履带车辆车身振动特性分析

履带车辆车身振动特性分析
履带车辆车身振动特性分析

关于汽车振动的分析

关于汽车的振动的分析 汽车振动系统是由多个子系统组成的具有质量、弹簧和阻尼的复杂的振动系统。汽车振动源主要有:路面和非路面对悬架的作用、发动机运动件的不平衡旋转和往复运动、曲轴的变动气体负荷、气门组惯性力和弹性力、变速器啮合齿轮副的负荷作用、传动轴等速万向节的变动力矩等。 在汽车工程中,多数振动是连续扰动力,而其他一些则是汽车承受的冲击力和短时间的瞬态振动力。振动又可分为周期性的和随机性的,发动机旋转质量的不平衡转动是周期振动的典型例子,而随机振动主要是由路面不平引起的。所有质量--弹性系统都有自己的固有频率,如果作用于系统的干扰频率接近振动系统的固有频率,就会发生共振现象。因此即使自身具有抗干扰能力的系统,装配到汽车上时仍有可能产生振动问题,这就要求在设计阶段准确建立系统模型及运动方程,分析自由振动特性和受迫振动响应,研究控制振动的方法。 汽车振动按照频率范围可分为: 1、影响行驶平顺性的低频振动:它产生的主要振源由于路面不平度激励使得汽车非悬挂质量共振和发动机低频刚体振动,从而引起悬架上过大的振动和人体座椅系统的共振造成人体的不舒适,其敏感频率主要在1-8Hz(最新的研究表明:当考虑人体不同方向的响应时可到16Hz)。对于乘员其评价指标一般是:针对载货汽车的疲劳降低工效界限和针对乘用汽车的疲劳降低舒适界限,或直接采用人体加权加速度均方根值进行评价;对于货物其评价指标是:车箱典型部位的均方根加速度。由于该指标于人体生理主观反映密切相关,因此试验和评价往往采用测试和主观评价相结

合。 2、车身结构振动和低频噪声:大的车身结构振动,不仅引起自身结构的疲劳损坏,而且更是车内低频结构辐射噪声源。其频率主要分布在20—80Hz 的频带内。由两方面引起:(1)激励源;主要有:道路激励、动力传动系统尤其是动力不平衡和燃烧所产生的各阶激励、空气动力激励;(2)车身结构和主要激励源系统的结构动力特性匹配不合理引起的路径传递放大。当前对于低频结构振动和噪声分析研究的方法有:计算预测分析,(1)基于有限元方法通过建立结构动力学模型取得结构固有振动模态参数对结构动力学特性进行评价,通过试验载荷分析得到振动激励并结合结构动力学模型计算振动响应;(2)基于有限元和边界元的系统声学特性计算和声响应计算。试验分析:(1)各种结构振动和声学系统的导纳测量和模态分析;(2)基于实际运行响应的工作振型分析;(3)基于机械和声学导纳测量的声学寄予率分析; 3、各种操纵机构的振动:操纵机构的振动主要是因为其安装吊挂刚度偏低或自身结构动力特性不当或车身振动过大而产生,它不仅容易使驾驶者疲劳严重时可能使操纵失控。对于这些振动各企业都有相应得评价和限值规定。最为典型的是方向盘(线性)振动(转向管柱振动),其产生的主要原因是方向盘及管柱安装总成与车身振动或其它激励源发生共振;另一重要的振动现象是行驶过程中的方向盘旋转振动(即:方向盘及转向轮摆振)。其产生的原因是:行驶过程中转向轮的跳动与自身的转动而产生的陀螺效应引起转向轮的波动并被转向结构放大从而引起方向盘旋转振动。 4、空气声:车内空气声是由于隔声吸声措施不当从而使得动力传动

汽车振动分析试题1

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 1121y m T = m 2动能:2222222 22 222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 323 33)2 1(21))(21(212 1y m R y R m J T === ω 系统势能: 2 21)21(21)21( y k y g m gy m V + +-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =+ +-++= +2 212 321) 2 1(2 12 1)2 13 1(2 1 上式求导,得系统的微分方程为: E y m m m k y '=+ + +) 2 131(4321 固有频率和周期为: ) 2 131(43210m m m k + + = ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 212 1x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 2 1= ,角速度为x R 21=ω,转过的角度为x R 21= θ。轮子动能: )83(21)41)(21(21)4 1( 2 12 1212 122 21212 2 12x m x R R m x m J v m T c =+= + = ω 系统势能: x

四自由度汽车振动影响分析

四自由度汽车振动影响分析 一、汽车振动问题分析 汽车振动的分析研究是为了提高汽车平顺性,汽车平顺性是指汽车过程中能保证乘员不致因车身振动而引起不舒适和疲乏感觉,以及保持运载货物完整无损的性能。汽车平顺性是影响汽车乘坐舒适性的重要原因,而平顺性的主要就是依靠汽车减振来保证,汽车振动日益成为汽车研发和性能提高的关键所在。 在了解了汽车振动的危害之后,就需要人们研究振动问题,掌握振动机理,消除振动带来的不利影响,利用振动规律指导汽车的研发。汽车振动所要研究的问题主要有路面等级对汽车振动影响、车速对汽车振动影响、悬架参数对汽车振动影响。 二、汽车四自由度系统建模 图2.1四自由度汽车模型 考虑汽车纵向角振动时悬架对车身激振影响就必须至少将汽车振动系统简化为如图所示的一个四自由度平面振动模型。在这个振动模型中,要求车辆相对于纵垂面完全对称,并且左右车轮下的路面不平度完全一样,则认为车辆是在纵垂面上振动。把车身简化为质量为m,绕质心的转动惯量为觉得平面刚体;把前后车轴(包括轮胎)的质量简化为二个质量点m1,m2;前后悬架刚度为左右两侧刚度之和用k1,k2表示,而前后悬架减震器的阻尼系数为左右两侧之和用c1,c2表示:kt1和kt2为轮胎刚度,ct1,ct2为轮胎阻尼,它们也为两侧之和。

