制药行业废水处理和回用技术研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制药行业废水处理与回用技术研究进展
摘要:本文根据近年来国内制药行业废水处理研究现状,结合相关实验和工程实例,介绍了制药废水的物理处理、化学处理和生物处理技术,从无机成分回收、有机成分回收和中水回用三方面介绍了各种类制药废水回用技术,评述各方法优劣及适用范围,综合全面地探讨了处理工艺的选择和制药废水的资源回收利用问题。
关键词:制药废水;深度处理;回用。
第一章前言
制药行业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。其废水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放,属难处理的工业废水。随着我国医药工业的发展,制药废水已逐渐成为重要的污染源之一。采用合适的方法处理不同种类制药废水,同时回收废水中可再生利用的成分,可以在解决其污染问题的同时实现经济效益最大化。
第二章制药废水处理技术简介
2.1 物理处理技术
物化处理不仅可作为生物处理工序的预处理,有时还可作为制药废水的单独处理工序或后处理工序。在制药废水处理中采用的物理法有很多,因不同的制药废水而不同。
2.1.1 气浮法
气浮法是利用高度分散的微小气泡作为载体去粘附废水中的污染物,使其视密度小于水而上浮到水面实现固液或液液分离的过程。通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。在制药废水处理中,如庆大霉素、土霉素、麦迪霉素等废水的处理,常采用化学气浮法。庆大霉素废水经化学气浮处理后,COD Cr去除率可达50%以上,固体悬浮物去除率可达70%以上[1]。
2.1.2 吸附法
吸附法是指利用多孔性固体吸附废水中某种或几种污染物,以回收或去除污染物,从而使废水得到净化的方法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。在制药废水处理中,常用煤灰或活性炭吸附预处理生产中成药[2]、米菲司酮、双氯灭痛[3]、洁霉素、扑热息痛等产生的废水。
2.2 化学处理技术
2.2.1 混凝法
向水中投加混凝剂,可使污水中的胶体颗粒失去稳定性,凝聚成大颗粒而下沉。通过混凝法可去除污水中的细分散固体颗粒、乳状油及胶体物质等。在制药废水处理中常用的混凝剂有:聚合硫酸铁、氯化铁[4]、亚铁盐、聚合氯化硫酸铝、聚合氯化铝[5]、聚合氯化硫酸铝铁、聚丙烯酸胺(PAM)等。
2.2.2 Fe-C处理法
在酸性介质的作用下,铁屑与炭粒形成无数个微小原电池,释放出活性极强的
[H],新生态的[H]能与溶液中的许多组分发生氧化还原反应,同时还产生新生态的Fe2+,新生态的Fe2+具有较高的活性,生成Fe3+,随着水解反应进行,形成以Fe3+为中心的胶凝体。工业中以Fe-C作为制药废水的预处理步骤,运行表明,经预处理后废水的可生化性大大提高、效果明显。抗生素药类生产废水难以生物处理,近年来,国内外对包括抗生素在内的难降解有机污染物废水采用了光催化降解和其它方法,但存在成本高、流程复杂,而采用廉价的铁屑加催化剂处理此类废水,可使COD 去除率达到第二类污染物部分行业最高允许排放浓度,并且此法较其它方法经济、稳定。
2.2.3 深度氧化技术
制药废水由于其COD浓度高、色度深以及含有大量的毒害物质,除采用传统的生化及物化处理方法外,废水深度氧化技术有其独特特色。
湿式空气氧化技术是在较高温度(150~350℃)和压力(0.5~20MPa)下,以空气或纯氧为氧化剂将有机污染物氧化分解为无机物或小分子有机物的化学过程。
超临界水氧化(SCWO)法实际上湿式氧化法的强化与改进,超临界水氧化技术是在水的超临界状态下进行氧化的工艺过程。超临界水对有机物和氧都是相当好的溶剂,有机物在超临界水富氧均相中进行氧化,在400~600℃下,反应速率很快,几乎能在几秒钟之内相当有效地破坏有机物的结构,反应完全、彻底,使有机碳、氢完全转化为CO2和H2O。
2.3生物处理技术
2.3.1 加压生化法
