型考试题及答案

数学模型考试题及答案

数学模型考试题及答案一、选择题1. 以下哪个选项是线性方程的一般形式?A. ax + by = cB. ax^2 + by^2 = cC. ax^3 + by^3 = cD. ax + by + cz = d答案:A2. 矩阵的行列式表示为:A. det(A)B. rank(A)C. trace(A)D. transpose(A)答案:A3. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = e^xD. f(x) = ln(x)答案:B二、填空题1. 微分方程 y'' + 2y' + y = 0 的通解是 y = ________。

答案:C1e^(-t) + C2te^(-t)2. 矩阵 A = [1 2; 3 4] 的逆矩阵是 ________。

答案:[-2 1; 1.5 -0.5]3. 函数 f(x) = x^3 - 3x 在区间 [0, 2] 上的极值点是 ________。

答案:1三、计算题1. 计算定积分∫ from 0 to π of sin(x) dx。

答案:22. 求解微分方程 y' + 2y = e^(-2x) 的通解。

答案:y = -1/2e^(-2x) + C*e^(2x)3. 证明函数 f(x) = x^2 在区间 (-∞, +∞) 上是凸函数。

答案:f''(x) = 2 > 0,因此 f(x) 在整个实数域上是凸函数。

四、证明题1. 证明函数 f(x) = x^3 在区间 (-∞, +∞) 上是严格递增的。

答案:f'(x) = 3x^2 ≥ 0 对所有x ∈ (-∞, +∞) 成立,且仅在 x = 0 时取等号。

因此,f(x) 在整个实数域上是严格递增的。

2. 证明对于任意正整数 n,n^2 - n 总是偶数。

答案:n^2 - n = n(n - 1)。

由于 n 和 n - 1 必定有一个是偶数,因此它们的乘积 n(n - 1) 必定是偶数。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力(5分) 答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点(5分) 答:(1)可处理非线性^;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) `证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢(15分) {解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

数学建模试卷及答案

数学建模试卷及答案

《数学模型》试卷一、基本问题。

(本大题共2小题,每小题20分,共40分)1.在七项全能中对于跳高运动的记分点方法由下式给出:c b m a P )(-=其中m c b a ,348.1,0.75,84523.1===是跳的高度(按cm 计)。

求跳的高度为183cm 的记分点,并确定积分1000点需要跳的高度。

2.铁匠用直条铁做蹄铁,把直条铁弯成通常铁蹄的形状。

为求得铁条需要的长度,要测量蹄的宽度(W 英寸),并用下列形式的公式:b aW L +=求得需要的条长度(L 英寸)。

试用下列数据求的a 和b 的估计值。

并得出该公式的估计式。

宽W (英寸) 长L (英寸)6.50 12.005.75 13.50二、渔场捕捞问题。

(本大题共3小问,每小问20分。

满分共60分。

)三、在渔场中捕鱼,从长远利益而言,通常希望既使渔场中鱼量保持不变,又能达到最大的捕获量。

假设:(1)在无捕捞的情况下,鱼量的变化符合Logistic 模型:)1(Nx rx dt dx -=,其中:r 为固有增长率,N 是渔场资源条件下最大鱼量;(2)在捕捞的情况下,设单位时间的捕捞量与渔场中的鱼量成正比。

1.建立在有捕捞的情况下,渔场的产量模型;2.研究该模型鱼量的稳定性;3.找出该模型下适合的捕捞量。

《数学建模》考试卷(答案)一、1.解:把183,348.1,0.75,84523.1====m c b a 代入记分公式,得348.1)0.75183(84523.1)(-⨯=-=c b m a P =348.110884523.1⨯(=1016.5)由公式c b m a P )(-=,有c b m a P )(-=,解得公式:b a P m c +=1)( 把1000,348.1,0.75,84523.1====P c b a 代入上式,得b aP m c +=1)( 0.7594.5410.75)84523.11000(74184.0348.11+=+= (=106.7+75.0=181.7)2.解:把两组数据00.12,50.6==L W 和50.13,75.5==L W 分别代入公式 b aW L +=得方程组:⎩⎨⎧+=+=b a b a 75.55.135.60.12 解得:⎩⎨⎧=-=252b a 所以b a ,的估计值为:25,2^^=-=b a 。

数学模型试题及答案解析

数学模型试题及答案解析

数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。

数学建模模拟试题及答案

数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题5分,共20分) 1。

若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3。

马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1。

要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2。

一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆-=-∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1。

