天线原理与设计—口径天线和喇叭天线

合集下载

喇叭天线工作原理

喇叭天线工作原理

喇叭天线工作原理
嘿!今天咱们来聊聊喇叭天线工作原理呀!
哎呀呀,说起喇叭天线,这可是个神奇的玩意儿呢!那它到底是咋工作的呢?
首先呢,喇叭天线是一种常见的天线类型哇!它的形状就像一个喇叭,所以才叫这个名字呢。

喇叭天线工作的时候,主要是通过电磁波的传播和辐射来实现信号的发送和接收的呀!当电流在天线中流动的时候,哇,就会产生电磁场!这个电磁场可不得了,它会以电磁波的形式向外传播呢。

而且呀,喇叭天线的口径大小对它的性能影响可大了!口径越大,它辐射和接收的电磁波能量就越多,信号也就越强呢!
还有啊,喇叭天线的方向性也很重要哇!它可以把电磁波集中在特定的方向上发射出去,这样就能更有效地传输信号啦!比如说,在通信领域,它就能准确地把信号发送到目标方向,减少干扰和能量浪费呀!
哎呀呀,想想看,如果没有喇叭天线,我们的通信会变得多么糟糕呢!在广播电视、卫星通信、雷达等领域,喇叭天线都发挥着巨大的作用哇!
所以说呀,了解喇叭天线的工作原理,对于我们掌握现代通信技术,那可真是太重要啦!它就像是通信世界里的一个神奇的小助手,默默地为我们传递着各种重要的信息呢!
怎么样,这下您对喇叭天线工作原理是不是有了更清楚的认识啦?。