加压曝气的活性污泥法提高了溶解氧的浓度,供氧充足,既有利于加速生物降解,又有利于提高生物耐冲击负荷能力。常州第三制药厂采用加压生化-生物过滤法处理合成制药废水,其中加压生化部分采用加压氧化塔的形式,塔内的压强可达4~5个大气压,水中的溶解氧浓度高达20mg/L以上,结果表明加压生化不仅能够去除大部分有机物,而且能够去除大部分挥发酚、石油类与氨氮类,使出水主要污染物的去除率高达80%~90%以上[6]。
2.3.2 生物接触氧化法
生物接触氧化法兼有活性污泥法和生物膜法的特点,具有较高的处理负荷,能够处理容易引起污泥膨胀的有机废水。在制药工业生产废水的处理中,常常直接采用生物接触氧化法,或用厌氧消化、酸化作为预处理工序,来处理扑热息痛、抗生素原料药、淄体类激素等制药生产废水。
2.3.3 生物流化床法
生物流化床将普通的活性污泥法和生物滤池法两者的优点融为一体,因而具有容积负荷高、反应速度快、占地面积小等优点。对麦迪霉素、四环毒、卡那霉素等制药废水,可采用生物流化床技术进行处理。
2.3.4 上流式厌氧污泥床(UASB)法
UASB反应器具有厌氧消化效率高、结构简单等优点。UASB能否高效和稳定运行的关键在于反应器内能否形成微生物适宜、产甲烷活性高、沉降性能良好的颗粒污泥。制药行业中,UASB法可处理卡那霉素[7]、氯酶素、VC、SD和葡萄糖等,通常要求SS含量不能过高,以保证COD去除率可在85%~90%以上。二级串联UASB的COD去除率可达到90%以上。
2.3.5 固定化微生物法[8]
固定化微生物法是将微生物固定在载体上或定位于限定的空间区域内,并保持其生物功能,反复利用。固定化微生物技术已用来处理四环素、阿苯哒唑、扑
尔敏、布洛芬等制药生产废水,另外,亦可在SBR中采用固定化微生物技术来处理氨氮含量高的制药废水。
第三章制药废水回用技术研究现状
一般来说,由于制药废水成分复杂,在处理过程中不易回收,且回收流程复杂,成本较高。但由于某些制药生产工艺的特殊性,其废水中含有大量可回收利用的物质,若采用适当的方法对这类制药废水进行治理,加强物料回收和综合利用,就可以实现环境效益和经济效益的统一。不同类别制药废水成分相差很大,其可回收利用组分也不尽相同,通常可将其划分为无机成分回收、有机成分回收和中水的回用。
3.1 废水中无机成分回收
林冲等人利用石灰-氯化钙复合药剂法对国内某制药厂的咪唑醛水解废水进行处理[9],他们针对该高浓度含磷制药废水,研究了一种新的处理方法:每克磷加入4.1 g氯化钙盐和1.3g石灰,将pH调节到8,反应180 min,可将废水中的磷浓度由31000 mg·L-1降至0.5 mg·L-1以下,所得渣中有效磷含量维持在18%,达到磷肥指标中优等品的要求,渣量维持在320 kg·(t废水)-1,可转化为一定的经济效益。该方法解决了化学沉降法处理含磷废水时渣未解决的问题,使废物得以充分利用,并降低废水处理成本,而且为后续的生物降解进行了预处理。
浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐,采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右的(NH4)2SO4、NH4NO3作肥料或回用,获得了明显的经济效益[10]。
3.2 废水中有机成分回收
张向京等[11]根据蛋白质表面因带有电荷和水膜在水溶液中可形成稳定胶体的原理,采用氯化铁作为絮凝剂,对石家庄华盈精细化工股份有限公司蒸馏后排放的高温制药废水直接进行处理,回收了废水中的蛋白质。得到的上层清液稍经处理,即可以回用或直接排放,絮凝液经离心甩干,可作为动物饲料,也可经进一步处理,供人类食用。
刘国信等对北京某制药厂金霉素制药废水进行研究[12],废水先经过微孔管过滤预处理,再对其进行反渗透浓缩,整个过程体积减小了6-10倍。其中微孔过滤后的浓缩液经空气加压后在微孔管的外壁可形成一层滤饼,含水率在70%-75%,可掺在煤中烧掉。反渗透过程中膜对金霉素的截留率达到98%,因而浓缩液中含有较高浓度的金霉素和一部分氨基酸,可以进行回收。使用一种廉价吸附剂,将浓缩液吸收后,在流化床内烘干,可以作为畜用金霉素销售。
王金梅等尝试采用离子交换法从制药废水中提取土霉素[13]。废水为土霉素结晶母液,取自内蒙古赤峰制药厂土霉素生产车间,回收工艺操作流程如下: