第章电阻电路的等效变换习题及参考答案
《电路》邱关源第五版课后习题解答
电路习题解答第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。
【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。
⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。
第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。
《电路第五版课后习题答案
答案及解析115答案第一章电路模型和电路定律【题1】:由U A B 5 V 可得:IA C 2.5 A:U DB 0 :U S 125. V。
【题2】:D。
【题3】:300;-100。
【题4】:D。
【题5】: a i i 1 i 2 ; b u u1 u2 ; c u u S i i S R S ; d i iS1RSu u S 。
【题6】:3;-5;-8。
【题7】:D。
【题8】:PU S 1 50 W ;P U S 2 6 W ;P U S3 0 ;P I S 1 15 W ;P I S2 14 W ;P I S 3 15 W 。
【题9】:C。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
1【题14】:3 I 1 2 3 ;IA 。
3【题15】:I 4 3 A;I 2 3 A;I 3 1A;I 5 4 A。
【题16】:I 7 A;U 35 V;X 元件吸收的功率为P U I 245 W。
【题17】:由图可得U E B 4 V;流过 2 电阻的电流I E B 2 A;由回路ADEBCA 列KVL 得U A C 2 3I ;又由节点 D 列KCL 得I C D 4 I ;由回路CDEC 列KVL 解得;I 3 ;代入上式,得U A C 7 V。
【题18】:P1 P2 2 II212222 ;故I I122;I 1 I 2 ;⑴KCL:43I I ;I 11 12858A;U I 1 I 1 V 或 1.6 V;或I 1 I2 。
S 2 15⑵KCL:43I I ;I1 121 8 A;U S 24V。
第二章电阻电路的等效变换【题1】:[解答]I9 47 3ab 9 4 8.5 V;A =0 .5 A ;U II 1 U 6ab . A ;P 6 1.2 5 W = 7 .5 W ;吸1 252收功率7.5W。
【题2】:[解答]【题3】:[解答] C。
全国中学生物理竞赛纯电阻电路的简化和等效变换
例析物理竞赛中纯电阻电路的简化和等效变换李进山东省邹平县第一中学计算一个电路的电阻,通常从欧姆定律出发,分析电路的串并联关系。
实际电路中,电阻的联接千变万化,我们需要运用各种方法,通过等效变换将复杂电路转换成简单直观的串并联电路。
本节主要介绍几种常用的计算复杂电路等效电阻的方法。
1、等势节点的断接法在一个复杂电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等电势节点间的导线或电阻或不含电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势节点连接起来,且不影响电路的等效性。
这种方法的关键在于找到等势点,然后分析元件间的串并联关系。
常用于由等值电阻组成的结构对称的电路。
【例题1】在图8-4甲所示的电路中,R1 = R2 = R3 = R4 = R5 = R ,试求A、B两端的等效电阻R AB。
模型分析:这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。
将图8-4甲图中的A、D缩为一点A后,成为图8-4乙图。
3R 。
答案:R AB =8【例题2】在图8-5甲所示的电路中,R1 = 1Ω,R2 = 4Ω,R3 = 3Ω,R4 = 12Ω,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。
模型分析:这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势相等。
因此,将C 、D 缩为一点C 后,电路等效为图8-5乙对于图8-5的乙图,求R AB 是非常容易的。
事实上,只要满足21R R =43R R的关系,该桥式电路平衡。
答案:R AB =415Ω 。
【例题3】在如图所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。
【例题4】用导线连接成如图所示的框架,ABCD 是正四面体,每段导线的电阻都是1 。
求AB 间的总电阻。
电路原理课后习题答案.
(d)(e)(f)
题1-4图
解(a)电阻元件,u、i为关联参考方向。
由欧姆定律u=Ri=104i
(b)电阻元件,u、i为非关联参考方向
由欧姆定律u=-Ri=-10i
(c)理想电压源与外部电路无关,故u=10V
(d)理想电压源与外部电路无关,故u=-5V
(e)理想电流源与外部电路无关,故i=10×10-3A=10-2A
电容电流
t=2 ms时
电容的储能为
7-20题7-20图所示电路,开关合在位置1时已达稳定状态,t=0时开关由位置1合向位置2,求t0时的电压 。
题7-20图
解:
用加压求流法求等效电阻
7-26题7-26图所示电路在开关S动作前已达稳态;t=0时S由1接至2,求t0时的 。
题7-26图
解:由图可知,t>0时
题4-5图
4-9求题4-9图所示电路的戴维宁或诺顿等效电路。
(a)
(b)
题4-9图
解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”求开路电压 。设 ,各支路电流如图示,计算得
故当 时,开路电压 为
将电路中的电压源短路,应用电阻串并联等效,求得等效内阻 为
4-17题4-17图所示电路的负载电阻 可变,试问 等于何值时可吸收最大功率?求此功率。
题2-1图
解:(1) 和 并联,其等效电阻 则总电流
分流有
(2)当
(3)
2-5用△—Y等效变换法求题2-5图中a、b端的等效电阻:(1)将结点①、②、③之间的三个9电阻构成的△形变换为Y形;(2)将结点①、③、④与作为内部公共结点的②之间的三个9电阻构成的Y形变换为△形。
题2-5图
解(1)变换后的电路如解题2-5图(a)所示。
电路原理课后习题答案
第五版《电路原理》课后作业第一章“电路模型和电路定律”练习题1-1说明题1-1图(a)、(b)中:(1)u、i的参考方向是否关联?(2)ui乘积表示什么功率?(3)如果在图(a)中u>0、i<0;图(b)中u>0、i>0,元件实际发出还是吸收功率?(a)(b)题1-1图解(1)u、i的参考方向是否关联?答:(a) 关联——同一元件上的电压、电流的参考方向一致,称为关联参考方向;(b) 非关联——同一元件上的电压、电流的参考方向相反,称为非关联参考方向。
(2)ui乘积表示什么功率?答:(a) 吸收功率——关联方向下,乘积p = ui > 0表示吸收功率;(b) 发出功率——非关联方向,调换电流i的参考方向之后,乘积p = ui < 0,表示元件发出功率。
(3)如果在图 (a) 中u>0,i<0,元件实际发出还是吸收功率?答:(a) 发出功率——关联方向下,u > 0,i < 0,功率p为负值下,元件实际发出功率;(b) 吸收功率——非关联方向下,调换电流i的参考方向之后,u > 0,i > 0,功率p为正值下,元件实际吸收功率;1-4 在指定的电压u和电流i的参考方向下,写出题1-4图所示各元件的u和i的约束方程(即VCR)。
(a)(b)(c)(d)(e)(f)题1-4图解(a)电阻元件,u、i为关联参考方向。
由欧姆定律u = R i = 104 i(b)电阻元件,u、i为非关联参考方向由欧姆定律u = - R i = -10 i(c)理想电压源与外部电路无关,故u = 10V(d)理想电压源与外部电路无关,故u = -5V(e) 理想电流源与外部电路无关,故i=10×10-3A=10-2A(f)理想电流源与外部电路无关,故i=-10×10-3A=-10-2A1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。
(完整版)电阻电路的等效变换习题及答案
第2章 习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω3Ω(a)(b)题2-1图解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
ab8Ωab8Ω(a)(b)题2-2图解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ωab(a) (b)题2-3图解:(a )开关打开时(84)//43ab R =+=Ω开关闭合时4//42ab R ==Ω(b )开关打开时(612)//(612)9ab R =++=Ω开关闭合时6//126//128ab R =+=Ω2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b)所示电路的电压U 。
6Ω6Ω(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为1I 21/(16//123//621/(142)3A =++++=)=从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )从下往上流过6V 电压源的电流为 66I 4A 1.5===(1+2)//(1+2)从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
2Ω(a)(b)题2-5图解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥1a所以 111//11332ab R =++=Ω()()(b )将图中的两个Y 形变成△形,如图所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6计算题2-6图所示电路中a b 、两点间的等效电阻。
电阻电路的等效变换习题及答案
解:(a ) R ab 1 4//(26//3)(b ) R ab4 / /(6 / /3 6//3)2-2试求题2-2图所示各电路a 、b 两点间的等效电阻R ab 。
第2章习题与解答2- 1试求题2- 1图所示各电路ab 端的等效电阻R ab 。
解:(a ) R ab 3 [(84)//6(1 5)]//108(b ) R ab [(4 //4 8)//10 4]//94 1.510(b)2- 3试计算题2-3图所示电路在开关K打开和闭合两种状态时的等效电阻R ab⑻(b)解:(a)开关打开时(8 4)//4 3开关闭合时Rab4//4 2(b)开关打开时Rab(6 12)//(6 12) 9开关闭合时6//12 6//12 8题2-4图解:(a)从左往右流过1电阻的电流为l121/ (1 6//12 3//6) =21/ (1 4 2) 3A从上往下流过3电阻的电流为I3 63 2A3 6从上往下流过12电阻的电流为I 12所以I l3-l12=1A(b)从下往上流过6V电压源的电流为I(1+2) // ( 1+2) 1.5从上往下流过两条并联支路的电流分别为 2A 所以 U 2 2-1 2=2V2- 5试求题2-5图所示各电路ab 端的等效电阻 為,其中R R 211 11 )//(1 D 3 32(b )将图中的两个丫形变成△形,如图所示(b)题2-5图解:(a )如图,2.5I85即得40 21所以志 1.269 2-6计算题2-6图所示电路中a ]1I8888(a)解: 所以20 9题2- 6图(a )将图中的丫形变成△形,如图所示R ab 12//6 4(b )将图中的丫形变成△形,如图所示140 381、对-T~~110108A] I0Uab 532.5 { I—2612所以&b3//4 —2- 7对题2- 7图所示电路,应用Y—△等效变换求电路ab端的等效电阻角线电压U及总电压U ab。
答案第2章 电阻电路的等效变换(含答案)
第二章 电阻电路的等效变换一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 如图所示电路的等效电阻为12122R R R R +- [√]解:212122122R R UU R R U R R U U R U I -+=-+=22221-+==R R R R I UR eq.2. 当R11、R2与R3并联时等效电阻为:123123R R R R R R ++ [×].3. 两只额定电压为110V 的电灯泡串联起来总可以接到220V 的电压源上使用。
[×] 解:功率不同的不可以。
.4. 电流相等的两个元件必属串联,电压相等的两个元件必属并联。
[×].5. 由电源等效变换可知, 如图A所示电路可用图B电路等效代替,其中/s s i u R =则图A 中的R i 和R L 消耗的功率与图B中R i 和R L 消耗的功率是不变的。
[×] 解:对外等效,对内不等效。
可举例说明。
.6. 一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。
[√].7. 一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。
[√] .8.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。
[×] 解:根据KVL 有: B A BA AB BA U U R I U R I E -+=+=55 5R E I BA =.9. 图示电路中, 既然AB两点电位相等, 即UAB =0,必有I AB =0 [×]解:A I AB 195459424=⨯+-⨯+=4Ω2ΩIAB9AA B.10. 理想电压源不能与任何理想电流源等效。
[√] 二、选择题(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 图示电路 AB间的等效电阻为_C_AB20Ω20Ω20Ω10Ω6Ω12Ω12Ω2Ω解:二个电阻并联等效成一个电阻,另一电阻断开。
第2章电阻电路的等效变换习题及答案
第2章习题与解答2-1试求题2-1图所示各电路血端的等效电阻心,。
解:(a)心,=1 + 4//(2 + 6//3) = 30(b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻IQ 5G_| ------ [ ----- 1.5Q 4G(a)(b)题2—2图解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G(b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ・5 = 10C2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血oIQ 4Q3G(b)(a)题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。
开关闭合时^,=4/74 = 20(b)开关打开时 R ah =(6 + 12)/7(6+12) = 90开关闭合时心=6//12 + 6//12 = 8。
2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。
解:(a)从左往右流过1G 电阻的电流为I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA12 + 6 所以1 =【3叫2 = 1 A⑹从下往上流过6V 电压源的电流为"击莎1Q + O1V3Q 6Q(a)12Q6Q题2—4图从上往下流过两条并联支路的电流分别为2A所以U = 2x2-lx2=2V2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。