为了研究悬架与车身连接点处悬架振动对车身的激励,必须首先列出整个振系的振动微分方程组。为此根据分析动力学中的粘滞阻尼力的拉格朗日方程: . ..Z Z Z Z R U T T dt d ??- =??+??-? ??? ? ????)1.2( 式中:T ——振动系统的总动能; U ——振动系统的总位能; R ——振动系统的总耗散函数; 对四自由度平面振动模型其总动能为: 2.2 22.112.2.2 1 212121z m z m J z m T +++=θ)2.2( 总位能为: 22222111222211)(21 )(21)(21)(21q z k q z k z b z k z a z k U t t -+-+-++--= θθ )3.2( 总耗散能为: 2 .2.222 .1.112...22...1)(21)(21)(21)(21q z c q z c z b z c z a z c R t t -+-+--+--=θθ )4.2( 将三式代入拉格朗日方程求出系统振动的微分方程组整理成矩形式为: . . .. Q C Q K KZ Z C Z M t t +=++)5.2( 其中: ?? ??? ?? ?? ???=2100 0000000000m m J m M ?? ??? ?? ?????+--+--++---+-+=2222 1 111212 2 2121 21212 10 0t t k k b k k k k a k k b k a k b k a k b k a k k k b k a k k k K

履带车辆设计计算说明

履带车辆设计计算说明Document number : PBGCG-0857-BTDO-0089-PTT1998

整车参数计算 根据《GB/T农业拖拉机试验规程第2部份:整机参数测量》标准要求进行计算: 一、基本参数 二. 质量参数的计算 1、整备质量Mo为1825kg ; 2、总质量M总 M 总=MO+M1+ M2 =1825+300-75=2200 kg 血载质疑:300kg M2驾驶员质量:75kg 3、使用质量:H 总二M0+ M2 =1825+75=1900 kg 4、质心位置

根据《GB/T 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0二830mm 质心至前支承点的距离B 二610mm 质心至地面的距离h0二450mm 满载时:质心至后支承点的距离A0二605mm 质心至前支承点的距离B 二812mm 质心至地面的距离h0二546mm 5、稳左性计算 a 、保证拖拉机爬坡时不纵向翻倾的条件是: %> fi =(§为滑转率) 空载时:830/450= > 满载时:605/546二〉 满足条件。 b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是: /2/1 > =0. 7 a —轨距,a 二1200mm h —质心至地面距离mm 空载:加〉 故拖拉机在空、满载运行中均能满足稳左性要求。 三、发动机匹配 根据《GB/T 中小功率内燃机第1部份:通用技术条件》标准要求进行计算: XJ-782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标左功 率为57kW/h,转速为2600r/min. (1) 最髙设讣车速鼻弐km/h,所需功率: 尸z ?二丄(巴+几)kw n 满载: 1200 _、 2x546

机动车振动分析期末深刻复知识题(车辆工程专业用)

1. 圆筒质量m 。质量惯性矩o J ,在平面上在弹簧k 的限制下作纯滚动,如下图所示,求 其固有频率。 2. 下图示的弹簧质量系统,两个弹簧的连接处有一激振力t P t P ωsin )(0=的作用,求质量 m 稳态响应的幅值。 3. 建立如下图所示系统的运动微分方程并求稳态响应。 )(t 2 x x m 11x k (t P 22x k x m )x -

4. 如下图所示等截面悬臂梁,梁长度为L ,弹性模量为E ,横截面对中性轴的惯性矩为I ,梁材料密度为ρ。在梁的a 位置作用有集中载荷)(t F 。已知梁的初始条件为零。求解梁的响应。(假定已知第i 阶固有频率为i ω,相应的模态函数为)(x i φ,∞=~1i ) 5. 两个均匀刚性杆如图所示,具有相同长度但不同质量,使用影响系数法求系统运动方程。 t A ωsin 1=

6. 如下图所示量自由度系统。(1)求系统固有频率和模态矩阵,并画出各阶主振型图形;(2)当系统存在初始条件??????=??????0210)0()0(x x x 和?? ????=??????00)0()0(21x x 时,试采用模态叠加法求解系统响应。 7. 如下图所示等截面梁,长度为l ,弹性模量为E ,横截面对中性轴的惯性矩为I ,梁材料密度为ρ。集中质量m ,卷簧刚度1k ,直线弹簧刚度2k 。写出系统的动能和势能表达式,系统质量阵和刚度阵表达式。 y x l c x 2 k b x 1 k a x m

8 物块M质量为m1。滑轮A与滚子B的半径相等,可看作 质量均为m2、半径均为r的匀质圆盘。斜面和弹簧的轴线均 与水平面夹角为,弹簧的刚度系数为k。又m1 g>m2 g sin滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。 9 在右图示系统中,质量为m1、半径为R的匀质圆盘,可沿水 平面作纯滚动。质量不计的水平直杆AB用铰链A、B分别与圆 盘A、匀质直杆BC连接。杆BC长为L,质量为m2,在B连 接一刚度系数为k的水平弹簧。在图示的系统平衡位置时,弹 簧具有原长。试用能量法求:(1)系统的微振动的运动微分方程;(2)系统的微振动周期。

振动切削加工技术

振动切削加工技术 姓名:宋大同班级:机械工程1105班学号:113085201149 摘要:振动切削加工技术是机械振动有利一面的应用,这是一种优于普通切削的新技术,是先进制造方法的重要组成部分。本文通过振动切削与普通切削的对比,分析了振动切削的原理、特点、工艺效果及在切削过程中的作用。同时论述了振动切削加工技术在工业中的具体应用和仍需解决的问题。 关键词:振动切削低频振动超声振动工艺效果应用 机械振动同许多事物一样具有两面性,有其不利的一面,也有其有利的一面。振动切削加工技术就是机械振动有利一面的应用。振动切削加工是20 世纪60 年代发展起来的一种先进制造技术,它通过在常规的切削刀具上施加高频振动,使刀具和工件发生间断性的接触,从而使传统切削模式发生了根本性的变化。振动切削改变了工件与刀具之间的时间与空间的分配,从而改变了切削加工机理,达到了减小切削力和切削热,并且提高加工质量和效率的目的。由于其在一定范围内能够有效地解决难切削材料的加工及其精密切削加工方面的问题,因而越来越引起人们的重视。 1.普通切削与振动切削 在普通切削中,切削是靠刀具与工件的相对运动来完成的。切屑与已加工表面的形成过程,本质上是工件材料受到刀具的挤压,产生弹性变形和塑性变形,使切屑与母体分离的过程。在这种刀具始终不离开切削的普通切削中,刀具的作用包括两个方面:一个是刀刃的作用,一个是形成刀刃的刀面的作用。由于刀刃与被切削物接触处局部压力很大,从而使被切物分离。刀面则在切削的同时撑挤被切物,促进这种分离。普通切削中,伴随着切屑的形成,由于切屑与刀具之间的挤压和摩擦作用,将不可避免产生较大的切削力,较高的切削温度,使刀具磨损和产生切削振动等有害现象。基于这种思想,产生了一种新的切削方法——振动切削。 振动切削即通过在切削刀具上施加某种有规律的可控的振动,使切削速度、切削深度产生周期性的改变,从而得到特殊的切削效果的方法。振动切削改变了工具和被加工材料之间的空间与时间存在条件,从而改变了加工机理,达到减小切削力、切削热,提高加工质量和效率的目的。 2.振动切削分类 1)振动切削按振动质量分为自激振动切削和强迫振动切削。自激振动切削是利用切削过程中产生的振动进行切削的。强迫振动切削是利用专门设置的振动装置,使刀具或工件产生某种有规律的可控振动进行切削的方法。 2)振动切削按刀具振动方向分为吃刀抗力方向、进给抗力方向和主切削力方向三种振动切削。 3)振动切削按所加频率不同可分为高频振动和低频振动。振动频率在200HZ 以下的振动切削称为低频振动切削,低频振动仅仅从量上改变切屑的形成条件,主要用来解决断屑问题以及与此相关的一系列问题。一般来说,低频振动切削的

履带车辆的转向理论

一、双履带车辆的转向理论 对于双履带式车辆各种转向机构就基本原理来说是相同的,都是依靠改变两侧驱动轮上的驱动力,使其达到不同时速来实现转向的。 (一)双履带式车辆转向运动学 履带车辆不带负荷,在水平地段上绕转向轴线O作稳定转向的简图,如图7-12所示。从转向轴线O到车辆纵向对称平面的距离R,称为履带式车辆的转向半径。 以代表轴线O在车辆纵向对称平面上的投影,的运动速度代表车辆转向时的平均速度。则车辆的转向角速度为: 图7-12 履带式车辆转向运动简图 (7-37) 转向时,机体上任一点都绕转向轴线O作回转,其速度为该点到轴线O的距离和角速度的乘积。所以慢、快速侧履带的速度和分别为: (7-38) 式中:B—履带车辆的轨距。

根据相对运动原理,可以将机体上任一点的运动分解成两种运动的合成:(1)牵连运动,;(2)相对运动。 由上可得: (二)双履带式车辆转向动力学 1、牵引平衡和力矩平衡 图7-13给出了带有牵引负荷的履带式车辆,在水平地段上以转向半径R作低速稳定转向时的受力情况(离心力可略去不计)。 转向行驶时的牵引平衡可作两点假设: (1)在相同地面条件下,转向行驶阻力等于直线行驶阻 力,且两侧履带行驶阻力相等,即: (2)在相同的地面条件和负荷情况下,相当于直线行驶的有效牵引力,即:

图7-13 转向时作用在履带车辆上的外力 所以回转行驶的牵引平衡关系为: (7-39) 设履带车辆回转行驶时,地面对车辆作用的阻力矩为,在负荷作用下总的转向阻力矩为: (7-40)式中:—牵引点到轴线的水平距离。 如前所述履带车辆转向是靠内、外侧履带产生的驱动力不等来实现的,所以回转行驶时的转向力矩为: (7-41)稳定转向时的力矩平衡关系为: (7-42) 为了进一步研究回转行驶特性,有必要对内、外侧驱动力分别加以讨论。由上可得: (7-43) 式中:为在作用下,土壤对履带行驶所增加的反力,亦即转向力,作用方向与驱动力方向相同,以表示。 变形得式: (7-44)

履带车辆设计计算说明

履带车辆设计计算说明 Document number:PBGCG-0857-BTDO-0089-PTT1998

整车参数计算 根据《GB/T 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数 二、质量参数的计算 1、整备质量M0为1825kg ; 2、总质量M总 M总=M0+M1+ M2 =1825+300+75=2200 kg M1载质量:300kg M2驾驶员质量:75kg 3、使用质量:M总=M0+ M2 =1825+75=1900 kg 4、质心位置

根据《GB/T 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm 质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm 满载时:质心至后支承点的距离A0=605mm 质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm 5、稳定性计算 a 、保证拖拉机爬坡时不纵向翻倾的条件是: 00 h A >δ= (δ为滑转率) 空载时:830/450=> 满载时:605/546=> 满足条件。 b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是: h a 2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm 空载:12002450 ?=> 满载:12002546 ?=> 故拖拉机在空、满载运行中均能满足稳定性要求。 三、发动机匹配 根据《GB/T 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算: XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.

车辆悬架振动分析

车辆悬架系统振动研究概述 关键词:振动悬架 摘要: 本文简单介绍了车辆振动的相关知识,对其做了简明的分析,由于篇幅有限故只重点介绍了与车辆悬架相关的知识。根据不同结构悬架的特点,分别介绍与其相关的振动研究内容和成果。 引言 悬架系统是提高车辆平顺性(乘座舒适性)和安全性(操纵稳定性)、减少动载荷引起零部件损坏的关键,。自70年代以来,工业发达国家开始研究基于振动主动控制的主动/半主动悬架系统。引入主动控制技术后的悬架是一类复杂的非线性机、电、液动力系统,其研究进展和开发应用与机械动力学、流体传动与控制、测控技术、计算机技术、电子技术、材料科学等多个学科的发展紧密相关。为此,关于车辆悬架系统振动的研究比较困难,但是其又具有十分重要的实际意义。一、车辆悬架系统简介 悬架系统的作用主要是连接车桥和车架,传递二者之间的作用力和力矩以及抑制并减少由于路面不平而引起的振动,保持车身和车轮之间正确的运动关系,保证汽车的行驶平顺性和操纵稳定性。 悬架系统一般由弹性元件、减振器和导向装置等组成。其中,弹性元件的作用是承受和传递垂直载荷,缓冲并抑制不平路面所引起的冲击。按弹性元件分类包括钢板弹簧悬架、螺旋弹簧悬架、扭杆弹簧悬架以及气体弹簧悬架。钢板弹簧是1根由若干片等宽但不等长的合金弹簧片组合而成的近似等强度的弹性梁,多数情况下由多片弹簧组成。多片式钢板弹簧可以同时起到缓冲、减振、导向和传力的作用,可以不装减振器而用于货车后悬架。螺旋弹簧用弹簧钢棒料卷制而成,常用于各种独立悬架。其特点是没有减振和导向功能,只能承受垂直载荷。扭杆弹簧本身是1根由弹簧钢制成的杆,一端固定在车架上,另一端固定在悬架的摆臂上。气体弹簧是在1个密封的容器中冲入压缩气体,利用气体可压缩性实现弹簧的作用。气体弹簧具有理想的变刚度特性。气体弹簧有空气弹簧和油气弹簧2种。

机械加工过程中的振动特点及预防措施

机械加工过程中的振动特点及预防措施 在进行机械加工的过程中,工件的表面质量尤为关键,直接关系到工件的使用性能,进而影响到工业生产的稳定运行。在进行机械加工的过程中,由于生产工艺中各项工序的影响会产生振动,由此影响到刀具的加工质量,降低工件的表面质量。为了保证工件的表面质量,要对引起振动的原因进行分析,从而制定出解决的措施,减少振动的发生几率,提高机械加工的质量。 标签:机械加工;强迫振动;自激振动;预防措施 引言 在进行机械加工的过程中,如果出现振动,将会产生非常严重的后果,最直接后果就是影响到工件的表面质量。在正常情况下,刀具与工件之间的距离是按照一定的规范来固定的,如果产生振动,将会对刀具产生附加的动荷载,由此在工件的表面会出现振痕,影响到工件的表面品质以及使用性能。此外,这种振动会严重的磨损到刀具,从而降低刀具的精度和刚度,缩短刀具的使用寿命。振动还会导致机床各连接部位的松动,从而加大间隙,严重时可能会影响到加工的持续。振动所产生的噪声还会影响到工作人员的健康,所以采用相应的措施,减少振动的产生具有重要的意义。 1 机械加工振动的表现和特点 1.1 强迫振动 强迫振动是物体受到一个周期变化的外力作用而产生的振动。如在磨削过程中,由于电动机、高速旋转的砂轮及皮带轮等不平衡,三角皮带的厚薄或长短不一致,油泵工作不平稳等,都会引起机床的强迫振动,它将激起机床各部件之间的相对振动幅值,影响机床加工工件的精度,如粗糙度和圆度。对于刀具或做回转运动的机床,振动还会影响回转精度。强迫振动的特点是:①强迫振动本身不能改变干扰力,干扰力一般与切削过程无关。干扰力消除,振动停止。②强迫振动的频率与外界周期干扰力的频率相同,或是它的整倍数。③干扰力的频率与系统的固有频率的比值等于或接近于 1 时,产生共振,振幅达到最大值。 1.2 自激振动 是由振动系统本身在振动过程中激发产生的交变力所引起的不衰减的振动,就是0激振动。即使不受到任何外界周期性干扰力的作用,振动也会发生。如在磨削过程中砂轮对工件产生的摩擦会引起自激振动。工件、机床系统刚性差,或砂轮特性选择不当,都会使摩擦力加大,从而使自激振动加剧。自激振动的特点是:①自激振动的频率等于或接近系统的固有频率。按频率的高低可分为高频颤振及低频颤振。②自激振动能否产生及其振幅的大小,决定于每一振动内系统所获得的能量与阻尼消耗能量的对比情况。③由于持续自激振动的干扰力是由振动

浅论车削加工中的振动与控制

浅论车削加工中的振动与控制 本文转自可好论文网,原文地址:https://www.360docs.net/doc/7515862277.html,/html/446.html 【摘要】在机械加工中产生的振动都具有受迫振动和自激振动,与机床、夹具、刀具和工件组成的工艺系统的动态特性有关。详细分析了车削加工中振动的主要类型及产生的原因、振动的危害,并从刀具、夹具、切削工艺等方面提出了减小或消除振动的措施。 【关键词】车削低频振动;高频振动;消除措施 【Abstract】In the machine process creation of vibration all have is forced a vibration and from arouse vibration, and tool machine, tongs, knife and work piece the dynamic state characteristic of craft system for constitute relevant.Detailed analysis the car pare to process medium vibration of main type and creation of reason, vibration of endanger, and from the knife, tongs, sliced to pare craft’s etc. to put forward to let up or cancellation vibration of measure. 【Key words】The car pare low frequency vibration;High frequency vibration;Cancellation measure 前言 在车削过程中产生的振动,不仅干扰了正常的切削过程,严重影响了加工件的表面质量,还会缩短机床及刀具使用寿命。由此产生的噪音甚至可能影响到操作者工作情绪,对正常工作的开展带来一定负面影响;而为了减少振动,往往不得不减少加工时的进刀量,从而降低了生产率。本人通过在工作中对这一现象不断观察、分析、实践、总结,取得了一些效果,现提出一些看法供大家探讨。 1. 振动的分类一般来讲,在机械加工中产生的振动都具有受迫振动和自激振动,与机床、夹具、刀具和工件组成的工艺系统的动态特性有关。在消除机床回转组件(如电机、工件、旋转轴等)和传动系统(如皮带轮、滚动轴承、液压传动系统的压力脉冲等)的振动后,车削加工中的振动主要是不随车削速度变化的自激振动,主要是车削过程中工件系统的弯曲振动(其频率接近工件的固有频率的低频振动)和车刀的变形产生的弯曲振动(其振动频率接近车刀的固有频率的高频振动)。 2. 振动原因分析低频振动的振动频率较低,通常发出的噪音比较低沉,振动较为剧烈,在加工表面留下的振动痕迹深而宽。在低频振动时通常工件系统和刀架系统都在振动,它们时而趋远,时而趋近,产生大小相等方向相反的作用和反作用力。在振动过程中,当工件与刀具趋远时,切削力F趋远与工件位移方向相同,所做之功为正值,系统获得输入能量E(+),当工件趋近刀具时,切削力F趋近与工件位移方向相反,所做之功为负值,系统消耗能量E(-),在车削过程中,由于各种因素的影响都可能引起切削力周期性的变化,并使F趋远>F趋近,E(+)>E(-),即在每一振动周期中,切削力对工件(或刀具)所做之正功总是大于它对工件(或刀具)所做之负功,从而使工件(或刀具)获得能量补充产生自激振动。 在车削过程中,影响切削力周期性地变化,并使F退出>F切人的情况有以下几个因素: 2.1切削与刀具相对运动产生的摩擦力。在加工韧性钢材时径向切削分力F开始随切削速度的增加而增大,自某一速度开始,随切削速度的增加而下降。据切削原理可知,径向切削分力Fv主要取决于切削与刀具相对运动产生的摩擦力,即切削与刀具前刀面的摩擦力。摩擦力具有随摩擦速度的增加而下降的特性,即负摩擦特性。在机械系统中,具有负摩擦特性的系统容易激发切削振动。 2.2再生切削时因工件在前一转时振动留下的痕迹引起切削厚度周期性的变化,从而影响切削力的周期变化。一般说,后转(后次)切削的振纹相对于前转(前次)切削的振纹总不同步,它们在相位上总有一个差值φ,在一个振动周期中,对振纹曲线Yn =Ycosωt,Y n(t)在相位上滞后于前次的Yn-1(t)即0<φ<π的情况,可以看出,在振出的半周期中的平均切削厚度大于振人的半周期中的平均切削厚度,于是振出时的切削力所做的功大于振人时切削力所做的负功,系统就会有能量输人,