天线原理与设计—第六章口径天线和喇叭天线

天线原理与设计—第六章口径天线和喇叭天线

天线原理与设计—第六章口径天线和喇叭天线口径天线是一种特殊的天线,其工作原理是通过改变天线口径的大小以实现方向性辐射。

喇叭天线则是一种具有喇叭形状的天线,其主要功能是对电磁波进行聚焦或分散,从而实现天线的增益和波束的调控。

本章将介绍这两种天线的基本原理和设计方法。

6.1口径天线6.1.1口径天线的基本原理口径天线的基本原理是利用天线口径的大小来控制电磁波的发射和接收方向。

根据狄拉克定理,天线辐射的功率密度与天线口径的平方成正比。

因此,通过改变天线口径的大小,可以调整天线的辐射功率和波束的方向性。

一般情况下,口径天线的口径越大,辐射功率越大,波束的方向性越好。

6.1.2口径天线的设计方法口径天线的设计方法主要包括天线口径的确定和辐射模式的设计。

天线口径的确定需要考虑到工作频率、辐射功率和波束方向等参数。

一般情况下,口径天线的口径选取为波长的几倍,以保证天线的辐射效果和方向性。

辐射模式的设计则需要根据具体的应用要求,确定天线的辐射方式和波束的形状。

6.2喇叭天线6.2.1喇叭天线的基本原理喇叭天线是一种特殊形状的天线,其主要功能是将电磁波进行聚焦或分散,从而实现天线的增益和波束的调控。

喇叭天线的基本原理是利用喇叭形状的反射面将电磁波进行反射和聚集。

喇叭天线可以分为抛物面喇叭天线和双曲面喇叭天线。

抛物面喇叭天线主要用于聚焦电磁波,而双曲面喇叭天线主要用于分散电磁波。

6.2.2喇叭天线的设计方法喇叭天线的设计方法主要包括反射面的确定和波束的调控。

反射面的确定需要考虑到工作频率、波束宽度和聚焦距离等参数。

一般情况下,抛物面喇叭天线的反射面采用抛物线形状,双曲面喇叭天线的反射面采用双曲线形状。

波束的调控则需要通过反射面的形状和尺寸来实现,一般情况下,反射面的大小越大,波束的调控能力越好。

综上所述,口径天线和喇叭天线是一种特殊的天线,其工作原理是通过改变天线口径的大小和喇叭形状来实现方向性辐射和波束的调控。

口径天线通过改变天线口径的大小来控制电磁波的发射和接收方向,而喇叭天线则通过喇叭形状的反射面将电磁波进行聚焦或分散。

喇叭天线

喇叭天线

y=b/2,xz 面 z=0,xy 面
x=a/2,yz 面
H sin x sin t z ; H - H 0 sin x sin t z xt 0 2 2 h a h a a a H zt H 0 cos x cos t z a
H y x, y, z
n m
j m n m Emn cos x sin ye γz (10 94d ) 2 h a b a
j m n γz m H mn sin x cos ye 10 104b 2 h a b a n m m n γz m H x x, y, z 2 H mn sin x cos ye 10 104c a b a n m h n n γz m H y x, y, z 2 H mn cos x sin ye 10 104d b b a n m h E y x, y, z
E z x, y , z 0 n γz m H z x, y, z H mn cos x cos ye (10 103) a b n m j n n γz m Ex x, y, z 2 H mn cos x sin ye 10 104a h b b a n m
a=2b矩形波导中λc分布图
当λ>2a时,全部的模式被截止;当2a > λ>a时,只有TE10波存在,其它模 式被截止;当λ< a 时,才有其它模式存在,则当工作波长 a< λ<2a的条件 下。实现单模传输,而且单模传输的唯一模式就是TE10,模(矩形波导工作在 TE10单模传输情况下 )。通常为了实现TE10模的单模传输选

14-喇叭天线 天线原理

14-喇叭天线 天线原理
式中,v小于1,称为口径利用系数。
2
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
GD
4 S
v
余弦分布的矩形口面
设口面场的振幅沿x轴按余弦分布,而y轴仍是均
均匀分布的矩形口面
假设口径面上场的振幅和相位处处相同。
South China University of Technology
1 cos sin 2 2 2 1 cos sin 1 EH AS 2 1 EE AS
e j rh China University of Technology
dE j
e
E y dydx e jkr 2 r
磁流元的辐射场为
dE j
m
E y dxdy 2
e jkr cos r
于是,面元在H平面的辐射场为
e jkr dE j (1 cos )dxdy 2 r Ey
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
电流元与磁流元方向图的合成原理
South China University of Technology
E面
H面
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering

口径天线口径天线

口径天线口径天线

第8章 口径天线
第8章 口径天线
第8章 口径天线
把式(8-2 )代入式( 8-1 ),得到 ϕ x 的无穷级数展开式 为
由于 取第一项为
则沿口径面上任意点 M 的相位偏移近似地
第8章 口径天线 x = d 1 / 2 时,边缘上 A 点的相位偏移最大为
与喇叭相连的矩形波导内通常传输主模为 TE10 模,场 的振幅沿宽边为余弦分布。因而,喇叭口面的电场分布为
第8章 口径天线
图 8.6 标准增益矩形喇叭的方向性和口径效率
第8章 口径天线
5. 波纹喇叭天线 波纹喇叭天线是为了进一步改善天线特性而提出的。以 图 8.7 所示的普通的圆锥喇叭天线为例,由于其在终端开口 处同外空间不连续,喇叭内 E 面的传导电流绕过喇叭口径 流到喇叭外壁上,因而导致较大的副瓣,使方向图很粗糙。 但是 H 面因为边缘场强较小,传导电流是横向的,不会沿 纵向绕到喇叭外壁上,因此 H 面边缘的绕射现象不严重, 如图8. 8 所示。
第8章 口径天线 同理,对于 E 面扇形喇叭,口面沿 y 轴向上任意点的
相位偏移为
y = d 2 / 2 时,边缘上最大位移偏移点的相位偏移为
第8章 口径天线 喇叭口面的电场分布为
对于角锥喇叭来说,当中心点相位为0时,口面上任意点的 相位偏移为
第8章 口径天线 顶角处最大相位偏移点的相位偏移为
第8章 口径天线
8.1 喇叭天线
8. 1. 1 喇叭天线分类及应用 1. 喇叭天线的种类、结构和特点
根据惠更斯原理,终端开口的波导可以构成一个辐射器,但 是波导口面的电尺寸很小,辐射方向性弱。而且,在波导开 口处波导与开口面外的空间不匹配,会产生严重的反射,不 宜作为天线使用。将波导的截面均匀地逐渐扩展,形成如图 8.1 所示的喇叭天线。这样不仅扩大了天线的口面尺寸,同 时改善了口面的匹配情况,从而取得了很好的辐射特性。

12.喇叭天线(2)

12.喇叭天线(2)

图 10-24 加速透镜剖面
与介质透镜的分析方法一样,目的是要确定 p AB 曲线的方程,结果为:
(1 − n 2 ) x 2 + 2(1 − n) fx + y 2 = 0
(椭圆方程)
(10.60)
在上面的讨论中, 介绍了三种透镜形式, 即介质透镜, 空气透镜和金属透镜。 虽然使用它们可使喇叭的口径场相位得到校正, 但是使用它们后喇叭口径场幅度 分布将受到影响, 还将产生反射。 幅度分布变化, 也将引起辐射方向图发生变化。 这个问题,感兴趣的同学可参阅相关文献。
r 2 = ( x + f )2 + y 2 r = f + nx

r=
(n − 1) f n cos ϕ − 1
(10.55)

(n 2 − 1) x 2 + 2(n − 1) fx − y 2 = 0
(10.56)
q 为双曲线形式。如上推导没用到折射定律, 上式说明,透镜剖面曲线 AOB 可以证明,该曲线满足折射定律。 在透镜边缘 A 和 B 两点处满足如下关系
3.金属透镜(加速透镜)
由一些平行金属片构成,见前面图 10-19(b)(d)及下面图 10-24。相邻的两片 构成波导,其性质与矩形波导类似,当电场矢量通过金属片构成小波导时(即这 些波导中为 TE10 模),可得相速νp 和折射率 n 如下
vp = c 1 − ( λ 2d )
2
, n=
c 2 = 1 − ( λ 2d ) < 1 vp
e− jβ r r
(10.61)
ˆ 为单位矢量, E (θ , ϕ ) ——远场幅度方向图函数 式中, u
如果取圆锥喇叭口径上的最大相位差为

喇叭天线喇叭天线

喇叭天线喇叭天线

一、课题背景电磁喇叭天线是最简单而常用的微波天线。

它的主要优点是结构简单,馈电简便,便于控制主面波束宽度和增益,频率特性好且损耗较小。

它由波导逐渐张开来形成,其作用是加强方向性,这与声学喇叭的原理相似。

若主模TE10的矩形波导的宽边尺寸扩展而窄边尺寸不变则称为H 面扇形喇叭;若窄边尺寸扩展而宽边尺寸不变,则称为E 面扇形喇叭;若矩形波导的两边尺寸都扩展,则称为角锥喇叭。

圆锥喇叭由载TE11模的圆形波导扩展而成。

可见喇叭天线起着将波导模转换为空间波的过渡作用,因而反射小,使其输入驻波比低且频带宽。

喇叭天线广泛用做各种反射面天线和透镜天线得到馈源,也用作微波中继站的独立天线和测试天线增益的标准天线。

(1)E 面扇形喇叭 (2)H 面扇形喇叭 (3)角锥喇叭 (4)圆锥喇叭图1 几种常见的喇叭天线喇叭天线就其结构来讲可以看成两大部分构成:一是波导部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。

波导部分相当于天线中的馈线,是提供喇叭天线信号和能量的部分。

喇叭天线可视为张开的波导。

喇叭的功能是在比波导更大的口径上产生均匀的相位波前,从而获得较高的定向性能。

矩形波导中的TE10模传输到波导和喇叭的口面时,口面上的波可以作为次级源再次辐射。

普通喇叭天线结构原理图如图2所示。

图2 喇叭天线结构辐射图T次 级源次级源二、喇叭天线尺寸计算2.1、公式推算本设计需要设计一个K 波段(18GHz-26.5GHz ),用WR-42矩形波导来馈电,最大增益大于15dB 的喇叭天线。

喇叭天线波导部分可百度查阅K 波段标准矩形波导尺寸得到,矩形波导的长度可选为 1.2*λ。

典型的角锥喇叭的尺寸如下图所示。

(1)几何结构(2)X-Y 面横截面(H 面)(3)Y-Z 面横截面(E 面)图3 角锥喇叭几何关系由[1]知H R 一定,有一最佳的喇叭口径宽度h a ,并发现其近似规律为H h R a λ3=(1)同理,E R 一定,有一最佳的喇叭口径宽度h b ,并发现其近似规律为H h R λ2b =(2)由图3(b)(c)根据相似三角形原理得:h H a aR R -=1(3) hE b bR R -=1(4) 224223432383ah a hhe G a e b G aa a πλπλ=+-(5) 直接求此4次方程的根相当复杂,但可以用数值计算的软件求解也可以用试凑法求解第一种近似解为G a h λ45.0=(6)喇叭天线的欧姆损失很小,因此其方向系数就是增益即a h h e b a G 24λπ=(7)设计步骤如下:1、用试凑法解出式(5)中的h a ,取51.0=a e 。

天线原理与设计4.3 喇叭天线

天线原理与设计4.3 喇叭天线

H面喇叭
E面喇叭
角锥喇叭
图6―3―1 普通喇叭天线
圆锥喇叭
6-3 喇叭天线
(1)喇叭天线结构
(2)口径场分布
(3)远区场 由6-2-3 and6-2-4 积分得到E面和H面的辐射场
(4)口径天线电参数
角锥喇叭天线结构尺寸与坐标 LH
y
LE
x
a
OH
OE
b
bh z
ah
a、b为波导的宽边和窄边尺寸;ah、bh为相应的口径尺寸。OE、OH分别为E面、H面 的顶点; LE、LH分别为E面和H面长度; LE≠LH时,为楔形角锥喇叭;当LE=LH时, 为尖顶角锥喇叭;当ah=a或LH=∞时,为E面喇叭;当bh=b或LE=∞时,为H面喇叭。 喇叭天线可以作为口径天线来处理。喇叭天线的口径场可近似地由矩形波导至喇叭 结构波导的相应截面的导波场来决定。
叭口径场为:
x

x2 LH
,当x

a2h x时出现xL2最大4相axm2位x2偏移 2,ax2xmxm
平方率的相位分布 ah2 4 LH
y

y2 LE
,当x

bh 2
时出现最大相位偏移,ym

bh2 4 LE

x
y

xs2 LH
ys2 LE
, 最大相位偏移 m

4

ah 2 LH

bh 2 LE
(6 3 2)
Es

Ey

E0
cos xs
ah
e ,H
j

xs2 LH

ys2 LE

矩形口径喇叭天线设计报告

矩形口径喇叭天线设计报告

矩形口径喇叭天线设计报告班级:11050941学号:**********姓名:***矩形口径喇叭天线设计报告一、设计原理1、矩形喇叭天线的口面场结构为了说明喇叭天线的口面场结构,可用一个矩形喇叭来说明。

图6-5-2画出了一个矩形扇形喇叭天线的场分布图。

(1)当矩形波导前端面开口时,也同样能产生电磁辐射,只是因为口面直径太小,按面天线理论,口面积越大,辐射场越强,方向性越好。

这样由矩形波导前端面产生的辐射场强将较弱,方向性也相对较差。

如果采用开口形状喇叭,口面积相对增大,辐射场也将增强;(2)当矩形波导前端开口时,将造成电磁波在波导内、外的存在空间不同。

两个大小不同的空间环境对电磁波呈现的阻抗也不相同,其结果就是电磁波在波导中形成驻波形式,影响能量传输。

如把波导开口做成喇叭形状,可以使电磁波由波导传到大空间时有一个渐变过程或过渡过程,这样能减缓阻抗的骤变,使电磁波在波导内传输时的驻波成份减少,有利于提高能量在波导中的传输效率。

(2)当矩形波导前端做成喇叭形状,电磁波载波道中的传输效率得到了提高,但由于喇叭和矩形波导形状上的差异,必将导致传到喇叭中电磁波的波阵面成为柱面(与矩形波导对应的喇叭)或球面形状(与圆形波导对应的喇叭)。

这样在喇叭口面上形成的口面场Es 成为非均匀口面场结构,即在口面上各点Es 的相位和振幅大小不再相等,这将造成喇叭天线辐射场方向性变坏2 矩形喇叭天线口面场相位分布特点根据天线辐射场一般表示式,其辐射场E H θϕ和最终是由口面场Es 决定的。

因此对口面场Es 的振幅和相位分析,就成为分析喇叭天线的首要问题。

以H 面扇形喇叭天线为例,并假定激励H 面扇形喇叭的巨型波导TE 10型波。

由于H 面扇形喇叭相当于矩形波导宽边x 逐渐扩展而成,因此其口面场E s sy E =的相位将随宽边x 坐标发生变化,与保持不变的窄边y 无关,或者说E sy 相位沿窄边y 保持均匀分布,如图6-5-3所示。

第十章喇叭天线

第十章喇叭天线


RH π D /2 ( −sinθ )2 H 2 β DH −DH /2

e
− jβ
RH x π −sinθ + 2 RH β DH
2
dx
1 π RH j β e = 2 β
RH π ( − sin θ ) 2 2 β DH
{C (t ) − C (t ) − j [ S (t ) − S (t )]}
x = x2 =
DH 时, 2
DH π − − sin θ = u2 2 RH β DH
(10.5b)

1 π RH jβ IH1 = e 2 β
1 π RH j β e = 2 β
x
RH π t ( +sinθ )2 2 − j π t 2 2 β DH 2
∫e
t1
dt
(10.6)
4 3 4 3
(10.7)
169
《天线原理与设计》讲稿
王建
式中,
t3 = −
β RH π
DH π − + sin θ = −u3 2 RH β DH
(10.8a)
t4 =
β RH π
DH π + − sin θ = u4 2 RH β DH
(10.8b)
t=
β x π [ − RH ( + sin θ )] = π RH β DH
β π RH
dx ,
dt =
dx =
π RH dt β
x = x1 = −
DH 时 , 2
t1 = −
t2 =
β RH π
β RH π
DH π + + sin θ = −u1 2RH β DH

喇叭天线设计

喇叭天线设计

1 课题背景喇叭天线是一种应用广泛的微波天线,其优点是结构简单,频带宽,功率容量大,调整与使用方便。

合理地选择喇叭天线尺寸,可以获得很好的辐射特性、相当尖锐的主瓣、较小副瓣和较高的增益。

因此,喇叭天线应用非常广泛,它是一种常见的天线增益测试用标准天线。

喇叭天线就其结构来讲可以看成由两大部分构成:一是波导管部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。

波导部分相当于线天线中的馈线,是供给喇叭天线信号和能量的部分。

对工作于厘米波或毫米波段内的面天线,如采用线状馈线,将因馈线自身的辐射损耗太大不能把能量传送到面天线上,所以,必须采用自身屏蔽效果很好的波导管作馈线。

普通喇叭天线结构原理图如1.1所示。

图1.1 普通喇叭天线结构原理图HFSS全称为High Frequency Structure Simulator,是美国Ansoft公司(注:Ansoft公司于2008年被Ansys公司收购)开发的全波三维电磁仿真软件,也是世界上第一个商业化的三维结构电磁仿真软件。

该软件采用有限元法,计算结果精准可靠,是业界公认的三维电磁场设计和分析的工业标准。

HFSS采用标准的Windows图形用户界面,简洁直观;拥有精确自适应的场解器和空前电性能分析能力的功能强大后处理器;能计算任意形状三维无源结构的S参数和全波电磁场;自动化的设计流程,易学易用;稳定成熟的自适应网格剖分技术,结果准确。

使用HFSS,用户只需要创建或导入设计模型,指定模型材料属性,正确分配模型的边界条件和激励,准确定义求解设置,软件便可以计算并输出用户需要的设计结果。

HFSS软件拥有强大的天线设计功能,可以提供全面的天线设计解决方案,是当今天线设计最为流行的软件。

使用HFSS可以仿真分析和优化设计各类天线,能够精确计算天线的各种性能,包括二维、三维远场和近场辐射方向图、天线的方向性系数、S参数、增益、轴比、输入阻抗、电压驻波比、半功率波瓣宽度以及电流分布特性等。