2Q题2-5图解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥所以心,=(*+*)//(1 + 1)= *°(b)将图中的两个Y形变成△形,如图所示2.5Q5Q 白804Q 4QT50T T2Q即得所以陰=L269G2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。
《电路基础》第二章 电阻电路等效变换 课后答案
课 后 答 案 网
第二章 电阻电路等效变换
2—1 将图示电路等效化简为一个电压源或电流源。
答案 www.khda 解:对应的等效电路如图 2—1 所示。
2—2 求图示电路的等效电流源模型。
课 后 答 案 网
om 答案
解:对应的等效电路如图 2—2 所示,其中(d)不存在等效的电流源模型。
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点,
旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
课 后 答 案 网
答案
m 解: www.khdaw.co 2—10 图示电路,求电压u。
答案
课 后 答 案 网
解:原电路经等效变换后,可得到下图所示电路,由此可得:
.com 2—11 图示电路,求电压R。已知u1=1V。 w.khdaw 答案 ww解:
课 后 答 案 网
2—12 图示电路,求u3。 ww.kh 答案 w解:
www.khdaw.c 2—3 求图示电路的等效电源模型。
课 后 答 案 网
com 答案 . 解:对应的等效电路如图 2—3 所示,其中(d)不存在等效的电压源模型。 www.khdaw 2—4 图示电路,求i、uab和R。
课 后 答 案 网
答案 www.khd 解:(a)经等效变换后,可得到右示(a’)电路。
Hale Waihona Puke 课 后 答 案 网 2—13 图示电路,求u3。 .khda 答案 www解:
电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习
第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。
若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻84R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA u i s 10100212===V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。
求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。
因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。
(完整版)电阻电路的等效变换习题及答案
第 2 章习题与解答2-1试求题2-1图所示各电路ab端的等效电阻R ab题2-1 图解:(a) R ab 1 4//(2 6//3) 3b)R ab 4/ /(6/ /3 6/ /3) 22-2试求题2-2图所示各电路a、b两点间的等效电阻R ab解:(a) R ab 3 [(8 4)//6 (1 5)]/ /10 8(b) R ab [(4 / /4 8)/ /10 4]//9 4 1.5 102-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻R ab(a)(b)1(a)题2-2 图解:(a)开关打开时R ab (8 4)/ /4 3开关闭合时R ab 4//4 2b)开关打开时R ab(6 12) / /(6 12) 9开关闭合时R ab6//12 6/ /12 8题2-4 图解:(a)从左往右流过1电阻的电流为I1 21/ (1 6/ /12 3 / /6)=21/ (1 42) 3A从上往下流过3电阻的电流为I3从上往下流过12 电阻的电流为I1263 2A366 3 1A12 6所以I I3-I12 =1Ab)从下往上流过6V 电压源的电流为I1+2) // (1+2) 1.56 4A2从上往下流过两条并联支路的电流分别为2A 所以 U 2 2-12=2V2-5试求题 2-5图所示各电路 ab 端的等效电阻 R ab ,其中 R 1 R 2 1b )将图中的两个 Y 形变成△形,如图所示2.58445即得2(b)题 2-5 图1 11所以 R ab ( 1 1)/(/ 1 1) 1ab3 3 2所以R ab 1.269解:(a)将图中的Y 形变成△形,如图所示所以R ab 12//6 4b)将图中的Y 形变成△形,如图所示209402140382-6计算题2-6图所示电路中a8888 8 8b(a)12所以R ab 3/ /4 122-7 对题2-7 图所示电路,应用Y—△等效变换求电路ab 端的等效电阻角线电压U 及总电压U ab 。
《电路》邱关源第五版课后习题答案解析
电路答案——本资料由张纪光编辑整理(C2-241 内部专用)第一章电路模型和电路定律【题 1】:由UAB 5 V可得: I AC 2.5A: U DB0 : U S12.5V。
【题 2】: D。
【题 3】: 300; -100 。
【题 4】: D。
【题5】:a i i1i 2;b u u1u2;c u u S i i S R S;d i i S 1R Su u S。
【题 6】: 3;-5 ; -8。
【题 7】: D。
【题 8】:P US150 W ;P US26W;P US30 ; P IS115 W ; P IS214W ;P IS315W。
【题 9】: C。
【题 10】:3; -3 。
【题 11】:-5 ; -13 。
【题 12】:4(吸收); 25。
【题 13】:0.4 。
【题 14】:31I 2 3; I 1A 。
3【题 15】:I43A; I23A; I31A; I5 4 A。