某重型载重车辆振动分析和控制_李顶根

某重型载重车辆振动分析和控制X 李顶根 何保华 (华中科技大学能源与动力工程学院 武汉,430074) (华中科技大学水电与数字工程学院 武汉,430074) 摘要 为了有效消除某重型载重车的驾驶室水平晃动,对车架和驾驶室悬置进行了综合有限元模态分析,分析了载重车驾驶室和车架的前6阶固有频率及模态振型特征。结合试验测试的路面激振信号分析,对车架有限元模型进行了动力优化。实际结果表明,驾驶室侧向弯曲模态固有频率与路面随机激励频率错开3~4Hz后,减小了驾驶室的横向振动,改善了该型载重车的平顺性。 关键词 重型载重车 横向振动 模态分析 动力优化 中图分类号 U467 引 言 汽车的振动和噪声严重影响汽车的操纵稳定性和乘坐舒适性。某重型载重车在水泥路面行驶时,其驾驶室在水平面内的筛状晃动比较严重。以前的研究表明,汽车行驶时,当动载荷很大以及有路面随机振动载荷作用时,就有可能导致车架产生共振和动态失效[1-2]。由于该类载重车为自卸式载货车,因此分析其车架和驾驶室的综合动态特性,并对车架进行动力优化,以控制其驾驶室的横向振动现象。 1 计算模型的建立 该载重车的车架为复合式结构,分为主、副车架。主车架由左右纵梁和6根横梁组成,全长5.684 m,最大宽度2.01m,轴距3.5m。由于整个汽车车架的结构复杂,在不影响车架动力学特性的前提下,建立模型时根据具体结构情况进行了以下的简化[3]: (1)略去纵横梁上承受载荷比较小、对结构变形影响很小的部件; (2)将一些节点的自由度进行耦合,如将纵、横梁支座与大量的螺栓连接处的自由度进行耦合; (3)省去纵横梁上的一些无关紧要的装配孔; (4)把发动机、变速箱、车箱等部件总成简化为其支点上的集中载荷; (5)不考虑铆钉的预应力及焊接应力等。 与车架相连的悬架系统采用弹性边界单元模拟,边界单元刚度选用钢板弹簧悬架系统的刚度,采用四边形壳单元为基本单元进行有限元网格划分,共计50312个节点和43318个有限单元。 根据自卸式重型载重车的结构,考虑驾驶室悬置及车架的综合模态分析。采用四边形壳单元为基本单元进行有限元网格划分,局部采用六面体单元。共计83962个节点和74304个有限单元,若干质量单元、弹簧单元和连接单元。 2 驾驶室悬置和车架的综合结构模态分析 根据模态分析理论,一般的工程结构只需计算前几阶较低的固有频率和振型,因为低阶振动对结构的动力影响最大。本文结合车架的实际结构及载荷工况,运用大型有限元分析软件ANSYS模态分析中的Lanczos分析方法[4-6],将计算分析车架结构的前6阶模态。采用Lanczos算法,使用稀疏矩阵来求解广义特征值,即通过一组向量来实现Lanczo s 递归。此法精确且速度快,在工程中常用来提取模型具有对称特征值的多阶模态,而且其在有限元模型中允许有质量较差的实体与板壳单元,但其不足之处是需要较多的内存空间。 车架的弯曲及扭转振动是其结构动态特性的主要表现形式。考虑到载货汽车的运行速度与路面条件,选取0~100Hz作为其计算频段。前6阶模态分析的频率及振型特征如表1和图1~图3所示。 表1 车架和驾驶室悬置的综合模态计算值 序号f/Hz振型 1 9.68扭转模态 215.03纵向弯曲模态 321.40侧向弯曲模态 424.80纵弯局部模态 526.32扭转局部模态 629.60侧弯局部模态 第28卷第2期2008年6月 振动、测试与诊断 Jo urnal o f Vibration,M easurement&Diag nosis V ol.28N o.2  Jun.2008  X收稿日期:2007-11-30;修改稿收到日期:2008-01-24。

2-2 履带车辆的转向液压传动.

情境二复杂机械的液压传动 任务2 履带车辆的转向液压传动 一、结构与工作情况 1、结构 外形图: 履带式与轮式行驶系统相比,有如下特点:一是支承面积大,接地比压小。因此履带车辆适合在松软或泥泞场地进行作业,下陷度小,滚动阻力也小,通过性能较好。二是履带支承面上有履齿,不易打滑,牵引附着性能好,有利于发挥较大的牵引力。三是结构复杂,重量大,运动惯性大,缓冲性能差,“四轮一带”磨损严重,造价高,寿命短。因此履带车辆的行驶速度不能太高,机动性能也较差。四是履带车辆还可在高温场地工作,加之其“低比压”、“大牵引力”的突出优点是轮式车辆无法代替的。 2、转向系统图: 发动机的功率分两路传 递,一路通过齿轮传到变速 机构,由车辆根据需要换入 所需挡位;另一路由变量泵 定量马达机组传到两侧两个 汇流行星排的太阳轮。然后, 通过汇流行星排将两路动力 汇合后,分别通过两侧汇流 行星排的行星架输到两侧履 带。因两侧太阳轮转动方向 相反,所以输出到两侧履带 的转速大小不相等,造成两 侧履带产生速差而使车辆转 向。 二、转向液压传动系统 1、传动系统图: 图5-1履带车辆-挖掘机的外形图 图5-2履带车辆转向系统

如图5-3,该系统采用的是双向变量泵和定量马达组成的容积式调速方式,通过调节液压泵的排量来改变液压马达的输出转速,以实现履带车辆的双向无级转向。它主要由变量柱塞泵、补油齿轮泵、定量柱塞马达、换向阀、单向阀、溢流阀、油箱、油管和滤油器等元件组成。 2、工作原理 当发动机带动变量泵2转动时,液压泵将发动机的机械能转换 为液压能,输出压力油,驱动马达 10转动。调节变量柱塞泵斜盘摆角 的大小和方向,即改变液压泵输出 流量的大小和液流的方向,从而使 马达输出不同大小和方向的转速。 马达回油与变量泵的吸油口相通, 形成闭式回路。 由于泵、马达组成的是闭式液压回路,为了补充闭式回路中因泄漏而造成的油液损失,系统中设有补油系统,如齿轮泵1、单向阀4和5、定压溢流阀11等;为了使补油系统循环并带走变量泵和定量马达工作中因功率损失而产生的热量,控制油液的温度,系统中设有换向阀8和背压阀9;为防止液压系统过载,还设有安全溢流阀6和7。 三、柱塞泵 柱塞泵是依靠柱塞在缸体内往复运动,使密封容积产生变化来实现吸油和压油的。由于柱塞和缸体内孔均为圆柱表面,因此加工方便、配合精度高、密封性能好、容积效率高,同时,柱塞处于受压状态,能使材料的强度性能充分发挥,只要改变柱塞的工作行程就能改变泵的排量,所以柱塞泵具有压力高、结构紧凑、效率高、流量调节方便等优点。由于单柱塞泵只能断续供油,因此作为实用的柱塞泵,常以多个单柱塞泵组合而成。根据其排列方向不同可分为径向柱塞泵和轴向柱塞泵。径向柱塞泵径向尺寸大,结构较复杂,自吸能力差,且配油轴受到径向不平衡液压力的作用,易于磨损,这些都限制了它的转速和压力的提高, 因此 图5-3 履带车辆转向液压系统1-液压泵 2-变量泵 4、5-单向阀向阀 6、7-安全溢流阀 8-换向阀9-背压阀 10-双向马达 11-溢流阀 图5-4 轴向柱塞泵的工作原理 1-斜盘 2-滑履 3-压板 4、8套筒 5-柱塞 6-弹簧 7-缸体 9-转轴 10-配油盘