一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位。

试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由。

(2) 原材料的利用情况。

2。

三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表。

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

数学建模3D试题及答案

数学建模3D试题及答案

数学建模3D试题及答案
试题:
1. 假设一个立方体的体积为27立方厘米,求其边长。

2. 一个球体的半径为3厘米,求其表面积。

3. 已知一个圆柱体的底面半径为2厘米,高为5厘米,求其体积。

4. 一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求其对
角线的长度。

5. 一个正四面体的边长为a,求其体积。

答案:
1. 立方体的体积公式为V=a³,其中a为边长。

已知体积V=27立方厘米,所以a³=27,解得a=3厘米。

2. 球体的表面积公式为S=4πr²,其中r为半径。

已知半径r=3厘米,所以S=4π×3²=36π平方厘米。

3. 圆柱体的体积公式为V=πr²h,其中r为底面半径,h为高。

已知
底面半径r=2厘米,高h=5厘米,所以V=π×2²×5=20π立方厘米。

4. 长方体对角线的长度公式为d=√(l²+w²+h²),其中l、w、h分
别为长、宽、高。

已知长l=4厘米,宽w=3厘米,高h=2厘米,所以
d=√(4²+3²+2²)=√(16+9+4)=√29厘米。

5. 正四面体的体积公式为V=(a³√2)/12,其中a为边长。

所以体积V=(a³√2)/12。

小学数学建模试题及答案

小学数学建模试题及答案

小学数学建模试题及答案
一、选择题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?
A. 50
B. 100
C. 150
D. 200
答案:B
2. 一个班级有40名学生,其中男生人数是女生人数的两倍,那么这个班级有多少名男生?
A. 16
B. 20
C. 24
D. 28
答案:C
二、填空题
3. 如果一个数乘以3后再加上5等于22,那么这个数是______。

答案:5
4. 一个数的一半加上3等于9,那么这个数是______。

答案:12
三、解答题
5. 一个水池,每天注入水量是前一天的两倍,第一天注入了1升水。

请问第五天注入了多少升水?
答案:第五天注入了32升水。

6. 小明有若干个苹果,他给小华一半,然后又给小华两个,最后自己剩下3个。

问小明最初有多少个苹果?
答案:小明最初有10个苹果。

四、应用题
7. 一个农场有鸡和兔子共35只,脚的总数是94只。

问农场上有多少只鸡和多少只兔子?
答案:农场上有23只鸡和12只兔子。

8. 一个水果店早上卖出了苹果和橘子共100个,其中苹果的数量是橘子的两倍。

问水果店早上卖出了多少个苹果和橘子?
答案:水果店早上卖出了66个苹果和34个橘子。

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

数学建模试题及答案

数学建模试题及答案

数学建模试题及答案试题一:已知函数 \(f(x) = ax^2 + bx + c\),其中 \(a, b, c\) 为常数,且 \(a > 0\)。

若 \(f(1) = 2\),\(f(2) = 5\),求 \(f(3)\) 的值。

答案:首先,根据题目给出的条件,我们可以得到两个方程:\[ f(1) = a(1)^2 + b(1) + c = 2 \]\[ f(2) = a(2)^2 + b(2) + c = 5 \]将 \(x = 1\) 和 \(x = 2\) 代入函数 \(f(x)\),得到:\[ a + b + c = 2 \]\[ 4a + 2b + c = 5 \]接下来,我们解这个方程组。

将第一个方程从第二个方程中减去,得到:\[ 3a + b = 3 \]现在我们有两个方程:\[ a + b + c = 2 \]\[ 3a + b = 3 \]将第二个方程乘以2,然后从第一个方程中减去,得到:\[ a = 1 \]将 \(a = 1\) 代入 \(3a + b = 3\),得到:\[ 3 + b = 3 \]\[ b = 0 \]最后,将 \(a = 1\) 和 \(b = 0\) 代入 \(a + b + c = 2\),得到:\[ 1 + 0 + c = 2 \]\[ c = 1 \]所以,函数 \(f(x) = x^2 + 1\)。

现在我们可以求 \(f(3)\):\[ f(3) = 3^2 + 1 = 9 + 1 = 10 \]试题二:一个圆的周长是 \(20\pi\),求这个圆的半径。

答案:圆的周长 \(C\) 与半径 \(r\) 的关系是 \(C = 2\pi r\)。

已知周长\(C = 20\pi\),我们可以求半径 \(r\):\[ 20\pi = 2\pi r \]将等式两边同时除以 \(2\pi\),得到:\[ r = \frac{20\pi}{2\pi} \]\[ r = 10 \]所以,这个圆的半径是 \(10\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安邮电大学2011-2012第一学期《数学建模》选修课试题卷班级:软件1003班姓名:学号:成绩:一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:模型:所研究的系统、过程、事物或概念的一种表达形式,也可指根据实验、图样放大或缩小而制作的样品,一般用于展览或实验或铸造机器零件等用的模子。