【题 16】:I7A;U35 V;X元件吸收的功率为 P UI245W。
【题 17】:由图可得U EB 4 V;流过 2电阻的电流 I EB 2 A;由回路ADEBCA列KVL得U AC 2 3I ;又由节点D列KCL得 I CD 4I ;由回路CDEC列KVL解得;I 3 ;代入上式,得 U AC7 V。
【题 18】:P122 I12;故 I 22; I 1I 2;P2I 221I 2⑴ KCL:4I 13I 1;I 18;U S 2I1 1 I 18V或16.V;或I I。
2 5 A512⑵ KCL:4I 13I1;I18A;U S。
224 V第二章电阻电路的等效变换【题 1】:[解答 ]94A = 0.5 A ;U ab9I 4 8.5 V;I73U ab66 125. W = 7.5 W ;吸收I 12 1.25 A;P功率 7.5W。
【题 2】:[解答 ]【题 3】:[解答]C 。
【题 4】: [ 解答 ]等效电路如图所示,I 005. A。
第2章电阻电路的等效变换习题及参考答案
精心整理第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
(a) (b)题2-1图解:(a )14//(26//3)3ab R =++=Ω(b 2-2解:(a (b 2-3(a)(b)解:(a (b 2-4(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以312I I -I =1A =(b )从下往上流过6V 电压源的电流为66I 4A 1.5===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A所以U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
(a) (b)题2-5图解:(a(b 即得所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图解:将图中的Y 形变成△形,如图所示所以(32.5//526//2)//2655510ab R =++=+=Ω回到原图已知128I I +=348I I +=1310840I I +=245240I I +=联立解得1 2.4I A =2 5.6I A =32I A =46I A =所以121054U I I V =-+=2-8试求题2-8图所示电路的输入电阻in R 。
(a)(b)题2-8图解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R Iμ==+- (b )如图所示,在电路端口加电压源U ,求I12R R U 2-(b 2-62-题2-11图解:先化简电路,如图所示43Ω所以有41(2933i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。
题2-12图解:先求电路右边电阻块的等效电阻ab R ,如图所示将中间的Y 形化成△形。
《电路原理》作业以及答案
第一章“电路模型和电路定律”练习题1-1 说明题 1-1 图( a)、( b)中:( 1)u、i的参照方向能否关系?(2)ui乘积表示什么功率?( 3)假如在图( a)中u>0、i <0;图( b)中u>0、i >0,元件实质发出仍是汲取功率?元件元件i i+u+u( a)( b)题1-1图1-4 在指定的电压u 和电流 i 的参照方向下,写出题1-4图所示各元件的u 和 i的拘束方程(即 VCR)。
10k10i 10Vi i+++u+u u ( a)( b)( c)i 5V+i10mA i10mA+u+u+u( d)( e)( f )题1-4图1-5试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是汲取仍是发出)。
52A++15V515V 2A( a)(b)题1-5图1-16电路如题1-16 图所示,试求每个元件发出或汲取的功率。
2I12+++U2U2V(a)题 1-16 图+515V2A( c)A2I11I 2(b)1-20试求题1-20图所示电路中控制量u1及电压 u。
1k10k++++u1u10u12V题 1-20 图第二章“电阻电路的等效变换”练习题2-1电路如题2-1和电流 i 2、 i图所示,已知3:(1)R3=8ku S=100V,R1=2k,R2=8k。
试求以下 3 种状况下的电压;( 2)R3=(R3处开路);(3)R3=0(R3处短路)。
u2R1i2+i3+R2u2R3 u S题2-1 图2-5 用△— Y 等效变换法求题2-5 图中 a、b 端的等效电阻:(1)将结点①、②、③之间的三个 9 电阻组成的△形变换为 Y 形;(2)将结点①、③、④与作为内部公共结点的②之间的三个 9 电阻组成的 Y 形变换为△形。
①a999②③99b④题 2-52-11利用电源的等效变换,求题2-11 图所示电路的电流i 。
1A4424i+++1010 10V4V6V题 2-11 图2-13 题 2-13图所示电路中R1 R3 R4, R22R1,CCVS的电压u c4R1i1,利用电源的等效变换求电压u10。
电阻电路的等效变换习题
例12: 如图电路,已知IS1=1.5A,
IS1
R2=R3=8, =4 , 求I2和I3?
解:由电压源和电流源等效替换,把支
路2的受控电压源转换为受控电流源。得
等效电流源为I3/R2,电路如图
由分流公式可得
IS1
I 3 R2 (IS1 I3 )
R2 R3
R2
I3
R2
r I3 R2 R3
I2
a d
Re
1
3
c
Rab=
1
1
1
R 4
R
2R 2R 3R
b
f
例7:图中各电阻都是R, a 求ab间的等效电阻。
Rab
R 2
R 4
R 4
R 2
3R 2
b
该电路应该如何化简?
