初一上期末考试数学试卷(含答案)

合集下载

北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(word版,含答案)

北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(word版,含答案)

βα石景山区2023-2024学年第一学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m -(C )6.8m(D ) 6.8m -3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养 老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10 534人次. 其中,数字10 534用科学记数法可表示为 (A )310.53410⨯ (B )41.053410⨯ (C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1 (B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是 (A )20︒ (B )40︒ (C )50︒(D )70︒考生须知1.本试卷共4页,共三道大题,28道小题,满分100分。

考试时间100分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

-3b a -2-12106. 下列运算正确的是(A )325+=a b ab (B )2222-=c c(C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 (A )0ab >(B )<-a b(C )20+>a(D )20->a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________. 10. 如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是 .÷3平方-2结果输入x11. 若233m x y -与253mx y --是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为 . 13. 如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在 (请在,,D E F中选择)处可使所用管道最短,理由是 .河岸FE D 村庄B村庄A第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=, (1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.l三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312-+-. 18.计算:11124(834-⨯-+19.计算:3122(7)2-+⨯-÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=-. 22.解方程:211123x x +--=. 23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ; (2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: .25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点. (1)如图,若=4AC ,求CD 的长. 根据题意,补全解题过程:∵10,4AB AC CB ===,AB - , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.石景山区2023-2024学年第一学期初一期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1- 13.E ;两点之间线段最短 14. 22()a r π-15.(1)4;(2)1 16.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=-+- ………………………… 3分 1=-. ………………………… 5分 19.解:原式82(7)2=-+⨯-⨯ ………………………… 2分 828=-- ………………………… 4分 36=-. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x ---=. ………………………… 5分 21.解:移项,得53182x x -=--. ………………………… 2分 合并同类项,得 220x =-. ………………………… 4分 系数化为1,得10x =-. ………………………… 5分 ∴10x =-是原方程的解.22.解:去分母,得 3(21)2(1)6x x +--=. ………………………… 2分去括号,得 63226x x +-+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分 系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =---+2217x =-. …………………………4分 当2x =-时,原式22(2)17=⨯--.9=-. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套. …… 1分 根据题意可得,180210(50)9600x x +-=. ………………………… 3分 解得:30x =. 则5020x -=. ………………………… 5分 答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB - AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分 27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒, ∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒-︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x -≤≤. …………………………7分。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)

2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。

广西壮族自治区桂林市2023-2024学年七年级上学期期末数学试题(解析版)

广西壮族自治区桂林市2023-2024学年七年级上学期期末数学试题(解析版)