天线的原理与设计

天线的原理与设计

天线的原理与设计天线是将电能(或者电磁波)转换为电磁场(或者电磁波)的装置,它在通信、雷达、无线电电视广播和无线电导航等领域起着重要作用。

天线设计的目的是通过合适的几何形状和材料选择,使其尽可能高效地辐射和接收电磁波。

天线的原理可以归纳为以下几个主要方面:1. 反射和辐射原理:天线将电能转换为电磁波的关键在于其几何形状。

几何形状不同,天线对电磁波的反射和辐射效果也不同。

一般来说,天线的形状需要与待处理信号的波长相匹配,以确保最佳的能量传输和辐射。

2. 功率匹配原理:设计天线需要考虑到待处理信号的功率,以及天线的能量传输效率。

天线设计需要合理选择天线尺寸、形状和材料,以确保尽可能高的信号接收和发射效率。

3. 波束方向性原理:天线的方向性是指其辐射或接收信号的方向性。

波束方向性天线的设计考虑到天线的几何形状、电流分布、波束宽度等因素,以使其增加信号的强度以及抑制不希望的信号干扰。

4. 阻抗匹配原理:阻抗匹配是天线设计中的关键要素之一。

天线的阻抗与发射或接收设备之间的阻抗必须匹配,以确保最大能量传输和最小信号损失。

通过使用匹配网络或其他技术,可以实现天线和设备之间的阻抗匹配。

天线的设计过程可以基于理论分析、模拟和实验来完成。

具体的设计步骤包括:1. 确定设计需求和参数:根据特定应用的需求,确定所需天线的频率范围、增益、方向性、极化方式等参数。

2. 选择适当的天线类型:根据设计需求,选择适合的天线类型,如喇叭天线、螺旋天线、微带天线等。

3. 进行理论分析和模拟:利用电磁场理论和仿真软件,对天线进行理论分析和模拟,确定天线的几何结构和材料。

4. 进行实验验证:通过制作样品天线并进行实验验证,评估天线的性能和参数是否符合设计要求。

如果需要,进行调整和优化。

5. 优化和改进:根据理论分析、模拟和实验结果,对天线进行优化和改进,以提高天线的性能和效果。

天线设计中需要考虑的其他因素还包括天线的制造成本、安装要求、环境适应性等。

第十章 喇叭天线(上)

第十章 喇叭天线(上)

第十章喇叭天线(Horn Antennas)喇叭天线是使用最广泛的一类微波天线,它常用于如下几个方面:○1大型射电望远镜的馈源,卫星地面站的反射面天线馈源,微波中继通讯用的反射面天线馈源;○2相控阵的单元天线;○3在天线测量中,喇叭天线常用作对其它高增益天线进行校准和增益测试的通用标准等。

这一章将介绍分析喇叭天线的基本理论,衡量喇叭天线性能的一些电气指标及喇叭天线的设计等内容。

喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,见P225图10-6,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反射的能量很小。

■喇叭天线分类:① 圆波导馈电的喇叭一般是圆锥喇叭;② 矩形波导馈电的喇叭根据扩展的形式不同分为三种喇叭,即E面扇形喇叭(由扩展其窄边形成);H面扇形喇叭(扩展其宽边形成);和角锥喇叭(其宽边、窄边均扩展而形成);③ TEM喇叭;④ 脊波导喇叭等。

这一章主要讨论前两类喇叭天线。

■喇叭天线的分析方法(1)解内问题,求口径面上的电磁场分布喇叭的渐变扩展部分也可看作是波导,与分析波导中场分布时把波导看作无限长波导一样,首先也是把喇叭看作是一无限长渐变波导,由麦氏方程出发,求边值问题。

用分离变量法求解喇叭渐变波导中的电磁场表示,然后把实际的有限长喇叭口径面上的电磁场,看作是无限长喇叭在同一截面上的电磁场。

这样的近似,忽略了喇叭口径面所产生的反射波及高次模,这将带来一定的误差。

但是,喇叭口的反射系数不大,而高次模又相对较弱,在工程上,这点误差可忽略。

(2)解外问题由喇叭口径面上的场分布求远场。

10.1 H 面扇形喇叭(H -Plane Sectoral Horn )它是按一定张角02ϕ扩展矩形波导的宽边而构成的,窄边不变。

喇叭口径尺寸为D H ×b ,虚顶点到口径中心的距离为R O ′O H =D H /(2tg 0ϕ)。

4口径天线

4口径天线

§4.1 等效原理与惠更斯元的辐射
4.1.1 等效原理
面天线通常由导体面和初级辐射源 组成。假设包围天线的封闭曲面由导 体面的外表面S1和口径面S2组成,导 体面S1上场为零,面天线的辐射场由 口径面S2的辐射产生。
通常口径面S2取成平面,当由口径场ES和HS求 解远区辐射场时,可将S2分成许多面元(称为 惠更斯元),每一个面元辐射可用等效电流和 等效磁流来代替,口径场的辐射场就是所有的 等效电流和等效磁流辐射场之和,称为等效原 理。
H x dxdy
r
s
in
e
jkr

基本磁振子磁流分布为: I e eˆxEydy
辐射场为:
dE m j
E
y dy
2r
dx
e
jkreˆ
将 Hx
Ey 120
2
eˆ eˆ
代入上式:
dE e
j
Ey
2r
cose jkrdxdyeˆ
dE m
j
Ey
2r
e jkr dxdyeˆ
惠更斯元在E面上产生的辐射场为:
1
cos
2
1
c osk a s in
2
k a s in
2 2 2
半功率宽度:
2 0.886 50.8
0.5E
b
b
20.5H
1.18 a
68
a
零功率宽度 :
20E
114
b
20H
172
a
第一副瓣电平 :
FSSLE 13.2dB FSSLH 23dB
方向系数:
Em a x
在E面(yoz平面),远区辐射场为:

天线原理与设计41 等效原理与惠更斯元的辐射

天线原理与设计41 等效原理与惠更斯元的辐射
利用口径面辐射或接收电磁波的天线称为面天线。主
要包括喇叭天线、抛物面天线、卡塞格仑天线和环焦天线 等,是一种高增益天线。具有高增益,窄波束的特点
面天线用在无线电频谱的高频端,尤其是微波波段。面天线在雷达、
导航、卫星通信以及射电天文和气象等无线电技术设备中获得了广泛的应 用。这类天线所载电流分布在金属面上,而金属面的口径尺寸远大于波 长,因此称为面天线。口径天线可以认为有两个基本的组成部分,一部分 是将高频电流能量转换为电磁波辐射能量,称为馈源,它可以是终端开口 波导,喇叭,振子等弱方向性天线;另一部分用来产生所需要的方向性, 如抛物面(手电筒),双曲面,透镜等
J m
aˆz
E
6
3 磁流源
上有等效的电磁流分布, 其它地方电磁流为零。在 此坐标系下最大辐射方向
为z方向。
口径场法原理图
S1是导体反射面, 其外表面的场为
惠更斯面元:将口径面S2分割成许多小的单元(面元),这些 零 面元称为惠更斯元或二次辐射源。惠更斯面元是分析面天线
辐射问题的基本辐射单元。由所有惠更斯面元的辐射之和即 得到整个口径面的辐射场。而为方便计算,口径面S2通常取为 平面。当由口径场求解辐射场时,每一个惠更斯面元的次级 辐射可用等效电流元与等效磁流元来代替。口径场的辐射场
初级辐射源
射面S1和初级辐射源组成。设包围天线的封闭曲面由金属 面的外表面S1以及金属面的口径面S2共同组成。 S1和S2形
Vo
成包围天线的闭合面S,闭合面S把整个空间分成两个区 S1
Vi S2
域,Vi和Vo,金属反射面S1是导体(一般假设为理想导
体)其外表面的场为零, S2是任意曲面,称为天线的口径面
Vi
S1
Vo
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
j
E0e jkr
4r
sin(1 cos )I1I2
E
j
E0e jkr
7.1 口径天线
7.1.2空间场的惠更斯元解法 ➢ 可以得到H面(yoz)内的电场为:
dEe
j 60 Ixdxdysin90 e jkr r
j
60 e jkr r
H ydxdy
j
e jkr
2r
Exdxdy
dEm
j
Imydxdysin(90- ) e jkr 2r
j
e jkr
2r
cos Exdxdy
➢ 惠更斯原理:主波前上的每一点可以看成是一个新球面
波的源点,这些新球面波的包络构成新的波前
7.1 口径天线
7.1.1 口径天线工作原理 ➢ 等效原理: 1936年由S. A. Schelkunoff提出,直接建立在
唯一性定理的基础上,是惠更斯原理的更精确表达
S Jsa = nHa
Jsma = -nEa Js
Im nˆ xˆEx zˆ xˆEx yˆEx
应用电流元的远场表达式:
dE
j
60 Idzsin r
e jkr
以及磁流元的远场表达式:
dH
j
Idzsin 2r
e jkr
dH
j 60 Imdzsin r
e jkr
dE
j
Imdzsin 2r
e jkr
7.1 口径天线
空间场的惠更斯元解法
➢ 可以得到E面(xoz)内的电场为:
E面
H面
➢ 旁瓣电平为 - 13.2 dB,口径效率为100%
口径效率计算公式如下,其中εa为口径效率
D=Dmax a
4 2
a
7.1 口径天线
➢ 矩形同相口径
余弦场分布
Ea
yˆE0cos(
a
x),
|x| a / 2, |y| b / 2, z 0
0, 其它
辐射场方向性系数为:
D
8
3
4 2
上产生均匀的相位波前,从而获得较高的定向性
➢ 喇叭起着将波导模转换为空间波的过渡作用,因而天线输
入驻波比低且频带宽
7.2 喇叭天线
➢ 不同种类的角锥喇叭天线
7.2 喇叭天线
➢ 不同种类的圆锥和双锥喇叭天线
7.2 喇叭天线
➢角锥喇叭
由矩形波导馈电,主模为TE10模。喇叭口面上的场分布为:
Ey (x,
2 r
k0b / 2sin
H面
E(x,y,z) jkabE0e jkr cos sin(k0a / 2sin ) ˆ
2 r