50Ω
20Ω
40Ω
10Ω 25Ω
36Ω +100V
求 i1 和 i2
①
50Ω
i1
③
40Ω
20Ω
i2
④
10Ω
36Ω
②
+-
25Ω 100V
I3
r I3
I2
R3
R2
代入数据有 I3 = 0.5(1.5+0.5I3)
I3 = 1 A
I2 = IS1-I3 = 0.5 A
IS1
R2
I3
r I3 R2 R3
I2
应用举例一、不含受控源无源单口 网络输入电阻的求解:
例13. 求输入电阻Rin。
Rin
Rin
Rin = 30
Rin
Rin = 1.5
c
R i
R
R i
电路原理(邱关源)习题答案第二章-电阻电路的等效变换练习
电路原理(邱关源)习题答案(dá àn)第二章-电阻电路的等效变换练习电路原理(邱关源)习题(xítí)答案第二章-电阻电路的等效变换练习第二章电阻电路(diànlù)的等效变换“等效(děnɡ xiào)变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析(fēnxī)中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流(diànliú)关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化(biànhuà)部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知。
若:(1);(2);(3)。
试求以上3种情况下电压和电流。
解:(1)和为并联(bìnglián),其等效电阻,则总电流(diànliú)分流(fēn liú)有(2)当,有(3),有2-2 电路如图所示,其中(qízhōng)电阻、电压源和电流源均为已知,且为正值。
求:(1)电压2u和电流(diànli ú);(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R和3R来说,其余部分的电路可以用电流源等效代换,如题解图(a)所示。
因此有(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。
因此当1R 增大,对及的电流和端电压都没有影响。
但1R 增大(z ēn ɡ d à),1R 上的电压(di àny ā)增大,将影响电流源两端的电压,因为显然(xi ǎnr án)随1R 的增大(z ēn ɡ d à)而增大。
天津理工电路习题及答案第二章电阻电路的等效变换
第二章电阻电路的等效变换1、重点和难点(1) 等效与近似概念的认识①等效:同一物体在不同的场合〔情况〕下,其作用效果相同,称之为等效。
在电路分析中有两种形式的等效:其一:站在电源立场,等效负载〔电阻〕。
即求等效电阻。
如图2.1所示。
其二:站在负载〔电阻〕立场,等效电源。
即求等效电源。
如图2.2所示。
图2.3所示的电路不是等效。
图2.1 站在电源立场等效负载图2.2 站在负载〔电阻〕立场,等效电源。
即求等效电源等效的多样性:等效可以是非同类元件之间进行,如交流电的有效值。
等效也可以是虚拟元件之间进行,如实际电压源与实际电流源之间等效,戴维南定理与诺顿定理之间等效,晶体三极管的小信号模型等。
②近似:在对一个复杂的电路进行分析时,影响该问题的因素较多,因此,忽略一些次要因素,而保存主要影响因素。
即抓主要矛盾或矛盾的主要方面。
称为近似处理。
尤其在模拟电子技术课程中应用极为广泛。
如图2.4所示。
图2.4 近似处理实例(2) 电阻、理想电压源、理想电流源的组合表2—1 单一类型元件的组合元件类型组合类型组合电路图等效结果等效类型等效电路图两个元件组合N个元件组合电阻的组合电阻的串联等效电阻21RRR eq+=N个电阻串联的等效电阻为:∑==NkkeqRR1电阻的并联等效电阻2121RRRRR eq+⨯=N个电阻串联的等效电阻为:∑==Nk keqRR111电压源的组合电压源的串联等效电压源21SSeqUUU+=其等效电源为N个串联电压源的代数和:∑==NkkeqUU1电压源的并联等效电压源SeqUU=只允许相同的电压源并联;不允许不相同的电压源并联。
电流源的组合电流源的串联等效电流源SeqII=只允许相同的电流源串联;不允许不相同的电流源串联。
电流源的并联等效电流源21SSeqIII+=其等效电源为N个并联电流源的代数和:∑==NkkeqUU1表2—2 不同类型元件的组合元件类型组合类型组合电路图等效结果等效类型等效电路图电阻与电压源的组合电阻与电压源的串联组合等效电阻与电流源的并联组合:RUI SS=电阻与电压源的并联组合等效电压源SU。
电路原理(邱关源)习题答案第二章-电阻电路的等效变换练习汇总
电路原理(邱关源)习题答案第二章-电阻电路的等效变换练习汇总第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。
若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻842R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA R R u i s 1082100212=+=+=V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。