2023~2024学年度上学期学情调研题七年级 数学(考试用时120分钟,满分120分)注意事项:1.试卷分为选择题和非选择题两部分,在本试题卷上作答无效.2.答题前,请认真阅读答题卡上的注意事项.3.考试结束后,将本试卷和答题卡一并交回.一、单选题(共12小题,每小题3分,共36分,请将答案填在答题卡上)1. 有理数,,0,1中最小的一个数是( )A. 1B. 0C.D. 【答案】C【解析】【分析】运用有理数大小比较法则找出有理数中最小的数即可.【详解】解:在实数,,0,1中,负数最小根据两个负数比较大小,绝对值大的反而小所以最小的数是.故选:.【点睛】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.2. 如果水位上升3米记作米,那么米表示水位( )A. 上升5米B. 下降5米C. 上升2米D. 下降3米【答案】B【解析】【分析】本题考查了正数与负数,解题关键是理解“正”和“负”的相对性,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.【详解】解:米表示上升3米,那么米表示水位下降5米,故选:B .3. 如图,数轴上有,,,四个点,其中绝对值最小的数对应的点是( )13-2-2-13-13-2-2-C 3+5-3+5-A B C DA. 点B. 点C. 点D. 点【答案】B【解析】【分析】根据图示,可得:哪个点离原点越近,则哪个点所对应的数的绝对值就越小,据此判断出绝对值最小的数对应的点是哪个即可.【详解】解:∵,,,四个点中,点离原点最近,∴绝对值最小的数对应的点是.故选:B .【点睛】本题考查绝对值的意义,有理数大小比较的方法,解题的关键是要明确:①正数都大于;②负数都小于;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4. 下列调查中,你认为适合采用全面调查是( )A. 《新闻联播》电视栏目的收视率B. 一批灯泡的使用寿命C. 一个班级学生的体重D. 我国中小学生喜欢上数学课的人数【答案】C【解析】【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】解:A 、调查范围广,无法普查,故不符合题意;B 、调查具有破坏性,无法普查,故不符合题意;C 、一个班级学生的体重,适合普查,符合题意;D 、调查范围广,无法普查,故不符合题意;故选:C .5. 桂林以其独特的山水风光而闻名于世.这里的自然美景如诗如画,仿佛置身于一幅巨大的画卷之中,深受国内外游客的喜爱.据统计,2023年暑假期间,漓江游船和排筏累计接待游客1970000人次.将1970000用科学记数法表示为( )A. B. C. D. 【答案】A【解析】的AB C DA B C D B B 0061.9710⨯519.710⨯71.9710⨯51.9710⨯【分析】本题考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【详解】解:.故选:A .6. 单项式的次数是( )A. B. 1 C. 2 D. 3【答案】D【解析】【分析】本题考查单项式的次数,根据单项式的次数就是所有字母指数之和,即可解题.【详解】解:单项式的次数是,故选:D .7. 如果与是同类项,那么m ,n 的值是( )A , B. , C. , D. ,【答案】A【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于 的方程,求得 的值;【详解】∵与是同类项,故选A【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同8. 如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知,其依据是( ).10n a ⨯1||10a ≤<n n a n 10≥n 1<n 61970000 1.9710=⨯223xy -23-223xy -123+=232n x y +3213m x y --2m =1n =0m =1n =2m =2n =1m =2n =,m n ,m n 232n x y +3213m x y --23,213,n m ∴+=-=2,1,m n ∴==CA CB AB +>A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 直线比线段长【答案】A【解析】【分析】根据线段公理:两点之间,线段最短,即可得解.【详解】根据题意,得两点之间,线段最短故答案为A .【点睛】此题主要考查对两点之间距离的理解,熟练掌握,即可解题.9. 《诗经》是中国古代诗歌的开端,最早的一部诗歌总集,共有311篇,其中6篇为笙诗,只有标题,没有内容,余下的诗篇可分为《风》、《雅》、《颂》三个部分.其中,《风》的篇数是《颂》的4倍,《雅》的篇数比《颂》的3倍少15篇.若设《颂》有篇,下列根据题意列出的方程正确的是( )A. B. C. D.【答案】C【解析】【分析】考查了由实际问题抽象出一元一次方程,需要掌握列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.设《颂》有篇,根据共有311篇,其中6篇为笙诗,只有标题,没有内容,余下的诗篇可分为《风》、《雅》、《颂》三个部分.其中,《风》的篇数是《颂》的倍,《雅》的篇数.【详解】解:设《颂》有篇,由题意得.故选:C .10. 下面说法与所示的几何图形相符的是()x 43156311x x x ++++=1115631143x x x +-++=43156311x x x +-++=1115631143x x x ++++=x 4x 315-x x 43156311x x x +-++=A. 点在直线上B. 直线和直线表示同一条直线C. 点在射线上D. 直线与直线都经过点【答案】D【解析】【分析】本题考查了点和直线的关系,直线的性质,注意仔细观察图形,掌握角的概念是关键;利用点和直线的关系,结合图形,对选项一一分析,选出正确答案.【详解】解:A 、点不在直线上,故错误,不合题意;B 、直线和直线表示同一条直线,故原说法错误,不合题意.C 、点不在射线上,故原说法错误,不合题意.D 、直线与都经过点,故正确,符合题意;故选:D .11. 如图,已知直线上A ,B 两点相距,点是线段的中点,点在直线上且与点相距,则的长度是( )A. 2cmB. 14cmC. 14cm 或8cmD. 14cm 或2cm【答案】D【解析】【分析】此题主要考查了线段的中点,理解线段中点的定义是解答此题的关键,分类讨论是解答此题的难点,.首先根据线段,是的中点求出,然后分两种情况进行讨论:①当点在点的左侧时,;②当点在点的右侧时,;据此可得出答案.【详解】解:线段,是的中点,,点在直线上,有以下两种情况:①当点在点的左侧时,;P n OA m P OB OA PB OP n OA n P OB OA PB O 12cm C AB D AB B 8cm CD 12cm AB =C AB 6cm BC =D B CD BD BC =-D B CD BC CD =+ 12cm AB =C AB ()16cm 2BC AB ∴== D AB ∴D B ()862cm CD BD BC ∴=-=-=②当点在点右侧时,.综上所述:线段的长是或.故选:D .12. 如图是一个运算程序,若第1次输入的值为16,则第2024次输出的结果是( )A. 1B. 2C. 4D. 8【答案】C【解析】【分析】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律,根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的的值为16,那么:第1次输出的结果是8,第2次输出的结果是4,第3次输出的结果是2,第4次输出的结果是1,第5次输出的结果是4,第6次输出的结果是2,第7次输出的结果是1,第8次输出的结果是4,第9次输出的结果是2,第10次输出结果是1,第11次输出结果是4,综上可得,从第4次开始,每三个一循环,由可得第2024次输出的结果与第5次输出的结果相等,为4.故选:C .的的的D B ()6814cm CD BC BD ∴=+=+=CD 2cm 14cm a a ⋯⋯(20243)36732-÷=⋅⋅⋅二、填空题(共6小题,每小题2分,共12分,请将答案填在答题卡上)13. -5的倒数是_______【答案】##-0.2【解析】【分析】根据倒数的定义即可得出答案.【详解】解:的倒数是;故答案为:.【点睛】本题主要考查了倒数的定义.解题的关键是掌握若两个数的乘积是1,我们就称这两个数互为倒数.14. 计算: _______.【答案】【解析】【分析】本题考查了有理数的乘法,根据有理数的乘法法则:两数相乘.同号得正,异号得负,再把绝对值相乘,即可得到答案.【详解】解:.故答案为:.15. 某校为了了解初一年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是_______.【答案】20【解析】【详解】因为某校为了了解初一年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是20.故答案为:2016. 钟表3时30分时,时针与分针所成的角的度数为________.【答案】【解析】【分析】本题考查了钟面角,角的和差运算;根据分针每分钟转,时针每分钟转,分针与时针从3时到3时30分所转过的角度,利用角的和差关系即可求解.【详解】解:分针从3时到3时30分转过,时针从3时到3时30分转过,15-5-15-15-()23⨯-=6-()()23236⨯-=-⨯=-6-75︒6︒0.5︒306180⨯︒=︒300.515⨯︒=︒则钟表3时30分时,时针与分针所成的角的度数为;故答案为:.17. 若代数式的值是6,那么代数式的值是______.【答案】22【解析】【分析】本题考查了求代数式的值,熟练掌握整体代入法是解题的关键,根据已知得出,然后对所求式子变形,整体代入计算即可.【详解】解:,,,故答案为:22.18. 三个面积均是的多边形如图叠放,其中,正方形阴影部分外的面积是,六边形阴影部分外的面积是,若两块阴影部分的面积之和正好是五边形面积的一半,则a 、b 、m 三者之间的数量关系是______.【答案】【解析】【分析】本题考查了二元一次方程组,设正方形与五边形阴影部分的面积是,六边形与五边形阴影部分的面积是,根据题意列出相应的方程组,再消元即可.【详解】解:设正方形与五边形阴影部分的面积是,六边形与五边形阴影部分的面积是,根据题意得:,整理得到:,180(9015)75︒-︒+︒=︒75︒2231a a ++2697a a ++2235a a +=22316a a ++= 2235a a ∴+=226973(23)735722a a a a ∴++=++=⨯+=m a b 302m a b --=1S 2S 1S 2S 121212a S m b S m S S m ⎧⎪+=⎪+=⎨⎪⎪+=⎩302m a b --=故答案为:.三、解答题(本大题共8题,共72分,请将解答过程写在答题卡上)19. 计算:(1)(2).【答案】(1)(2)【解析】【分析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;(1)去括号,利用减法法则,计算即可求出值;(2)先计算乘方运算,再计算乘除运算.【小问1详解】解:;【小问2详解】解:.20. 将有理数分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}【答案】0,2023;,;,.【解析】【分析】本题考查了有理数的概念及分类,根据有理数的概念分类即可.302m a b --=()735--+41122-⨯÷154-()735--+735=++15=41122-⨯÷22=-⨯4=-12.5,0,2,2023,35%,0.62--2.5-35%-1220.6【详解】解:整数:0,2023;负数:,;正分数:,.故答案为:0,2023;,;,.21. 解方程:(1);(2).【答案】(1); (2).【解析】【分析】本题考查了一元一次方程的解法,解答关键是按照相关解法逐步运算.(1)先去括号,再移项合并同类项,未知项系数化为1,求解;(2)先去分母,再去括号,移项合并同类项,未知项系数化为1,求解;【小问1详解】解:去括号,得,,移项,得,合并同类项,得,,∴;【小问2详解】解:去分母,得,去括号,得,移项,得2.5-35%-1220.6 2.5-35%-1220.67(33)1x x --=1231332x x -+=-12x =-1713x =7331x x -+=7313x x -=-42x =-12x =-()()21233118x x -=+-249318x x -=+-合并同类项,得,∴22. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查整式的化简求值,将原式去括号,合并同类项后代入已知数值计算即可.【详解】解:原式,当时,原式.23. 2023年在杭州举办的第十九届亚运会,共有45个国家和地区的代表队、12000多名运动员参加,共颁发金牌482枚.某校新闻社团的同学根据图1金牌榜前四名的金牌数绘制了不完整的条形统计图和扇形统计图.根据以上信息,解答下列问题:(1)在扇形统计图中,字母A 、B 所代表的国家名称分别是A :______;B :______;(2)除前四名外,其他国家和地区在第十九届亚运会上共夺得金牌多少枚?(3)在扇形统计图中,求中国代表队所得金牌数对应扇形的圆心角度数.(精确到)(4)你还能从图中得到什么信息?(写一条即可)【答案】(1)印度,日本;(2)枚493182x x --=--1317x -=-1713x =(32)(32)xy x xy xy x --+-1,2x y =-=65xy x -7-3232xy x xy xy x=-++-65xy x =-1,2x y =-=6(1)25(1)1257=⨯-⨯-⨯-=-+=-1︒159(3)(4)见解析【解析】【分析】本题考查了统计图、求扇形的圆心角度数,解题的关键是读得懂图表;(1)求出相应频率即可判断;(2)用总数减去前四名即可得到;(3)利用频率乘上即可;(4)通过图表进行分析,分析合理即可,答案不唯一.【小问1详解】解:,故A 表示印度;,故B 表示日本,故答案为:印度,日本;【小问2详解】解: ,故其他国家和地区在第十九届亚运会上共夺得金牌枚;【小问3详解】解:;【小问4详解】解:从图中得到中国获得金牌数目第一,国家对运动的重视程度较高.24. 某水利工程,甲工程队单独施工需要40天可以完成,乙工程队单独施工需要60天可以完成.(1)现在乙工程队施工10天后,为了加快进度,甲工程队加入,两队合作完成余下的工程,问完成此项水利工程一共用了多少天?(2)完成此项水利工程,甲、乙二队共得到施工费68万元,如果按每队完成的工作量计算施工费,那么甲工程队可以得到多少万元?【答案】(1)30,(2)34.【解析】【分析】本题考查了一元一次方程的应用,有理数的混合运算的应用,解题的关键是找准等量关系,正确列出程;(1)设乙队单独完成这项工程需要x 天,根据甲队完成的工作量+乙队完成的工作量=总工作量1,列方程即可;150︒360︒280.0581482≈ 520.108482≈ 482201524228159----=159201360150482⨯︒≈︒(2)根据甲的工作效率和工作时间,计算甲完成工程的几分之几,再乘以施工费即可.【小问1详解】解:设完成此项水利工程一共用了x 天,根据题意得,,解得,,答:完成此项水利工程一共用了30天.【小问2详解】,∴甲工程队可以得到34万元25. 综合与实践:【问题情境】七年级(1)班的同学在劳动实践课上采挖红薯,通过对红薯的称重感受“正数与负数”在生活中的应用.【实践探究】同学们一共挖了10筐红薯,以每筐为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:筐号①②③④⑤⑥⑦⑧⑨⑩重量/千克10412【问题解决】(1)求这10筐红薯的总重量是多少千克?(2)为了让更多的人分享劳动成果,该班同学每人分得2千克后,决定将剩余的红薯赠送给敬老院的爷爷奶奶们.已知敬老院共有138名老人,平均每位老人分得千克的红薯,求七年级(1)班的学生人数.【答案】(1)总重量是千克;(2)七年级(1)班的学生人数为人.【解析】1014060x x -+=30x =3010683440-⨯=30kg 3- 2.50.5- 1.5- 2.5-1.530348【分析】本题考查了有理数的混合运算,一元一次方程的应用,理解题意,正确列式计算是解此题的关键.(1)根据题意列出算式求解即可;(2)设七年级(1)班的学生人数为,列出,求解即可.【小问1详解】解:这10筐红薯的总重量是:,答:总重量是千克;【小问2详解】解:设七年级(1)班的学生人数为,由题意得:,解得:,答:七年级(1)班的学生人数为人.26. 综合与探究【提出问题】小明在学习中遇到这样一个问题:如图1,,请作一个,使与互余(),即.【动手操作】小明是这样思考的:如图2所示,若射线在的内部,则,所以射线在的外部;然后通过构造直角,找到的余角,如图3所示;进而分析要使与互余,只需.因此,小明找到了解决问题的方法:过点O 作射线的垂线,利用量角器作出的平分线,这样就得到与互余.请你帮助小明完成下列推理说明:(1)已知:如图3,,射线平分.请说明与互余.解:理由:因为射线平分(已知),x 3032138 1.5x -=⨯()10303 2.510.5041 1.5 2.52303⨯+-++-+++--+=303x 3032138 1.5x -=⨯48x =48090AOB αα∠=︒<<︒()AOC ∠AOC ∠BOC ∠AOC BOC ∠>∠90AOC BOC Ð+Ð=°OC AOB ∠90AOC BOC ∠+∠<︒OC AOB ∠AOD ∠AOC ∠AOC ∠BOC ∠BOC COD ∠=∠OA OD BOD ∠OC AOC ∠BOC ∠90AOD ∠=︒OC BOD ∠AOC ∠BOC ∠OC BOD ∠所以______(角平分线的定义),由于,即______,所以(______),即与互余.(2)【类比操作】如图4,若,参考小明的画法,请在图4中作出一个,使与互补(),并直接写出的度数.(3)【拓展延伸】如图5,已知,若与互补,射线平分,射线平分.请根据题意,补全图形,并求的度数.【答案】(1),90,等量代换;(2)作图见解析,;(3)补全图形见解析,的度数为或【解析】【分析】本题主要考查角平分线的定义,余角和补角,灵活运用角平分线的定义求解角度之间的关系是解题的关键.(1)根据角平分线的性质得到,利用垂直的定义得到,根据等量代换推出,即可证明;(2)若构造平角(),所以通过构造平角,如图,作的延长线线,利用量角器作出的平分线,根据,,即可求出;(3)分射线在的内部,射线在的外部;两种情况讨论.【详解】(1)证明: 射线平分(已知),(角平分线的定义),BOC ∠=90AOD ∠=︒AOC COD ∠+∠=︒90AOC BOC Ð+Ð=°AOC ∠BOC ∠40AOB ∠=︒AOE ∠AOE ∠∠BOE AOE BOE ∠>∠AOE ∠90180AOB ββ∠=︒<<︒()AOB ∠BOC ∠OM AOB ∠ON BOC ∠MON ∠COD ∠110AOE ∠=︒MON ∠90︒90β-︒BOC COD ∠=∠90AOC COD Ð+Ð=°90AOC BOC Ð+Ð=°BOD ∠AOE BOE ∠<∠AOD ∠AO OD BOD ∠OE 180140BOD AOB ∠=︒-∠=︒1702BOE EOD BOD ︒∠=∠=∠=AOE ∠OC AOB ∠OC AOB ∠ OC BOD ∠∴BOC COD ∠=∠,即,(等量代换),即与互余,故答案为:,90,等量代换;(2)若构造平角(),所以通过构造平角,如图,作的延长线线,利用量角器作出的平分线,射线平分(已知),(角平分线的定义),,(等量代换),即与互补,,,,;(3)如图5,当射线在的外部时,延长到点C ,利用量角器作出的平分线,利用量角器作出的平分线,,,平分,平分,90AOD ∠=︒90AOC COD Ð+Ð=°∴90AOC BOC Ð+Ð=°AOC ∠BOC ∠COD ∠BOD ∠AOE BOE ∠<∠AOD ∠AO OD BOD ∠OE OE BOD ∠∴BOE EOD ∠=∠ 180AOE EOD ∠+∠=︒∴180AOE BOE ∠+∠=︒AOE ∠∠BOE 40AOB ∠=︒180140BOD AOB ∴∠=︒-∠=︒∴1702BOE EOD BOD ︒∠=∠=∠=∴110AOE AOB BOE ∠=∠+∠=︒OC AOB ∠AO BOC ∠ON AOB ∠OM 180AOB BOC ∠+∠=︒ 180BOC β∴∠=︒- OM AOB ∠ON BOC ∠,,;如图6,当射线在的内部时,延长到点D ,利用量角器作出,利用量角器作出的平分线,利用量角器作出的平分线,,,,,平分,平分,,,;综上,的度数为或.1122MOB AOB β∴∠=∠=119022BON BOC β∠=∠=︒-90MON MOB BON ∴∠=∠+∠=︒OC AOB ∠AO BOC BOD ∠=∠BOC ∠ON AOB ∠OM BOC BOD ∠=∠180AOB BOD ∠+∠=︒∴180AOB BOC ∠+∠=︒180BOC β∴∠=︒- OM AOB ∠ON BOC ∠1122MOB AOB β∴∠=∠=119022BON BOC β∠=∠=︒-90MON MOB BON β∴∠=∠-∠=-︒MON ∠90︒90β-︒。