例如飞机模型,用压制或浇灌方法使材料成为一定形状的工具。

通称“模型”。

2.数学模型答:数学模型:用数学语言描述的一类模型。

数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。

除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。

需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。

3.抽象模型答:抽象模型:是三维建模里这么称呼的就跟抽象雕塑的一样的。

实际不存在,理论上却存在,并用思维对事物进行客观认识的理论或者框架。

对获得的感性材料和感性经验,运用理性思维进行一番老粗取梢、去伪存真、由此及彼、由表及里的改造制作工夫,去掉事物非本质的、表面的、偶然的东西,抽取出事物本质的、内在的、必然的东西,揭示客观对象的本质和规律而建立的模型。

二、简答题(每小题满分8分,共24分)1.模型的分类答:按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类,形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型,数学模型等。

2.数学建模的基本步骤答:(1)建模准备:数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。

建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对;(2)建模假设:根据实际对象的的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。

有目的性原则、简明性原则、真实性原则和全面性原则;(3)建模建立:在建模假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻画实际问题的数学模型;(4)模型求解:构造数学模型之后,再根据已知条件和数据分析模型的特征和结构特点,设计或选择求解模型的数学方法和算法,这其中包括解方程、画图形、证明定理、逻辑运算以及稳定性讨论,特别是编写计算机程序或运用预算法相适应的软件包,并借助计算机完成对模型的求解;(5)模型分析:根据建模的目的要求,对模型求解的数字结果,或进行变量之间的依赖关系分析,,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。

通过分析,如果不符合要求,就修改或增减建模假设条件,重新建模,直到符合要求;通过分析如果符合要求,还可以对模型进行评价、预测、优化等;(6)模型检验:模型分析符合要求之后,还必须回到客观实际中对模型进行检验,用实际现象、数据等检验模型的合理性和适用性,看它是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意结果。

目前计算机技术已为我们进行模型分析、模型检验提供了先进的手段,充分利用这一手段,可以节约大量的时间、人力和物力;(7)模型应用:模型应用是数学建模的宗旨,也是对模型的最客观、最公正的检验。

因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。

3.数学模型的作用答:数学建模的教学及竞赛是实施素质教育的有效途径,它既增强了学生的数学应用意识,又提高了大学生运用数学知识和计算机技术分析和解决实际问题的能力。

开展数学建模教学与竞赛对大学生能力的培养是全面的。

这表现在创新精神和创新能力的培养,查阅文献资料、分析综合、抽象概括能力的培养,应用能力的培养,运用数学工具和计算机以及实践能力的培养等方面。

数学建模有利于培养学生创新精神和创造能力。

数学建模的问题具有一定的开放性,没有一定的规矩可循,没有事先设定的标准答案或答案不是唯一的,具有较大的灵活性。

因此需要突破传统的思维模式,面对复杂问题发挥学生的创新精神和创造力、想象力、洞察力以及解决问题的逻辑推理和量化分析能力,善于从实际问题提供的原形中抓住其数学本质,建立新颖的数学模型。