求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。
因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。
电路习题集(含答案邱关源第五版)
西安交通大学 面朝大海目 录附录一:电路试卷 ........................................................ 38 附录二:习题集部分答案 (58)第一章 电路模型和电路定律一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错).1. 电路理论分析的对象是电路模型而不是实际电路。
[ ] .2. 欧姆定律可表示成 u R i =?, 也可表示成u R i =-?,这与采用的参考方向有关。
[ ].3. 在节点处各支路电流的方向不能均设为流向节点,否则将只有流入节点的电流而无流出节点的电流。
[ ] .4. 在电压近似不变的供电系统中,负载增加相当于负载电阻减少。
[ ] .5.理想电压源的端电压是由它本身确定的,与外电路无关,因此流过它的电流则是一定的,也与外电路无关。
[ ] .6. 电压源在电路中一定是发出功率的。
[ ] .7. 理想电流源中的电流是由它本身确定的,与外电路无关。
因此它的端电压则是一定的,也与外电路无关。
[ ] .8. 理想电流源的端电压为零。
[ ] .9. 若某元件的伏安关系为u =2i+4,则该元件为线性元件。
[ ] .10. 一个二端元件的伏安关系完全是由它本身所确定的,与它所接的外电路毫无关系。
[ ] .11.元件短路时的电压为零,其中电流不一定为零。
元件开路时电流为零,其端电压不一定为零。
[ ] .12. 判别一个元件是负载还是电源,是根据该元件上的电压实际极性和电流的实际方向是否一致(电流从正极流向负极)。
当电压实际极性和电流的实际方向一致时,该元件是负载,在吸收功率;当电压实际极性和电流的实际方向相反时,该元件是电源(含负电阻),在发出功率 [ ].13.在计算电路的功率时,根据电压、电流的参考方向可选用相应的公式计算功率。
若选用的公式不同,其结果有时为吸收功率,有时为产生功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
(a) (b)
题2-1图
解:(a )14//(26//3)3ab R =++=Ω
(b 2-2解:(a (b 2-3(a)(b)
解:(a (b 2-4(a) (b)
题2-4图
解:(a )从左往右流过1Ω电阻的电流为
从上往下流过3Ω电阻的电流为36I 32A 36
=
⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以312I I -I =1A =
(b )从下往上流过6V 电压源的电流为66I 4A 1.5
===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A
所以U 22-12=2V =⨯⨯
2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
(a) (b)
题2-5图
解:(a
(b 即得
所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图
解:将图中的Y 形变成△形,如图所示
所以(32.5//526//2)//2655510ab R =++=+=Ω
回到原图
已知128I I +=348I I +=1310840I I +=245240I I +=
联立解得1 2.4I A =2 5.6I A =32I A =46I A =
所以121054U I I V =-+=
2-8试求题2-8图所示电路的输入电阻in R 。
(a)(b)
题2-8图
解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R I
μ==+- (b )如图所示,在电路端口加电压源U ,求I
12R R U 2-(b 2-6
2-题2-11图
解:先化简电路,如图所示
43Ω所以有41(2933
i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。
题2-12图
解:先求电路右边电阻块的等效电阻ab R ,如图所示
将中间的Y 形化成△形。
化简电路为
列写KVL
所以10i A =
2-13利用含源支路等效变换,求题2-13图所示电路中电压o u 。
已知1
R =2-14已知即1[R 又11i =s 2-15将题2-15图所示各电路化为最简形式的等效电路。
(a)(b)
题2-15图
解:(a )化简电路,如图所示
(b )化简电路,如图所示
2-16求题2-16图所示各电路的最简等效电路。
(a)(b)
题2-16图
解:(a )化简电路,如图所示
(b )化简电路,如图所示
2-17题2-17图所示电路中,已知128,4,3,3S S U V R R I A ==Ω=Ω=。
试求电源输出的功率和电阻吸收的功率。
题2-17图
解:1R 上流过的电流182S R U I A ===1R 吸收功率214416R R P R I W ==⨯= 2R 所以所以2-18题2-18解:由。