北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)

北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)

2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。

初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)第一学期期末考试初一数学试卷一、选择题(共9个小题,每小题3分,共27分)1.-1的相反数是()A。

2.B。

1/2.C。

-2.D。

-1/22.当地面高于海平面1米时,记作“+1米”,那么地面低于海平面10米时,记作()A。

-1米。

B。

+1米。

C。

-10米。

D。

+10米3.最新数据显示,目前全世界人口总数约为70亿,中国是世界第一人口大国,约为1 400 000 000人。

请将1 400 000 000用科学记数法表示为()A。

14×10^7.B。

1.4×10^9.C。

14×10^8.D。

140×10^114.如果x=1是关于x的方程2x+m=2的解,那么m的值是()A。

1.B。

1/2.C。

-1.D。

-1/25.下列运算正确的是()A。

6a-5a=a。

B。

a^2+a^2=2a^4.C。

3a^2b-4b^2a=-a^2b。

D。

(a^2)^3=a^56.从正面、上面、左面三个方向看某一个物体得到的图形如图所示,则这个物体是()A。

圆锥。

B。

圆柱。

C。

三棱锥。

D。

三棱柱7.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A。

①②。

B。

①④。

C。

②③。

D。

③④8.如图是一个正方体的展开图,如果在其中的三个面A,B,C内分别填入适当的数,使得它们围成正方体后相对的面上的两个数互为相反数,那么填入A,B,C内的三个数依次为()A。

0,-1,2.B。

0,2,-1.C。

2,-1,-2.D。

-1,1,-29.列数中第9个数及第n个数(n为正整数)分别是()A。

82,-n^2+1.B。

82,(-1)^n+2.C。

-82,(n^2+1)。

D。

-82,3n+1二、填空题(共6个小题,每小题3分,共18分)10.单项式-2xy的系数是_______,次数是_______。

11.角度换算:3615′=_______。

12.某商店把一双旅游鞋按进价提高30%标价,然后再按标价的8折出售,如果每双旅游鞋的进价为x元,那么每双鞋标价为_______元;8折后,每双鞋的实际售价为_______元。

浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。

辽宁省大连市中山区2023-2024学年七年级上学期期末数学试题(含答案)

辽宁省大连市中山区2023-2024学年七年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末质量抽测七年级数学2024.01(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-5的绝对值是( )A.B .5C .-5D .2.下面几何体中,是圆锥的为()A .B .C .D .3.代数式-7x 的意义可以是( )A .-7与x 的和B .-7与x 的差C .-7与x 的积D .-7与x 的商4.如图是某地某一天的天气预报,该天的温差是()A .1℃B .10℃C .19℃D .9℃5.下列运算正确的是( )A .B .C .D .6.若,则的余角的大小是( )A .B .C .D .7.把弯曲的公路改直,能够缩短行程,这样做的道理是()A .两点之间,线段最短B .两点确定一条直线C .两点之间,射线最短D .两点之间,直线最短8.若,则下列变形正确的是()1515-358a b ab+=22a a -=22232a b ab a b -=34ab ab ab-=-4030A '∠=︒A ∠4930'︒5930'︒13930'︒14130'︒a b =A .B .C.D .9.如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,海岛B 在它北偏东40°方向上.则的度数是( )A .60°B .80°C .100°D .120°10.我国古代数学名著《孙子算经》中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,根据题意可列方程为( )A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作______米.12.单项式-3ab 的系数为______.13.关于x 的一元一次方程的解为,则a 的值为______.14.若,则的值是______.15.如图,数轴上点A 和点B 表示的数分别是3和-6,动点P 从B 点出发,以每秒1个单位长度的速度向左匀速移动,动点Q 同时从A 点出发,以每秒2个单位长度的速度向左匀速移动.设移动时间为t 秒,当动点Q 到点B 的距离等于动点P 到点B 的距离时,t 的值为______.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(本小题6分)如图,已知四点A ,B ,C ,D ,请按下列要求用直尺和圆规作图.34a b =22a b -=+33a b =a b c c=AOB ∠()14.512x x -=-2145x x -=+.()1 4.512x x -=+()14.512x x +=-25x a +=2x =2210m m +-=2243m m +-(1)连接BC ;(2)作射线BD 交直线AC 于点O ;(3)连接DA ,在DA 的延长线上作线段.17.(本小题10分)计算:(1);(2).18.(本小题10分)下面是小董同学解一元一次方程的过程,请认真阅读并回答问题.解:,……第一步,……第二步,……第三步.……第四步(1)①以上求解过程中,第______步进行的是移项,移项的依据是______;②第______步开始出现错误,这一步错误的原因是______;(2)求该一元一次方程的解;(3)除纠正上述错误外,请你根据平时的学习经验,就解一元一次方程时还需要注意的事项给其他同学提一条建议(一条即可).19.(本小题9分)先化简下式,再求值:,其中,.20.(本小题8分)如图,点C 是线段AB 的中点,点D 在线段AB 上,且.若,求线段DC 的长.21.(本小题8分)下表是某次篮球联赛积分榜:队名比赛场次胜场负场积分前进1410424东方1410424光明149523蓝天149523雄鹰147721远大147721AE AD =323(5)(3)128⨯---÷()421(2)13244-⨯--÷+1213323x x x --+=-()()183118221x x x +-=--18331842x x x +-=--18341823x x x ++=-+1925x =()()22225333a b ab ab a b --+12a =2b =2DB AD =18AB =卫星1441018钢铁141414(1)由积分榜可得:负一场积______分,胜一场积______分;(2)某队本次比赛后胜场总积分能等于负场总积分吗?请用一元一次方程知识给予验证.22.(本小题12分)数学活动课上,小明和小伟准备了一根质地均匀的木杆和若干个2g 的砝码.然后利用木杆和砝码做下列实验:①在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;②在木杆两边距支点18cm 处各悬挂一个2g 的砝码,发现左右保持平衡;③木杆右边砝码重量和位置保持不变,支点位置不变.在木杆左边砝码下加挂一个2g 的砝码,然后把这两个砝码一起向右移动,直至左右平衡,记录此时支点到木杆左边挂砝码处的距离;④在木杆左边两个砝码下再加挂一个2g 的砝码,然后把这三个砝码一起向右移动,直至左右平衡,记录此时支点到木杆左边挂砝码处的距离;⑤在木杆左边继续加挂砝码,并重复以上操作.小明和小伟记录如下:木杆左边砝码重量(单位:g )支点到木杆左边砝码处的距离x (单位:cm )木杆右边砝码重量(单位:g )支点到木杆右边砝码处的距离(单位:cm )2182184921866218…………(1)如果木杆左边挂有n 个砝码,移至左右平衡时,n 与x 满足的规律是______;(2)小明和小伟意犹未尽,在课余时间利用上述规律制作了如图简易杆秤,其中秤盘质量10g ,重物质量,秤砣质量100g ,秤纽与秤盘的水平距离为,秤纽与零刻线的水平距离为,零刻度线与末刻度线水平距离为50cm .当秤盘不放重物,秤砣在零刻线时,杆秤平衡;当秤盘放入质量为500g 的重物,秤砣从零刻度线移至末刻度线时,杆秤平衡.①l 与a 的数量关系是______;②列方程求解:小明在秤盘上放了一个笔记本,秤砣位于零刻度线右侧15cm 处时,杆秤平衡,求笔记本的重量.23.(本小题12分)g m cm l cm a[问题初探]数学活动课上,李老师将一副三角尺按图1所示位置摆放.分别作出,的平分线BH ,BF .然后提出问题:求的度数.(1)①“智慧小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,BH 和BF 仍然是,的平分线,DB 和BC 在同一直线上.分别计算出图2,图3中的度数,发现的度数均为______°.②探究完图2,图3所示的特殊位置问题后,“智慧小组”的同学猜想出图1中的度数应该与图2,图3中的度数相同.他们经过合作交流后发现,在图2,图3中和的度数都已知或能求出具体的度数,但图1中,和求不出具体的度数,所以想到了用字母表示数.如果设,则可以用含的式子表示和,然后利用角的和与差,就能求出的度数.请你根据“智慧小组”的思路,求出图1中的度数.[类比分析](2)受到“智慧小组”的启发,“创新小组”将三角尺按图4所示方式摆放,分别作出,的平分线DN ,DM .他们认为利用同样方法也能求出的度数.请你求出的度数.[学以致用](3)如图5,已知点C 在线段AB 上,.点D 在线段AC 上,点E 在线段AB 延长线上,且.若,求的值.2023-2024期末考试七上数学数学答案一、选择题(本题共10小题,每小题3分,共30分)1.B 2.A 3.C 4.C 5.D 6.A 7.A 8.C 9.B 10.D二、填空题(本题共5小题,每小题3分,共15分)11.-80 12.-3 13.1 14.-1 15.3或9三、解答题ABE ∠CBE ∠HBF ∠ABE ∠CBE ∠HBF ∠HBF ∠HBF ∠HBF ∠ABE ∠CBE ∠ABE ∠CBE ∠DBA α∠=αABE ∠CBE ∠HBF ∠HBF ∠ADB ∠CDE ∠MDN ∠MDN ∠3AC BC =12DE AB =9AD EC BE +=CDAB每画对一个得2分(作,必须有作图痕迹,没有扣一分)17.(本小题10分)计算:(1).(2).18.(本小题10分)(1)①第三步,等式性质1;②第二步,去括号后,等式左边括号里的第二项没有变号;(2)解:;;;;.(3)解一元一次方程时,去分母时,不要漏乘;去括号时,括号外的数要与括号里的每一项相乘,移项需要变号等(答案不唯一).19.(本小题9分),当,时,原式.20.(本小题8分)∵,,∴.又∵点C 是线段AB 的中点,∴.∴.AE DE =()()()3128235311531283⨯---÷=---⨯()11512811512813=---=-+=()42111(2)132416(19)4442-⨯--÷+=⨯--⨯+()()148484122=--⨯+=--=1213323x x x --+=-()()183118221x x x +-=--18331842x x x +-=-+18341823x x x ++=++2325x =()()222222222253331553968a b ab ab a b a b ab ab a b a b ab --+=---=-12a =2b =22111162826284316132242⎛⎫=⨯⨯-⨯⨯=⨯⨯-⨯⨯=-=- ⎪⎝⎭18AB =2DB AD =163AD AB ==192AC AB ==3CD AC AD =-=(1)由积分榜可得:负一场积___1___分,胜一场积___2___分;(2)设一个队胜了x 场,则负了场..∴.∵x 是整数,∴不符合实际.∴没有哪个队的胜场总积分等于负场总积分.22.(本小题12分)(1)规律是nx =18;(2)①l 与a 的数量关系是l =10a ;②由题意,∴.∴.∴.∴.设笔记本的重量为,,,,答:笔记本重150g .23.(本小题12分)(1)①的度数为 30 °;②∵,∴.∵BH 平分,∴.∵,∴.∴.∵BF 平分,∴.∴.(2)设.∵,∴.∵DN 平分,∵.∵,∴.()14x -214x x =-43x =43x =()()1050050100l a +⋅=+⋅()()105001050100a a +⋅=+⋅51010500a a =+1a =10l =g m ()()1010115100m +⋅=+⋅10160m +=150m =HBF ∠45DBE ∠=︒45ABE DBA DBE α∠=∠+∠=︒+ABE ∠122.522HBE ABE α∠=∠=︒+60ABC ∠=︒60CBD ABC DBA α∠=∠-∠=︒-()456015CBE DBE CBD αα∠=∠-∠=︒-︒-=-︒CBE ∠17.522EBF CBE α∠=∠=-︒22.57.53022HBF HBE EBF αα⎛⎫∠=∠-∠=︒+--︒=︒ ⎪⎝⎭ADE β∠=90EDB ∠=︒90ADB ADE EDB β∠=∠+∠=︒+ADB ∠14522ADN ADB β∠=∠=︒+60ADC ∠=︒60CDE ADC ADE β∠=∠-∠=︒-∵DM 平分,∴.∴.∴.(3)设,∴.∴.∴.设,∴...∵,∴.∴.∴.∴.∴.CDE ∠13022EDM CDE β∠=∠=︒-303022ADM ADE EDM βββ∠=∠+∠=︒-+=︒+45301522MDN ADN ADM ββ⎛⎫∠=∠-∠=︒+-︒+=︒ ⎪⎝⎭BC x =33AC BC x ==4AB AC BC x =+=122DE AB x ==CD y =3AF AC CD x y =-=-2EC ED CD x y =-=-2BE DE CD BC x y x x y =--=--=-9AD EC BE +=()329x y x y x y -+-=-74y x =74x y =47AB x y ==17CD AB =。

2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷一.选择题(共12小题,满分36分)1.的绝对值是a,相反数是b,则a+b=( )A.0B.C.D.2.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体( )A.从正面看改变,从左面看改变B.从上面看不变,从左面看不变C.从上面看改变,从左面看改变D.从上面看改变,从左面看不变3.有理数a、b在数轴上的对应的位置如图所示,则正确的是( )A.a+b<0B.ab>0C.a﹣b>0D.|a|<|b|4.下列算式中,计算结果是负数的是( )A.(﹣2)+5B.|﹣3﹣2|C.3×(﹣3)D.(﹣5)25.若x2﹣3x的值为4,则3x2﹣9x﹣3的值为( )A.1B.9C.12D.156.下列说法正确的是( )A.单项式﹣a的系数和次数都是1B.x5﹣5x2y+2x三次项的系数为5C.单项式的系数和次数分别为,4D.π+4是单项式7.若3m4n|a|与﹣m|b﹣1|n2是同类项,且a<b,则a、b的值为( )A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣38.若(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,那么k2﹣2k+1的值为( )A.1B.9C.1或9D.09.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB 和线段BC的中点,则线段MN的长度是( )A.8cm B.7cm C.5cm D.3cm10.大车平均速度每小时80公里,小车平均速度每小时100公里,则大车和小车行驶完同一条路的时间之比是( )A.80:100B.100:80C.4:5D.5:411.如图,在某世博园内从花城丝路A处看见福建厦门园C在其北偏东62°的方向上,从丝路起点B处看见福建厦门园C在其北偏东13°的方向上(花城丝路与丝路起点约在同一直线上),则从福建厦门园C处看A,B两处的视角∠ACB的度数为( )A.13°B.26°C.49°D.62°12.如图,表中给出的是某月的月历,任意用“H”型框选中7个数(如阴影部分所示),则这7个数的和不可能是( )A.63B.70C.98D.105二.填空题(共6小题,满分18分)13.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了30%,现在的收费标准是每分钟b元,则原收费标准每分钟为 元.14.写出一个只含字母a、b的三次三项式,并按字母a的降幂排列是 .15.已知a、b、c、d是有理数,|a﹣b|≤8,|c﹣d|≤17,且|a﹣b﹣c+d|=25,则|b﹣a|﹣|d﹣c|= .16.的值是 .17.x=2是方程x﹣m=1的解,则m= .18.七棱柱有 个面, 个顶点.三.解答题(共7小题,满分66分)19.计算:(1);(2).20.解方程:8x=.21.“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:4(a+b)+3(a+b)=(4+3)(a+b)=7(a+b),请应用整体思想解答下列问题:(1)化简:5(m+n)2﹣7(m+n)2+3(m+n)2;(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.某中学对10名七年级男学生进行了引体向上的测试,以做4个为基准进行记录,超过的次数用正数表示,不足的次数用负数表示.他们的成绩记录如表:+1+3﹣10+1﹣1+1+2+2﹣1(1)学校规定:做4个(含4个)以上者为达标.这10名男学生中,达标的占百分之几?(2)在这次测试中,这10名男学生做引体向上次数最多与次数最小相差几次?23.如图是广告公司设计的商标图案,若每个小长方形的长为x,宽为y.(1)求阴影部分面积;(2)当x=2,y=1时,阴影部分面积是多少?24.如图,数轴上A、B两点表示的数分别为a,b,且点A在点B的左边,|a|=5,a+b=20,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,当PA=3PB时,求P运动的时间.(3)若点P从点A出发,以每秒3个单位长度的速度向右运动,同时数轴上另一动点Q 从点B出发,以每秒2个单位长度的速度向左运动.经过多长时间,两动点在数轴上相距10个单位长度?25.如图,已知OM平分∠AOC,ON平分∠BOC.(1)如果∠AOB=100°,∠BOC=40°,求∠MON的度数;(2)如果∠AOB=α,试求∠MON的度数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:根据题意可得,a=|﹣|=,b=﹣(﹣)=,故a+b==.故选:D.2.解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.3.解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;ab<0,故选项B不符合题意;a﹣b<0,故选项C不符合题意;故选:A.4.解:∵(﹣2)+5=3>0,∴选项A不符合题意;∵|﹣3﹣2|=5>0,∴选项B不符合题意;∵3×(﹣3)=﹣9<0,∴选项C符合题意;∵(﹣5)2=25>0,∴选项D不符合题意.故选:C.5.解:由题意可知,x2﹣3x=4,∴3x2﹣9x﹣3=3(x2﹣3x)﹣3=3×4﹣3=9.故选:B.6.解:A、单项式﹣a的系数是﹣1,次数是1,原说法错误,故此选项不符合题意;B、x5﹣5x2y+2x三次项的系数为﹣5,原说法错误,故此选项不符合题意;C、单项式的系数和次数分别为,3,原说法错误,故此选项不符合题意;D、π+4是单项式,原说法正确,故此选项符合题意;故选:D.7.解:∵3m4n|a|与﹣m|b﹣1|n2是同类项,∴|a|=2,|b﹣1|=4,解得:a=±2,b=5或﹣3,又∵a<b,∴a=±2,b=5.故选:C.8.解:∵(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,∴k﹣2≠0且|k|﹣1=1,解得:k=﹣2,∴k2﹣2k+1=(﹣2)2﹣2×(﹣2)+1=9,故选:B.9.解:∵AB=10cm点M是AB的中点,∴BM=AB=5(cm),∵BC=4cm,点N是BC的中点,∴BN=BC=2cm,∴MN=BM﹣BN=3cm,∴线段MN的长度为3cm.故选:D.10.解:设该条路的长度为S,则:=,即大车和小车行驶完同一条路的时间之比是5:4.故选:D.11.解:由题意得:∠CAB=90°﹣62°=28°,∠ABC=90°+13°=103°,∴∠ACB=180°﹣∠CAB﹣∠ABC=49°.故选:C.12.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=70时,此时x=10,当7x=98时,此时x=14,当7x=105时,此时x=15,由图可知:14的左没有数字,则这7个数的和不可能是98.故选:C.二.填空题(共6小题,满分18分)13.解:根据题意知原收费标准每分钟为+a=(+a)元,故答案为:(+a).14.解:由题意得:a3+a2b+a(答案不唯一),故答案为:a3+a2b+a.15.解:∵|a﹣b|≤8,|c﹣d|≤17,∴|a﹣b|+|c﹣d|≤8+17=25.∵|a﹣b﹣c+d|=|(a﹣b)﹣(c﹣d)|=25,∴a﹣b与c﹣d符号相反,并且|a﹣b|=8,|c﹣d|=17,∴|b﹣a|﹣|d﹣c|=|a﹣b|﹣|c﹣d|=8﹣17=﹣9.故答案为:﹣9.16.解:原式=(﹣3)×(﹣)×××(﹣)=﹣(3×)×(×)=﹣1×1=﹣1,故答案为:﹣1.17.解:把x=2代入方程得:2﹣m=1,解得:m=1,故答案为:1.18.解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.三.解答题(共7小题,满分66分)19.解:(1)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣9+4+18=13;(2)原式=﹣1÷25×+=﹣+=.20.解:8x=,系数化为1得:x=.21.解:(1)原式=5(m+n)2﹣7(m+n)2+3(m+n)2=(5﹣7+3)(m+n)2=(m+n)2.(2)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d).当a﹣2b=2,2b﹣c=﹣5,c﹣d=9时,原式=2﹣5+9=6.22.解:(1)7÷10=,答:这10名男学生中,达标的占;(2)3﹣(﹣1)=3+1=4(次),答:这10名男学生做引体向上次数最多与次数最小相差4次.23.解:(1)如图,S阴影=S矩形ABCD﹣S△ABE﹣S△AHF﹣S△ECG=4x×4y﹣x×4y﹣×3x×3y﹣×3x×3y=16xy﹣2xy﹣xy﹣xy=5xy.(2)当x=2,y=1时,5xy=5×2×1=10.∴阴影部分面积为:10.24.解:(1)∵|a|=5,∴a=5或a=﹣5,∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,∴a<b,∵ab<0,∴a<0,b>0,∴a=﹣5,∵a+b=20,∴﹣5+b=20,∴b=25,答:a、b的值分别是﹣5、25.(2)设运动的时间为t秒,由(1)得,点A、B表示的数分别是﹣5、25,∴AB=25﹣(﹣5)=30,根据题意得3t=3(30﹣3t)或解3t=3(3t﹣30),解得t=7.5或t=15,答:当PA=3PB时,点P运动时间为7.5秒或15秒.(3)设经过x秒,两动点在数轴上相距10个单位长度,根据题意得3t+2t+10=30或3t+2t﹣10=30,解得t=4或t=8,答:经过4秒或8秒两动点在数轴上相距10个单位长度.25.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=140°,∴,,∴∠MON=∠MOC﹣∠NOC=70°﹣20°=50°;(2)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=α,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=∠α.。

湖北省恩施土家族苗族自治州 2023-2024学年七年级上学期期末数学试题(含答案)

湖北省恩施土家族苗族自治州 2023-2024学年七年级上学期期末数学试题(含答案)

恩施市2023年秋季学期义务教育阶段期末考试七年级数学试题卷本试卷共6页,24个小题,满分120分,考试用时120分钟祝考试顺利注意事项:1.考生答题全部在答题卷上,答在试题卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、准考证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卷及试题卷上.3.选择题作答必须用2B 铅笔将答题卷上对应的答案标号涂黑,如需要改动,请用橡皮擦干净后,再选涂其他答案.非选择题作答必须用0.5毫米黑色墨水签字笔写在答题卷上指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.5.考生不得折叠答题卷,保持答题卷的整洁.考试结束后,请将试题卷和答题卷一并上交.一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是满足题目要求的,请将正确选项填涂在答题卷的相应位置)1.某地2024年元旦这天的最高气温7℃,最低气温,那么这天的温差(最高气温减最低气温)为( )A.4℃B. C. D.10℃2.据统计,三峡大坝旅游区2023年接待游客量突破330万人,较历史最高水平增加10万人,再创新高。

将330万用科学计数法表示为( )A. B. C. D.3.下列说法正确的是()A.的常数项是1B.0不是单项式C.的系数是,次数是3D.是三次多项式4.根据等式的性质,下列变形不成立的是( )A.若,则B.若,则C.若,则D.若,则5.下面图形中,不是正方体表面展开图的是()A. B. C. D.6.a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,,b ,按照从小到大的顺序排列,正确的是()3-℃4-℃10-℃23.310⨯53.310⨯63.310⨯73.310⨯2231x xy --22ab π-2π-232x y x y --a b =22a b =a b =33a b=a b =2233a b -=-a b =11a b +=-a -b -A. B.C. D.7.某车间有30名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺栓22个或螺母16个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A. B.C. D.8.图1是由3个相同小长方形拼成的图形,其周长为,图2中的长方形内放置10个相同的小长方形,则长方形的周长为( )A. B. C. D.9.求的值,可令,则,因此.仿照以上推理,计算出的值为( )A.B.C.D.10.如图,已知A ,O ,B 三点在同一直线上,且平分,平分,下列结论:①与互余;②与互补;③;④.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题3分,共15分.请将答案填写在答题卷对应题号的位置上)b a a b -<-<<b a a b -<<-<a b a b-<-<<b b a a-<<-<()2221630x x ⨯=-()2162230x x ⨯=-()221630x x =-()162230x x =-24cm ABCD ABCD 32cm 36cm 48cm 60cm23202312222+++++ 23202312222S =+++++ 2342024222222S =+++++ 2024221S S S =-=-23202312023202320232023+++++ 2023202312022-2024202312022-2023202312023-2024202312023-OC BOD ∠OE AOD ∠BOC ∠AOE ∠BOE ∠EOD ∠180AOD BOE EOD ∠+∠=∠+︒2AOC BOC EOD ∠-∠=∠11.的相反数是_______.12.已知,则的补角的度数为_______.13.若与是同类项,则_______.14.已知,,则_______.15.“转化”是一种解决问题的常用思想,有时画图可以帮助我们找到转化的方法。

2025届重庆市十八中学七年级数学第一学期期末考试试题含解析

2025届重庆市十八中学七年级数学第一学期期末考试试题含解析

2025届重庆市十八中学七年级数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在23| 3.5|3,05⎛⎫---- ⎪⎝⎭、、中,最小的数是( ) A .3 B .﹣|﹣3.5| C .235⎛⎫-- ⎪⎝⎭ D .02.为了解汝集镇三所中学七年级680名学生的期末考试数学成绩,抽查了其中60名学生的期末数学成绩进行统计分析.下面叙述正确的是( )A .680名学生是总体B .60名学生的期末数学成绩是总体的一个样本C .每名学生是总体的一个个体D .以上调查属于全面调查3.某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x 辆客车,则可列方程为( )A .4010431x x +=+B .4010431x x -=-C .401043(1)x x +=-D .4010431x x +=-4.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论,其中正确的是( ) ①b ﹣a <1;②a +b >1;③|a |<|b |;④ab >1.A .①②B .③④C .①③D .②④5.在下列单项式中,与是同类项的是( ) A . B . C . D .6.下列各式中,是同类项的是( )A .22a b 与23b a -B .2x π与212xC .2212m n -与225tm nD .6xy -与6yz -7.如果方程24=x 与32x k +=-方程的解相同,则k 的值为( )A .8-B .4-C .4D .88.电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是 ( )A .2400名学生B .100名学生C .所抽取的100名学生对“民族英雄范筑先”的知晓情况D .每一名学生对“民族英雄范筑先”的知晓情况9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.数9的绝对值是( )A .9B .19C .﹣9D .19- 11.∠1与∠2互补,∠3与∠1互余,∠2+∠3=210°,则∠2是∠1的( )A .2倍B .5倍C .11倍D .不确定12.A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2B .1.5C .2或1.5D .2或2.5二、填空题(每题4分,满分20分,将答案填在答题纸上)13.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.14.一个角的补角与它的余角的3倍的差是40°,则这个角为_____.15.若多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项,则ab =______.16.已知225m a b -和437n a b -是同类项,则m n +的值是_______.17.计算201920191()22-⨯=__________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)小明爸爸上周买进某种股票1000股,每股27.3元,下表为本周每天该股票的涨跌情况:①星期三收盘时,每股是多少元?②本周内最高价是每股多少元?最低价是每股多少元?③若小明爸爸按本周五的收盘价将股票全部卖出,你认为他会获利吗?19.(5分)定义如下:使等式222ab a b =--成立的一对有理数a ,b 叫“理想有理数对”,记为(a ,b ),如:277442233⨯=-⨯-,所以数对(4,73)是“理想有理数对”. (1)判断数对(-1,1)是否为“理想有理数对”,并说明理由;(2)若数对(-3,m )是“理想有理数对”,求m 的值,并求代数式()231m m --的值. 20.(8分)解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+21.(10分)滴滴快车是一种便捷的出行工具,分为普通快车和优享型快车;两种.下表是普通快车的收费标准:(1)张敏乘坐滴滴普通快车,行车里程7公里,行车时间15分钟,求张敏下车时付多少车费?(2)王红乘坐滴滴普通快车,行车里程22公里,下车时所付车费63.4元,则这辆滴滴快车的行车时间为多少分钟?22.(10分)解方程:2(x ﹣1)﹣2=4x23.(12分)已知多项式3x 2+my ﹣8减去多项式﹣nx 2+2y+7的差中,不含有x 2、y 的项,求n m +mn 的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:﹣|﹣3.5|=﹣3.5,﹣(﹣325)=3.4,∵﹣3.5<0<3<3.4,∴﹣|﹣3.5|<0<3<﹣(﹣325),∴在23| 3.5|35⎛⎫---- ⎪⎝⎭、、中,最小的数是﹣|﹣3.5|.故选B.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本即可.【详解】A、680名学生的期末考试数学成绩是总体,故A不符合题意;B、60名学生的期末数学成绩是总体的一个样本,故B符合题意;C、每名学生的期末数学成绩是总体的一个个体,故C不符合题意;D、以上调查属于抽样调查,故D不符合题意;故选:B.【点睛】本题考查了总体、个体、样本和抽样调查,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3、A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后进行分析从而得到正确答案.【详解】设有x辆客车,由题意得:每辆客车乘40人,则有10人不能上车,总人数为40x+10,若每辆客车乘43人,则只有1人不能上车,则总人数为43x+1,列方程为40x+10=43x+1;故选A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程. 4、C【分析】根据图示,可得b <﹣3,1<a <3,据此逐项判断即可.【详解】①∵b <a ,∴b ﹣a <1;②∵b <﹣3,1<a <3,∴a +b <1;③∵b <﹣3,1<a <3,∴|b |>3,|a |<3,∴|a |<|b |;④∵b <1,a >1,∴ab <1,∴正确的是:①③,故选C .【点睛】本题考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a 、b 的取值范围. 5、C 【解析】试题分析:与是同类项的是.故选C . 考点:同类项.6、B【分析】由题意直接根据同类项的定义进行分析,即可求出答案.【详解】解:A. 22a b 与23b a -,不是同类项,此选项错误;B. 2x π与212x ,是同类项,此选项正确; C. 2212m n -与225tm n ,不是同类项,此选项错误; D. 6xy -与6yz -,不是同类项,此选项错误.【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义即如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.7、A【分析】根据24=x 先求出x 的值,然后把x 的值代入32x k +=-求出k 即可.【详解】解:由方程24=x 可得x=2,把x=2代入32x k +=-得:62+=-k解得8k =-.故选:A【点睛】本题考查了同解方程,掌握同解方程即为两个方程解相同的方程是解题的关键.8、C【解析】试题分析:首先根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况.然后判断出这次调查的总体是:2400名学生对“民族英雄范筑先”的知晓情况.故选C考点:总体、个体、样本、样本容量9、B【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【分析】根据绝对值的意义直接进行求解即可.【详解】因为9的绝对值是9;故选A.【点睛】本题主要考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.11、B【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,则∠2=180°−∠1,∵∠3与∠1互余,∴∠3+∠1=90°,则∠3=90°−∠1,∵∠2+∠3=210°,∴180°−∠1+90°−∠1=210°,解得:∠1=30°,则∠2=150°,150°÷30°=5,即∠2是∠1的5倍,故答案为:B.【点睛】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.12、C【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50千米和两人在相遇后相距50千米,分别建立方程求出其解即可.【详解】设t时后两车相距50千米,由题意,得350-110t-80t=50或110t+80t-350=50,解得:t=1.5或1.故选:C【点睛】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2义计算2*3即可.【详解】∵X*Y=aX+bY , 3*5=15,4*7=28,∴35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, ∴X*Y=-35X+24Y ,∴2*3=-35×2+24×3=2, 故答案为2.【点睛】本题考查了新定义运算与解二元一次方程组,求出a 、b 的值是解题的关键.14、1°【分析】设这个角为x°,则它的补角为(180-x)°,余角为(90-x)°,再根据题意列出等量关系.【详解】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180-x - 3(90-x)=40,解得x =1.故这个角是1°,故答案为:1°.【点睛】本题考查了补角及余角的概念等,熟练掌握补角和余角的概念是解决本题的关键.15、-2【分析】根据多项式系数与项之间的关系,当对应项的系数为零时,可视作多项式不含该项,进而利用方程思想求字母的值即得. 【详解】多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项 ∴1=0+a ,2=0-b∴=1a ,=2b∴=122-⨯=-ab故答案为:2-【点睛】本题考查多项式含参问题,正确找到题目中“不含项”对应的系数列出方程是解题关键,先合并同类项再确定不含项的系数是此类题的易错点.【分析】根据同类项的定义列式求出m 、n 的值,然后计算m n +即可.【详解】解:∵225m a b -和437n a b -是同类项,∴2m =1,3−n =1,解得:m =2,n =2,则m +n =2+2=1.故答案为:1.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个相同:①所含字母相同,②相同字母的指数相同.17、-1【解析】根据积的乘方的运算方法,求出算式的值是多少即可.【详解】解:(−12)2019×22019=[(−12)×2]2019=(-1)2019=-1. 故答案为:-1.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、①28.3元;②29.8元,25.8元;③不会【分析】(1)根据题意列出算式27.31 1.5 1.5++-,计算即可求解;(2)根据题意可以得到周二股价最高,周四股价最低,分别计算即可求解;(3)根据正负数的意义表示周五的股价,为正数则盈利,为负数则亏损,据此判断即可.【详解】解:(1)27.31 1.5 1.528.3++-=(元)答:星期三收盘时每股是28.3元.(2)27.31 1.529.8++=(元),27.31 1.5 1.5 2.525.8++--=(元)答:本周内最高价是每股29.8元,最低价是每股25.8元(3)1 1.5 1.5 2.50.51++--+=-答:若小明爸爸按本周五的收盘价将股票全部卖出,他不会获利.【点睛】本题考查了正负数的实际应用和有理数的加减混合运算,正确理解题意并正确列出算式是解题关键.【分析】(1)根据“理想有理数对”的定义即可判断;(2)根据“理想有理数对”的定义,构建方程可求得m 的值,再代入原式即可解决问题.【详解】(1)111-⨯=-,()212123--⨯-=-,∴11-⨯≠()21212--⨯-, ∴()11-,不是“理想有理数对”;(2)由题意得:()23322m m -=---,解得:7m =-, ()231m m --()()27317⎡⎤=----⎣⎦ 4924=-25=.【点睛】本题考查了有理数的混合运算、“理想有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题.20、(1)711=y (2)x=0 【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1,即可得解;(2)方程去括号,移项,合并同类项,系数化为1,即可得解.【详解】解:(1)12225y y y -+-=- )2(220)1(510+-=--y y y42205510--=+-y y y54202510--=+-y y y117=y711=y (2)()()()22431233x x x ---=-+4831239x x x --+=--4332981x x x -+=-+-0x =【点睛】本题考查了解一元一次方程.解一元一次方程的步骤为:去分母,去括号,移项,合并同类项,系数化为1.21、(1)张敏下车时付22元车;(2)这辆滴滴快车的行车时间为26分钟【分析】(1)根据普通快车的收费标准即可求解;(2)设这辆滴滴快车的行车时间为x 分钟,根据题意列出方程即可求解.【详解】解:(1)()()8 2.0720.415522+⨯-+⨯-=(元)答:张敏下车时付22元车费.(2)设这辆滴滴快车的行车时间为x 分钟,依题意有()()()8 2.02220.45 1.0221563.4x +⨯-+⨯-+⨯-=,解得26x =答:这辆滴滴快车的行车时间为26分钟.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意列出方程求解.22、x =﹣1.【分析】根据一元一次方程的解法,去括号,移项合并同类项,系数化为1即可.【详解】解:去括号得:1x ﹣1﹣1=4x ,移项合并得:﹣1x =4,解得:x =﹣1,故答案为:x =-1.【点睛】本题考查了一元一次方程的解法,掌握一元一次方程的解法是解题的关键.23、1.【分析】由题意列出关系式,去括号合并同类项,由于不含有x 2、y 的项,得到它们的系数为0,求出m 、n 的值,将m 、n 的值代入所求式子中计算,即可求出值.【详解】1x 2+my ﹣8﹣(﹣nx 2+2y+7)=1x 2+my ﹣8+nx 2﹣2y ﹣7=(1+n ) x 2+(m ﹣2)y ﹣15因为不含x 2,y 项所以1+n=0,m ﹣2=0,得:n=﹣1,m=2,所以n m+mn=(﹣1)2+2×(﹣1)=1.【点睛】熟练掌握去括号的法则以及合并同类项的法则是解题的关键.。