数学建模有利于培养学生双向翻译能力。

它要求学生运用学过的数学知识,把实际问题翻译成数学模型,又将数学模型的结果用浅显易懂的语言翻译出来。

数学建模有利于培养学生获取文献资料信息的能力。

在信息社会中,信息和知识以前所未有的速度传播和扩散,这就要求学生具有良好的获取文献资料信息的能力,以便适应现代社会技术创新和知识更新的需要。

数学建模问题有强烈实际背景,涉及到不同的学科领域,问题错综复杂。

这就促使学生围绕实际问题广泛查阅资料,获取自己有用的材料,这大大锻炼和提高了学生自觉使用资料的能力。

数学建模有利于培养学生利用计算机及相应软件的能力。

数学建模需要对复杂的实际问题和繁琐的数据进行处理。

目前计算机和相应的各种软件包,不仅能够节省时间,得到直观形象的结果,有利于深入讨论,而且能够促使学生养成自觉应用最新科技成果的良好习惯。

许多很好的计算软件为求解模型或仿真模型提供了便利的平台。

数学建模对提高学生使用计算机的能力是极其重要的。

数学建模有利于锻炼学生的毅力、意志。

它能增强学生克服困难的信心、决心和勇气,同时培养学生团结合作精神和交流、表达的能力,提高组织协调能力,培养其人文素质,丰富学生的知识结构。

三、解答题(满分20分)G 题 (7n+6, 7n)公司A 、B 、C 是某地区三家主要灭虫机厂商. 根据以往资料得知,公司A 、B 、C 产品的市场占有率分别为50%、30%、20%. 由于C 公司实行了改善销售与服务方针的经营管理策略,使其产品销售额逐期稳定上升,而A 公司却下降. 通过市场调查发现三公司间的顾客流动情况如下表所示.售各或客户转移的影响严重到什么程度?更全面的,三公司的产品市场占有率将如何变化?解:设A 、B 、C 在第k 个周期拥有的顾客数分别为a k ,b k ,c k ,于是⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛9.01.02.005.08.01.005.01.07.0c b a k k k ⎪⎪⎪⎭⎫ ⎝⎛---111k k k c b a , 令 π=(π1 π2π3)=(a k b k c k )=(a 1-k b 1-k c 1-k )于是⎪⎪⎩⎪⎪⎨⎧=++=++=++=++19.01.02.005.08.01.005.01.07.0321332123211321πππππππππππππππ 解之得.5882.0,2353.0,1765.0321===πππ故A,B 公司市场占有率逐期下降,C 公司市场占有率逐期上升。

A,B,C 公司市场占有率最终分别达到17.65%、25.53%、58.52%.四、综合题(41分)L 除雪机模型(6n+5, 6n+2, 6n+1)有条10km 长的公路,由一台除雪机负责除雪。

每当路面的平均厚度达到0.5m时,除雪机开始工作. 但是雪仍在下着,路面雪的厚度在不断的增加,除雪机的前进速度会不断降低,其速度随雪的厚度呈现性变化,在无雪的路面上除雪机的行驶速度为13m/s;。

当雪的厚度达到1.5m时,除雪机将无法工作。

雪下了1h,雪最大时路面积雪厚度以0.1cm/s速度增加,前0.5h雪越下越大,后0.5h越下越少。

问除雪机能否将整条路面的积雪清除?1. 论文题目:除雪机模型2. 论文摘要:路上积满了雪,就会影响交通,需要用除雪机来清扫。

对该问题的分析有,首先考虑下雪的速度,下雪的快慢影响着雪的厚度,当雪达到一定的厚度时除雪机将无法正常工作,雪的厚度也影响除雪的进度。

除雪的进度和雪的厚度是变量,通过找出除雪进度和雪积累厚度的一些关系进行更进一步的分析。

考虑下雪的速度是否可变,如果是可变的进行合理的假设,因为有10Km我们也可以考虑地域行的影响。

3. 关键词:下雪的速度,除雪机的速度,雪的厚度。

4. 论文正文:问题提出:有条10km长的公路,由一台除雪机负责除雪。

每当路面的平均厚度达到0.5m时,除雪机开始工作. 但是雪仍在下着,路面雪的厚度在不断的增加,除雪机的前进速度会不断降低,其速度随雪的厚度呈现性变化,在无雪的路面上除雪机的行驶速度为13m/s;。

当雪的厚度达到1.5m时,除雪机将无法工作。

雪下了1h,雪最大时路面积雪厚度以0.1cm/s速度增加,前0.5h雪越下越大,后0.5h越下越少。

问除雪机能否将整条路面的积雪清除?问题分析:对该问题的分析有,首先是考虑下雪的速度,下雪的快慢影响着雪的厚度。

不管怎样除雪机的功率是有限的,当雪达到一定的厚度时除雪机将无法正常的工作,雪的厚度也影响着除雪的进度。

由此可知除雪的进度是受多方面因素的影响的,除雪的进度和雪的厚度时变量。

通过找出除雪进度和雪积累厚度的一些关系进行更进一步的分析。

考虑下雪的速度是否可变,如果是可变的进行合理的假设。

在分析问题时我们可以将其理想化,通过建立的模型和理想化的模型进行比较,在除雪时不考虑雪的融化,不考虑其他车辆对除雪进度的影响。

对该题进行多方面的建立模型,对其结果进行比较得出比较合理的结论。

模型假设:1.在除雪机开始扫雪时,雪的厚度刚好达到0.5米厚;2.下雪的速度是可变的,但下雪下的最大时地面上雪的厚度增加量为每秒0.1厘米3.当雪的厚度达到1.5米时,除雪机将无法工作在没有雪的路面上除雪机的行驶速度为每秒13米。

模型设计:下雪速度不是常量,它在前30分钟稳步增加到最大值0.1厘米/秒,然后在后30分钟逐渐减少到0模型解法和结果:由已知条件,雪的厚度的变化率为h′(t)=⎪⎪⎩⎪⎪⎨⎧≤<-≤<.36001800),18002(10,18000,1800103-3tttth(t)=⎪⎩⎪⎨⎧≤<--⨯-≤<⨯--.36001800),42.1054)(58.6141(1077778.2,18000,1077778.2727ttttt于是除雪机能够清理路面的长度S=⎰077.255664.1341vdt=⎰=-077.255664.1341)(93.5017)](321[13,米dtth所以除雪机不能将整个路面积雪清除。

相关文档
最新文档