履带车辆的转向理论

履带车辆的转向理论 一、双履带车辆的转向理论 对于双履带式车辆各种转向机构就基本原理来说是相同的,都是依靠改变两侧驱动轮上的驱动力,使其达到不同时速来实现转向的。 (一)双履带式车辆转向运动学 履带车辆不带负荷,在水平地段上绕转向轴线O 作稳定转向的简图,如图7-12所示。从转向轴线O 到车辆纵向对称平面的距离R ,称为履带式车辆的转向半径。 以T O 代表轴线O 在车辆纵向对称平面上的投影,T O 的运动速度v '代表车辆转向时的平均速度。则车辆的转向角速度Z ω为: 图7-12 履带式车辆转向运动简图 R v Z ' = ω (7-37)

转向时,机体上任一点都绕转向轴线O 作回转,其速度为该点到轴线O 的 距离和角速度Z ω的乘积。所以慢、快速侧履带的速度1 v '和2v '分别为: Z Z Z Z B v B R v B v B R v ωωωω5.0)5.0(5.0)5.0(2 1 +'=+='-'=-=' (7-38) 式中:B —履带车辆的轨距。 根据相对运动原理,可以将机体上任一点的运动分解成两种运动的合成:(1)牵连运动,;(2)相对运动。 由上可得: B R B R v v 5.05.021 +-='' (二)双履带式车辆转向动力学 1、牵引平衡和力矩平衡 图7-13给出了带有牵引负荷的履带式车辆,在水平地段上以转向半径R 作低速稳定转向时的受力情况(离心力可略去不计)。 转向行驶时的牵引平衡可作两点假设: (1) 在相同地面条件下,转向行驶阻力等于直线行驶阻 力,且两侧履带行驶阻力相等,即: f f f F F F 5.021='='

振动分析所研究的内容

机械振动理论及其应用作业——振动分析研究的内容 学号: 专业:机械工程 学生姓名: 2013年11月24日

第一节机械振动的基本概念 所谓振动,就是物体或某种状态随时间作往复变化的现象。振动包括机械振动与非机械振动。例如,钟摆的来回摆动,房屋由于风力、地震或机械设备引起的振动,桥梁由于车辆通过引起的振动等,这一类振动属于机械振动;另一类振动属于非机械运动的振动现象,例如声波、光波、电磁波等。 机械振动所研究的对象是机械或结构,在理论分析中要将实际的机械或结构抽象为力学模型,即形成一个力学模型。可以产生机械振动的力学模型,称为振动系统。一般来说,任何具有弹性和惯性的力学系统均可能产生机械振动。 振动系统发生振动的原因是由于外界对系统运动状态的影响,即外界对系统的激励或作用。如果外界对某一个系统的作用使得该系统处于静止状态,此时系统的几何位置称为系统的静平衡位置。依据系统势能在静平衡位置附近的性质,系统的静平衡位置可以分为稳定平衡、不稳定平衡和随遇平衡等几种状况。机械振动中的平衡位置是系统的稳定平衡位置。系统在振动时的位移通常是比较小的,因为实际结构的变形时比较小的。 对于工程实际中的结构振动问题,人们关心振动会不会使结构的位移、速度、加速度等物理量过大,因为位移过大可能引起结构各个部件之间的相互干涉。比如汽车的轮轴与大梁会因为剧烈振动而频繁碰撞,造成大梁过早损坏,并危及行车安全。为了避免振动危害,甚至利用振动进行工作,我们应了解结构振动的规律,并在实际工作中应用这些规律。 第二节振动的分类 机械振动可根据不同的特征加以分类。 1、按振动的输入特性分 自由振动系统受到初始激励作用后,仅靠其本身的弹性恢复力自由地振动,其振动的特性仅决定于系统本身的物理特性(质量m、刚度k)。 受迫振动又称强迫振动,系统受到外界持续的激励作用而被迫地产生振动,其振动特性除决定于系统本身的特性外,还决定于激励的特性。 自激振动有的系统由于具有非振荡性能源或反馈特性,从而产生一种稳定持续的振动。 2、按振动的周期特性分 周期振动振动系统的某些参量(如位移、速度、加速度等)在相等的时间间隔内作往复运动。 非周期振动振动系统的参量变化没有固定的时间间隔,即没有一定的周期。3、按振动的输出特性分 简谐振动可以用简单正弦函数或余弦函数表述其运动规律的运动。 非简谐振动不可以直接用简单正弦函数或余弦函数表述其运动规律的运动。 随机振动不能用简单函数或简单函数的组合来表述其运动规律,而只能用统计的方法来研究其规律的非周期性振动。 4、按振动系统的结构参数特性分 线性振动振动系统的惯性力、阻尼力、弹性恢复力分别与加速度、速度、位移成线性关系,系统中质量、阻尼和刚度均为常数,该系统的振动可以用常系数

锯片铣刀切削振动分析与研究

锯片铣刀切削振动分析与研究 高速回转圆盘刀具——锯片铣刀是一种用于金属切断和窄槽加工的铣削工具,在特种材料、塑性材料、复合材料、硅材料及贵重金属加工中有广泛的应用。常规的锯片铣刀由于本身厚度,不可避免地会产生锯路损失,造成材料资源的严重浪费,同时切削产生的加工废料加剧了环境污染,能源消耗也会提高。 在进行特种材料加工时,由于材料资源的贵重性及高加工质量的要求,降低这种损失变得尤为重要。因此,减小锯片厚度成为锯片铣刀主要发展趋势之一。 但是锯片铣刀厚度变薄又会存在一系列的问题,最主要的就是锯片刚度下降导致锯片铣刀横向振动加剧,降低了锯片铣刀的寿命以及产品质量,同时加大锯片铣刀的噪声。针对锯片铣刀振动和噪声问题,已有学者提出在锯片铣刀上增加径向槽、消音细缝以及采用阻尼材料充当锯片铣刀基体的方法来减少锯片铣刀的振动和噪声,并且这些方法起到了明显的减振降噪效果。 在前人研究的基础上,本文针对锯片铣刀铣削时的横向振动问题,应用转子动力学理论、临界转速理论和切削振动实验测量对锯片铣刀的振动动态特性进行了详细的分析和研究。首先从理论上分析了锯片铣刀切削时的金属变形规律、受力特性及振动特性,指出在锯片铣刀进行金属切削时存在犁沟效应及粘合效应。 利用克希霍夫(Kirchhoff)弹性薄板小挠度理论,建立了薄板振动的微分方程,在此基础上推导出了中间有孔弹性薄圆板(锯片铣刀)固有频率计算公式,并用MATLAB对锯片铣刀的前三阶固有频率进行了理论计算。在此基础上,进行了锯片铣刀空转振动测试实验、多种切削参数振动测试实验,同时为降低锯片铣刀的横向振动设计了导向装置辅助支撑,进行了有无导向装置辅助支撑锯片铣刀切削实验。

汽车悬挂系统的振动模态分析

汽车悬挂系统的振动模态分析 一、问题描述 一个简单的汽车系统如图1所示,若将其处理成平面系统,可以由车身(梁)、承重、前后支撑组成,汽车悬架振动系统可以简化地看作由以下两个主要运动组成:运动体系在垂直方向的线性运动以及车身质量块的旋转运动,对该系统进行模态分析。模型中的各项参数如表 1 所示,为与文献结果进行比较,这里采用英制单位。 表1 汽车悬架振动模型的参数 (a)问题描述(b)有限元分析模型 图1 汽车悬架振动系统模型 二、有限元建模 1、模型分析 计算模型如图1(b)所示。 这里将车身简化为梁,仅起到连接作用,这里设定不考虑梁的质量对振动性

能的影响,因此需将密度设定为零即可,但在建模时需要输入梁的各种参数(包括材料以及几何参数),实际上,可以将车身梁的弹性效果通过质量块的垂直运动及旋转运动来等效,质量块的转动惯性矩为2r m I zz ?=,r 取为 4ft ,经计算 ft lb I zz ??=2sec 1600。 可以看出所采用的平面简化模型仅有两个自由度(梁单元由于取密度为零,将仅起连接作用)。 采用 2D 的计算模型,使用梁单元 2-D Elastic Beam Elements (BEAM3)来等效车身,使用弹簧单元Spring-Damper Elements (COMBIN14)来等效车体的前后悬架支撑,使用质量块单元Structural Mass Element (MASS21)来等效车身质量。 2、建模的要点 1) 首先定义分析类型并选取三种单元,输入实常数; 2) 建立对应几何模型,并赋予各单元类型对应各参数值 ; 3) 在后处理中,用命令<*GET >来提取其计算分析结果(频率); 4) 通过命令<*GET >来提取模态的频率值。 3、建模步骤 1) 进入 ANSYS (设定工作目录和工作文件) 程序 → ANSYS → ANSYS Interactive → Working directory (设置工作目录)→ Initial jobname: Vehicle (设置工作文件名):→Run → OK 2) 设置计算类型 ANSYS Main Menu :Preferences … → Structural → OK 3) 定义单元类型 ANSYS Main Menu :Preprocessor → Element Type → Add/Edit/Delete... → Add …→ Beam: 2d elastic 3 → Apply (返回到Library of Element 窗口)→ Combination: Spring-damper 14→ Apply (返回到Library of Element 窗口)→Structural Mass: 3D mass 21→OK (返回到Element Types 窗口)→选择Type 2 COMBIN14 单击Options …→K3 设定为2-D longitudinal →OK (返回到Element Types 窗口) →选择Type 3 MASS21 单击Options …→K3 设定为2-D w rot inert → OK → Close 4) 定义实常数 ANSYS Main Menu: Preprocessor → Real Constants …→Add/Edit/Delete... →Add …→ 选择 Type 2 COMBIN14 → OK → Real Constants Set No. : 1

相关文档
最新文档