圆的面积计算公式的推导及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标:
1.通过动手操作,让学生能推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想。
学习内容:
《新课程标准》指出:要让学生经历探索物体与图形基本性质、变换、位置关系的过程,掌握圆的基本性质。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱、圆锥等知识的基础。本课是在学生已经掌握长方形面积的基础上,通过直观演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。通过本节课的教学,不仅要使学生掌握圆面积的计算公式的推导,而且还能应用公式进行有关圆的面积计算。
教学重点:
利用圆面积计算公式正确计算圆的面积。
教学难点:
圆面积计算公式的推导。
教具学具准备:
多媒体课件、圆的面积公式
学情分析:
本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基础,本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
教学过程
一、导入明标:
1、复习导入:
为了激发兴趣,课件出示图片:一片草地中间拴着一只小狗,这只小狗的最大活动范围有多大?让学生明白小狗的最大活动范围就是一个圆。这个圆所占平面的大小又叫什么?
2、板书课题:"圆的面积"。
3、出示学习目标:
二、自学质疑:
独立阅读课本并自学例1,自己尝试完成圆的面积公式推导。并利用推导出的圆的面积计算公式做例题1。
三、小组交流:
小组4人交流圆的面积公式推导过程,并说说各字母所代表的意义。
四、展示点拨:
1、请一个小组的同学展示圆的面积公式推导过程。其他学生可补充。
2、点拨:
(一)公式的推导
(1)动手实验。
a:学生把附页1的两个圆剪下来拼一拼(同桌合作)
b:派代表展示
(2)你有什么发现?
学生很惊奇的发现:圆转化成一个近似的平行四边形。
引导提问:a:这个图形哪里不像平行四边形呢?(边不是线段)
b:你知道这是为什么吗?怎样使拼成的图形更接近于平行四边形呢?(通过交流使,使学生明白:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。)接着,教师展示:把圆割拼成一个近似于长方形的图形。
问:圆的面积与长方形的面积有什么关系?(相等)
(3)分析圆与长方形的关系
要求小组讨论:看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
出示提示:a:拼成的长方形的面积怎样计算?
b:指出长和宽(用彩笔标出长和宽)
c:长方形的长和宽与圆的周长、半径有什么关系?
(学生汇报讨论结果。引导学生说出因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。然后教师按其汇报板书:)
因为:长方形的面积=长×宽
所以:圆的面积=周长的一半×半径
S=πr×r
S=πr2
师:计算圆的面积需要知道什么条件?(半径)
(本过程目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。在拼组的过程中,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用教具显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。教具的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。)
五、训练拓展
对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。
六、小结反思
1、回忆圆面积计算公式的推导过程,渗透转化的数学思想方法及极限思想,让学生进一步掌握圆面积的计算方法。
2、小组捆绑评价。
3、布置作业。