初一上学期数学期末考试试卷与标准答案

初一上学期数学期末考试试卷与标准答案

初一上学期数学期末考试试卷与标准答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5标准答案:A. √22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26标准答案:C. 293. 下列等式中正确的是:A. √9 = 3B. √8 = 2√2C. √(√8) = 2D. √(√9) = 3标准答案:B. √8 = 2√24. 下列哪个数是负数:A. -3B. 2C. 0D. -2标准答案:A. -35. 若|x|=5,则x的值为:A. 5B. -5C. 5或-5D. 0标准答案:C. 5或-56. 下列哪个数是正数:A. -3B. -2C. 0D. 2标准答案:D. 27. 已知a=4,b=3,则a²-b²的值是:A. 7B. 13C. 25D. 16标准答案:C. 258. 下列哪个数是无理数:A. √3B. √4C. √9D. √16标准答案:A. √39. 下列哪个数是整数:A. -3/2B. 2.5C. -5/3D. 4标准答案:D. 410. 下列哪个数是负数:A. -2B. 3C. 0D. 2标准答案:A. -2二、填空题(每题4分,共40分)1. 若a=5,b=3,则a²+b²=______。

标准答案:342. 下列哪个数是正数:______。

标准答案:23. 下列哪个数是无理数:______。

标准答案:√34. 下列哪个数是整数:______。

标准答案:45. 若|x|=5,则x的值为______。

标准答案:5或-5三、解答题(每题10分,共20分)1. 解方程:2x-5=3标准答案:x=42. 已知a=4,b=3,求a²-b²的值。

标准答案:25四、应用题(每题10分,共20分)1. 小明的身高是1.6米,小华的身高是1.5米,求小明比小华高多少。

2023—2024学年人教新版七年级上学期数学期末考试试卷(附答卷)

2023—2024学年人教新版七年级上学期数学期末考试试卷(附答卷)

最新人教新版七年级上学期数学期末考试试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、据教育部统计,2023年高校毕业生约1086万人,用科学记数法表示1086万为()A.1086×104 B.1.086×107 C.1.086×108 D.0.1086×1082、某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3、下列哪个图形是正方体的展开图()A.B.C.D.4、如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°5、下列变形中,正确的是()A.若a=b,则a+1=b﹣1B.若a﹣b+1=0,则a=b+1C.若a=b,则D.若,则a=b6、若(m﹣1)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数7、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°8、《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为()A.15B.35C.39D.419、有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140B.142C.210D.21210、若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二、填空题(每小题3分,满分18分)11、比较大小:.12、数轴上,到原点距离为5的点表示的数是.13、已知单项式2a2b n+1与3a2m b m是同类项,则m+n=.14、一个正方体展开图如图所示,若相对面上标记的两个数均互为相反数,则xy的值为.15、如果关于x的方程2x+1=3和方程的解相同,那么k的值为.16、当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2).18、解下列方程:(1)4x﹣3=2﹣5x;(2).19、如图,某小纸盒的展开图如下,根据图中的数据解答如下问题.(1)请用含a和x的式子表示这个小纸盒的展开图的面积;(2)当a=6厘米时,面积为72平方厘米,求x的值;20、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.21、如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.22、如图,已知∠AOB=90°,∠BOC=60°.(1)求∠AOC的补角的度数;(2)若OE平分∠AOB,OF平分∠BOC,求∠EOF的度数.23、已知A=2x2+xy+3y,B=x2﹣xy.(1)若(x+2)2+|y﹣3|=0,求A﹣2B的值.(2)若A﹣2B的值与y的值无关,求x的值.24、在学习一元一次方程后,我们给一个定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=99,则称关于y的方程为关于x的一元一次方程的“久久方程”.例如:一元一次方程3x﹣2x﹣98=0的解是x0=98,方程|y|+1=2的所有解是y =1或y=﹣1,当y0=1,x0+y0=99,所以|y|+1=2为一元一次方程3x﹣2x﹣98=0的“久久方程”.(1)已知关于y的方程:①2y﹣2=4,②|y|=2,其中哪个方程是一元一次方程3(x﹣1)=2x+98的“久久方程”?请直接写出正确的序号.(2)若关于y的方程|2y﹣2|+2=4是关于x的一元一次方程x﹣的“久久方程”,请求出a的值.(3)若关于y的方程a|y﹣49|+a+b=是关于x的一元一次方程ax+50b =55a的“久久方程”,求出的值.25、如图,两条直线AB,CD相交于点O,且∠AOC=∠BOD=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为每秒15°,射线ON同时从OD 开始绕O点顺时针方向旋转,速度为每秒12°,运动时间为t秒(0<t<12,本题出现的角均不大于平角).(1)当t=2时,∠AOM的度数为度,∠NOM的度数为度.(2)t为何值时,∠AOM=∠AON.(3)当射线OM在∠BOC的内部时,探究是不是一个定值?若是,请求出这个定值.。

2023-2024年人教版七年级上册数学期末测试题(含简单答案)

2023-2024年人教版七年级上册数学期末测试题(含简单答案)

2023-2024年人教版七年级上册数学期末测试题
一、单选题(每题3分,共24分). . .

.南朝宋•范晔在《后汉书将军前在南阳,建此大策,常以为落落A .有4.在多项式A .3,2
5.已知,则2218x x ++21x y -=-
A .
B .
C .
D .二、填空题(每题3分,共24分)
14.若关于的方程和三、计算题(共72分)
27︒57︒58︒60︒
x ()23a x -=2
(1)求线段的长度;
AM

(1)求的度数;
(2)若与互余,求的度数.
26
.如图,已知数轴上点
A 表示的数为,点
B 表示的数为5,点
C 到点A ,点B 的距离相等.作答下列问题:
(1)点C 表示的数是______.
(2)若点A 以每秒2个单位长度的速度沿数轴向右匀速运动,点B 以每秒1个单位长度沿数轴向左匀速移动,两点同时移动,当点A 运动到所在的点处时,求A ,B 两点间的距离.
(3)若点B 静止不动,点A 以每秒2个单位长度沿数轴向右匀速移动,求经过多长时间A ,B 两点距离为4个单位长度.
AOC ∠MOD ∠BOP ∠AOM ∠COP ∠7-3-
参考答案:。

2023-2024学年全国初一上数学仁爱版期末考试试卷(含答案解析)

2023-2024学年全国初一上数学仁爱版期末考试试卷(含答案解析)

20232024学年全国初一上数学仁爱版期末考试试卷一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2/3B. 5C. 3.14D. √22. 若a、b是两个有理数,且a > b,则下列不等式中一定成立的是()A. a + 3 > b + 3B. a 3 > b 3C. 3a > 3bD. a/3 > b/33. 下列各式中,计算结果为正数的是()A. (2) × (3)B. (2) ÷ (3)C. (2) + (3)D. (2) (3)4. 若一个数是它本身的相反数,则这个数是()5. 下列各式中,计算结果为负数的是()A. 2 × (3)B. (2) ÷ 3C. (2) + 3D. (2) 36. 若a、b是两个有理数,且a < 0,b > 0,则下列不等式中一定成立的是()A. a + b > 0B. a b < 0C. a × b < 0D. a ÷ b > 07. 下列各式中,计算结果为0的是()A. 2 × 0B. 0 ÷ (3)C. (2) + 2D. (2) (2)8. 若一个数是它本身的倒数,则这个数是()9. 下列各式中,计算结果为整数的是()A. 3 × (2)B. (3) ÷ 2C. (3) + 2D. (3) 210. 若a、b是两个有理数,且a > 0,b < 0,则下列不等式中一定成立的是()A. a + b > 0B. a b > 0C. a × b < 0D. a ÷ b < 0二、填空题(每题3分,共30分)11. 两个互为相反数的和为______。

12. 一个数的绝对值等于它本身的相反数,则这个数是______。

13. 若a、b是两个有理数,且a < b,则a + 3 ______ b + 3。

人教版七年级数学上册期末试卷(含答案)

人教版七年级数学上册期末试卷(含答案)

人教版七年级数学上册期末试卷七年级数学满分:120分 时间:90分钟题号 一 二 三 四 五 总分 得分一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内。

1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是A .B .C .D .2.如右图,沿图中虚线旋转一周,能围成的几何体是下面几何体中的A .B .C .D .3.下列说法错误的是A .长方体、正方体都是棱柱B .六棱柱有六条棱、六个侧面C .三棱柱的侧面是三角形D .球体的三种视图均为同样的图形4.a 与b 的平方的和表示为A .(a + b )2B .a 2 + b 2C .a 2 + bD .a + b 25.下列说法正确的是A .2a是单项式B .− 23a 3b 3c 是五次单项式C .ab 2﹣2a + 3是四次三项式D .2πr 的系数是2π,次数是1次6.下列计算正确的是A .2x + 3y = 5xyB .2a 2 + 2a 3 = 2a 5C .4a 2﹣3a 2=1D .﹣2ba 2 + a 2b =﹣a 2b7.把一副三角板按如图所示那样拼在一起,那么∠ABC 的度数是A .150°B .135°C .120°D .105°8.将21.54°用度、分、秒表示为A .21°54′B .21°50′24″C .21°32′40″D .21°32′24″9.若单项式﹣12x 2a ﹣1y 4与2xy 4是同类项,则式子(1﹣a )2015 =A .0B .1C .﹣1D .1 或﹣110.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛。