k0a / 2sin
7.1 口径天线
➢ 矩形同相口径
下图为根据上式得到的尺寸a = 3,b = 2的口径天线 的辐射方向图
7.1 口径天线
➢ 方向性函数 F(sinθ) = 0.707,可求得半功率波瓣宽度
a/Βιβλιοθήκη 2,|y|b
/
2,
z
0
y x
E0
b
a
z
7.1 口径天线
➢ 矩形同相口径
远区辐射场
E(x,y,z) jkabE0e jkr sin u sin v [ˆsin ˆcos cos] 2 r u v
通常仅考虑E面( =90)和H面( =0)内的方向图,可由
下面的方程画出:
E面
E(x,y,z) jkabE0e jkr sin(k0b / 2sin ) ˆ
H面总电场为:
dE
dEe
dEm
j
e jkr
2r
Exdxdy(1 cos )
7.1 口径天线
7.1.2 空间场的惠更斯元解法
➢ 空间任意点的电场为:
dE ˆdE ˆdE
ˆ
j
e jkr
2r
Exdxdycos(1 cos ) ˆ
j
e jkr
2r
Exdxdysin(1 cos )
je jkr
2r
(1 cos )Exdxdy(ˆcos ˆsin)
七、口径天线和喇叭天线
7.1 口径天线
➢ 此类天线的辐射来自于天线口径上的电磁场,也称为
口面天线或孔径天线
➢ 包括喇叭天线、抛物面天线等
7.1 口径天线
7.1.1 口径天线工作原理 ➢ 此类天线的工作原理可以用惠更斯原理与等效原理来解
释( Huygens’s Principle and Equivalence Principle )
7.1 口径天线
7.1.2 空间场的惠更斯元解法
惠更斯元的方向图函数为(1+cosθ),其方向图如下:
空间总场可由惠更斯元 的场积分得到。惠更斯 实际上考虑的是自由空 间中的一个面上的场分 布所产生的远区场,不 考虑是否存在导体。
7.1 口径天线
➢ 矩形同相口径
均匀场分布
Ea
E0 yˆ, |x| 0, 其它
dE e
j
60 e jkr r
Ixdxdysin(90- )
j
60 e jkr r
H ydxdycos
j
e jkr
2r
Exdxdycos
dE m
j e jkr
2r
Imydxdysin90
j e jkr
2r
Exdxdy
E面总电场为:
dE
dE e
dEm
j
e jkr
2r
Exdxdy(1 cos )
y)
E0cos(
a1
x)e
jk (x, y)
H x (x,
y)
E0
cos(
a1
x)e jk (x, y)
波程差引起的相位差为: (x, y) 1 x2 1 y2 2 2 2 1
7.2 喇叭天线
➢为获得尽可能均匀的口径分布,要求非常长的小张角喇叭。
但为了实用方便,又需要喇叭尽量短。于是,介于两种极端 间的最优喇叭,应在给定长度下具有最小的波束宽度,同时 旁瓣不能过大(或具有最大可能增益)。
7.1 口径天线
7.1.2 空间场的惠更斯元解法 ➢ 在惠更斯元dxdy上场等幅同相,电场Ex和磁场Hy正交,
且Ex / Hy = 120π。则等效电流和磁流为
x
R
r’
r
z dy y dx
7.1 口径天线
7.1.2 空间场的惠更斯元解法
➢ 等效电流和磁流源
I nˆ yˆH y zˆ yˆH y xˆH y
ab 0.81 4 2
ab 0.81 4 2
Ap
4 2
Aem
因此,口径效率为81%
7.1 口径天线
➢ 不同场分布的矩形口径天线的特性参数
7.1 口径天线
➢ 不同场分布的矩形口径天线的特性参数
➢ 圆形同相口径
7.1 口径天线
➢ 圆形同相口径
7.1 口径天线
7.2 喇叭天线
➢ 喇叭天线是最简单而常用的微波天线 ➢ 可以视为张开的波导,喇叭的功能是在比波导更大的口径
➢若δ相对于波长足够小,整个口面上的相位近似均匀。当
喇叭长度L给定时,其方向性随着口径和张角的增加而提高 (波瓣宽度变窄)。但当口径和张角过大时,喇叭口面边缘 处的场和中心部分的场相位相反,反而会降低定向性(增大 旁瓣)。
7.2 喇叭天线
➢角锥喇叭天线的方向图
经过复杂的推导得到角锥喇叭天线的辐射场为:
相关文档
最新文档