如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为 A .2 + 6nB .8 + 6nC .4 + 4nD .8n二、填空题:本大题共6小题,每小题4分,共24分。

四川省泸县第一中学2023-2024学年七年级上学期期末考试数学试卷(含答案)

四川省泸县第一中学2023-2024学年七年级上学期期末考试数学试卷(含答案)

泸县一中初2023级七年级上期期末考试数学试题一、单选题1.数a的相反数为,则a的值为()A.B.C.D.2.下面计算正确的()A.B.C.D.3.在,0,,,,中,负数有()A.3个B.2个C.1个D.0个4.下列各式中正确的是( )A.B.C.D.5.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108B.32.4×106C.3.24×107D.324×1086.下列各图中直线的表示法正确的是().A.B.C.D.7.下列说法正确的是()A.不是整式B.是单项式C.的系数是D.次数是8.解方程时,去括号正确的是()A.B.C.D.9.如图,在灯塔O处观测到轮船A位于北偏西56°的方向,同时轮船B在南偏东17°的方.已知,,,则等于或.或,则的值为( ).....若与是同类项,则倍少,则这个角等于折出售,此时仍可获利元,则商品的成.计算:18.计算:(﹣+)÷(﹣)19.计算:四、解答题20.如图,点C是线段AB上的一点,点M、N、P分别是线段AC,BC,AB的中点.(1)若AB=10cm,求线段MN的长;(2)若AC=3cm,CP=1cm,求线段PN的长.21.先化简,再求值:,其中,.22.解方程:23.解方程:五、解答题24.已知A=2x−6ax+3,B=−7x−8x−1,按要求完成下列各小题.(1)若A+B的结果中不存在含x的一次项,求a的值;(2)当a=−2时,先化简A−3B再代入求值,其中x=-1.25.已知:如图,直线与相交于点O,是的平分线,如果,求的度数.六、解答题26.甲、乙两人从两地同时出发,沿同一条路线相向匀速行驶,乙比甲每小时快20千米.他们出发后,经过3小时两人相遇,相遇后再经1小时乙到达A地.(1)甲,乙两人的速度分别是多少?(2)两人从两地同时出发后,经过多少时间后两人相距20千米?27.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?参考答案1.A2.D3.A4.D5.C6.C7.B8.C9.B10.C11.D12.D13.0.03114.15.##20度16.20017.18.-1.19.21.,1822.23.24.(1);(2)23x2+36x+6,-725.26.(1)甲的速度为10千米/时,乙的速度为30千米/时(2)经过小时或小时后两人相距20千米27.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.键.。

2023-2024学年全国初一上数学人教版期末考试试卷(含答案解析)

2023-2024学年全国初一上数学人教版期末考试试卷(含答案解析)

20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末考试 初一数学试卷
一、选择题(共9个小题,每小题3分,共27分) 下面各题均有四个选项,其中只有一个..是符合题意的 1.1
2
-
的相反数是 A .2 B .
1
2
C .-2
D .12
-
2. 当地面高于海平面1米时,记作“+1米”,那么地面低于海平面10米时,记作 A .-1米 B . +1米 C .-10米 D .+10米
3. 最新数据显示,目前全世界人口总数约为70亿,中国是世界第一人口大国,约为 1 400 000 000人.请将1 400 000 000用科学记数法表示为
A . 0.14×1011
B . 1.4×109
C . 14×108
D . 140×107
4.如果x =
1
2
是关于x 的方程2x +m =2的解,那么m 的值是 A .1 B .1
2
C .-1
D . 12
-
5.下列运算正确的是
A . 65a a a -=
B . 2242a a a +=
C . 22234a b b a a b -=-
D . 235()a a =
6. 从正面、上面、左面三个方向看某一个物体得到的图形如图 所示,则这个物体是
A. 圆锥
B. 圆柱
C. 三棱锥
D. 三棱柱
7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结 论正确的是
① a <b <0 ;② |a |<|b| ;③
0a
b
< ;④ b -a >a +b . A .①② B .①④ C .②③ D .③④
从上面看从左面看
从正面看
8. 如图是一个正方体的展开图,如果在其中的三个面A ,B ,C 内分别填 入适当的数,使得它们围成正方体后相对的面 上的两个数互为相反 数,那么填入A ,B ,C 内的三个数依次为 A. 0,-1,2 B. 0,2,-1 C. 2,0,-1 D. -1,0,2
9. 按一定的规律排列的一列数依次为:-2,5,-10,17,-26,…,按此规律排列下去,这
列数中第9个数及第n 个数(n 为正整数)分别是 A.82,21n -+ B.82,()
()2
11n
n
-+ C. -82,()()2
11n
n -+ D.-82,31n +
二、填空题(共6个小题,每小题3分,共18分) 10. 单项式2
2x y -的系数是 ,次数是 . 11. 角度换算:3615′=_______.
12.某商店把一双旅游鞋按进价提高30%标价,然后再按标价的8折 出售,如果每双旅游鞋的进价为x 元,那么每双鞋标价为 _________元;8折后,每双鞋的实际售价为________元. 13.已知:如图,OB 是∠AOC 的角平分线,OC 是∠AOD 的角平分 线,∠COD =70°,那么∠AOD 的度数为__________; ∠BOC 的度数为_________.
14.已知m 的绝对值是2,n 比m 的4倍少1,m 与n 的差是_________.
15.定义新运算可以做为一类数学问题,如:x ,y 表示两个数,规定新运算“*”及“△”如 下:x *y =mx +ny ,x △y =kxy ,其中m ,n ,k 均为非零自然数.
已知1*2=5,(2*3)△4=64,那么(1△2)*3= .
三、解答题(16题3分,17~19题,每小题4分,共15分) 16. 计算: 12(17)(23)+---. 17. 计算:2
1(5)(2)()43
⨯-+-÷---. 18. 计算:321
28(2)4
-÷-
⨯-. 19. 先合并同类项,再求代数式的值:
2
231x x y x -+--,其中 1x =-,2y =-.
D C
B
A
O
B
C
01
-2
A
四、解答题(20、21题各5分,22题6分,共16分) 20. 解方程:9375x x -=+.
21. 解方程:2(34)2(12)x x x --=+-. 22. 解方程:0.30.4
10.40.2
x x -+-=.
五、解答题(共4分)
23. 已知:如图,点P ,点Q 及直线l .
(1)请画出从点P 到直线l 的最短路线,并写出画图的依据; (2)请在直线l 上确定一点O ,使得点O 到点P 与点O 到点
Q 的距离之和最小,并写出画图的依据.
六、列方程解应用题(共2个小题,每小题5分,共10分)
24. 某人开车从甲地到乙地办事,原计划2小时到达,但因路上堵车,平均每小时比原计划
少走了25千米,结果比原计划晚1小时到达,问原计划的速度是多少.
25. 加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由
于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅合作完成,这样完成这批零件一共用了多长时间.
七、解答题(共2个小题,每小题5分,共10分) 26. 已知:如图,线段MN m =,延长MN 到点C ,使NC n =,点A 为MC 的中点,点B
为NC 的中点,求线段AB 的长.
27. 如图,几块大小不等的正方形纸片无重叠地铺满了一块长方形.已知正方形纸片A 的边 长为7,求最小的正方形纸片的边长.
C
B N A M l
P
Q
A
第一学期期末练习 初一数学参考答案
二、填空题
10. -2,3 11. 36. 25° 12. 1.3x , 1.04x 13. 140°,35° 14. -5或7 15. 10
三、解答题
16.解:原式=12-17+23 …………………2分
=18 …………………3分
17. 解:原式=3
5242
-+⨯
- …………………3分 =-6 ………………………………4分
18. 解:原式=1
8844
-÷-⨯ …………………2分
=-2 ………………………………4分
19. 解:原式=221x y -+- …………………2分
当x=-1,y=-2时,原式=5. ………4分
四、解答题
20.解:3-5x 79x -=-……………………2分
82x -=- …………………………3分
∴1
4x =……………………………4分
∴1
4
x =是原方程的解. …………5分
21.解:234212x x x -+=+- ………………2分 232214x x x -+=+-…………………3分 ∴1x =- ………………………………4分
∴1x =-是原方程的解.…………………5分
22.解:
5 1.552
121
x x -+-= ……………………2分 5 1.51042x x ---= ……………………4分 57.5x -=
∴ 1.5x =-.…………………………………5分 ∴ 1.5x =-是原方程的解. ………………………6分
23.解:(1)理由:直线外一点与直线上各点连接的所有线段中,垂线段最短;……2分
(画图中没有垂足符号不给分)
(2) 理由:两点之间,线段最短. ………………………………………………4分
24.解:设原计划每小时行驶x 千米.……………… 1分 根据题意,得:()2325x x =-…………………3分 解得:75x = ………………………………………4分 答:原计划每小时行驶75千米. …………………5分
25.解:设完成这批零件共用x 天. ………………………1分 根据题意,得:
103011(40)140604060x ⎛⎫
+++-= ⎪⎝⎭
……3分 解得:46x = …………………………………………4分 答:完成这批零件一共用了46天.………………………5分
26.解:MC=MN+NC=m+n ……………………………1分 ∵点A 是MC 的中点 ∴2
m n
MA AC +==
…………………………2分 ∵点B 是NC 的中点
∴2
n
BC =
………………………………………3分 ∴AB AC BC =-22
m n n
+=-
2
m
=. ……………………………………5分
27.解:设最小的正方形纸片的边长为x .…………1分
则B,C,D,E,F,G,H 的边长依次为7,27,3+7,7x+7,4x,11x+7,x+14x x x ++ 根据H 的边长列方程:
11+714x x x --=+(74) ………………………3分 P
Q。

相关文档
最新文档