高考数学一轮复习单元检测一集合与常用逻辑用语单元检测含解析
高考数学一轮复习 第一章 集合与常用逻辑用语 1.2 命题与量词、基本逻辑联结词练习题(含解析)(1
高考数学一轮复习第一章集合与常用逻辑用语1.2 命题与量词、基本逻辑联结词练习题(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第一章集合与常用逻辑用语1.2 命题与量词、基本逻辑联结词练习题(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第一章集合与常用逻辑用语1.2 命题与量词、基本逻辑联结词练习题(含解析)(1)的全部内容。
命题与量词、基本逻辑联结词一、选择题1.下列命题中的假命题是( ).A.∃x0∈R,lg x0=0 B.∃x0∈R,tan x0=1C.∀x∈R,x3>0 D.∀x∈R,2x>0解析对于A,当x0=1时,lg x0=0正确;对于B,当x0=错误!时,tan x0=1,正确;对于C,当x<0时,x3<0错误;对于D,∀x∈R,2x>0,正确.答案C2。
已知命题p:函数f(x)=错误!x-log错误!x在区间错误!内存在零点,命题q:存在负数x使得错误!x〉错误!x.给出下列四个命题:①p或q;②p且q;③p的否定;④q的否定.其中真命题的个数是()A.1 B.2 C.3 D.4解析命题p为假命题,命题q也为假命题.利用真值表判断.答案B3.命题“∀x>0,x2+x>0”的否定是( ).A.∃x0>0,x20+x0>0 B.∃x0>0,x20+x0≤0C.∀x>0,x2+x≤0 D.∀x≤0,x2+x>0解析根据全称命题的否定是特称命题,可知该命题的否定是:∃x0>0,x20+x0≤0.答案B4.已知p:|x-a|<4;q:(x-2)(3-x)>0,若非p是非q的充分不必要条件,则a的取值范围为().A.a<-1或a>6 B.a≤-1或a≥6C.-1≤a≤6 D.-1<a<6解析解不等式可得p:-4+a<x<4+a,q:2<x<3,因此非p:x≤-4+a或x≥4+a,非q:x≤2或x≥3,于是由非p是非q的充分不必要条件,可知2≥-4+a且4+a≥3,解得-1≤a≤6.答案C5.若函数f(x)=-x e x,则下列命题正确的是()A.∀a∈错误!,∃x∈R,f(x)〉aB.∀a∈错误!,∃x∈R,f(x)〉aC.∀x∈R,∃a∈错误!,f(x)〉aD.∀x∈R,∃a∈错误!,f(x)〉a解析f′(x)=-e x(x+1),由于函数f(x)在(-∞,-1)上递增,在(-1,+∞)上递减,故f(x)max=f(-1)=错误!,故∀a∈错误!,∃x∈R,f(x)〉a.答案A6.若函数f(x)=x2+错误!(a∈R),则下列结论正确的是( ).A.∀a∈R,f(x)在(0,+∞)上是增函数B.∀a∈R,f(x)在(0,+∞)上是减函数C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数解析对于A只有在a≤0时f(x)在(0,+∞)上是增函数,否则不成立;对于B,如果a≤0就不成立;对于D若a=0,则f(x)为偶函数了,因此只有C是正确的,即对于a=0时有f(x)=x2是一个偶函数,因此存在这样的a,使f(x)是偶函数.答案C7.已知p:∃x0∈R,mx错误!+2≤0.q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m 的取值范围是( ).A.[1,+∞)B.(-∞,-1]C.(-∞,-2]D.[-1,1]解析(直接法)∵p∨q为假命题,∴p和q都是假命题.由p:∃x0∈R,mx20+2≤0为假,得∀x∈R,mx2+2>0,∴m≥0.①由q:∀x∈R,x2-2mx+1>0为假,得∃x0∈R,x2,0-2mx0+1≤0,∴Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1。
新教材老高考适用2023高考数学一轮总复习单元质检卷一集合常用逻辑用语与不等式北师大版(含答案)
新教材老高考适用2023高考数学一轮总复习:单元质检卷一集合、常用逻辑用语与不等式(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.,B={y|y=2-2x},则A∩B=()1.(2021北京海淀高三模拟)已知集合A=x y=1lnxA.(0,2]B.(0,2)C.(0,1)∪(1,2)D.(0,1)∪(1,2]2.(2021重庆南开中学高三期末)若定义域为R的函数f(x)不是奇函数,则下列命题一定为真命题的是()A.∀x∈R,f(x)+f(-x)≠0B.∀x∈R,f(x)=f(-x)C.∃x∈R,f(x)+f(-x)≠0D.∃x∈R,f(x)=f(-x)>0的解集为(-2,a),则实数a的值是()3.(2021湖南岳阳高三月考)已知不等式-ax+1x+2C.1D.±1A.-1B.-124.(2021湖北十堰高三期中)已知函数f(x)=2x+2-x-a则“a<1”是“f(x)>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2021广东惠州高三月考)道路通行能力表示道路的容量,指单位时间内通过道路上指定断面的最大车辆数,是度量道路疏导交通能力的指标,通常由道路设施、交通服务、环境、气候等诸多条件决定.某条道路一小时的通行能力N满足N=1000V0.4V2+V+d0,其中d0为安全距离,V为车速(单位:m/s),且V>0.若安全距离d0取40 m,则该道路一小时通行能力的最大值约为()A.98B.111C.145D.1856.(2021江西赣州高三期中)已知a∈Z,关于x的一元二次不等式x2-6x+a≤0的解集中有且仅有5个整数,则所有符合条件的实数a的值之和是()A.13B.15C.21D.267.(2021浙江高三开学考试)已知函数f(x)=ax+bx,若存在两相异实数m,n使f(m)=f(n)=c,且a+4b+c=0,则|m-n|的最小值为()A.√22B.√32C.√2D.√38.(2021山东东营高三期末)已知a,b,c是正实数,且不等式a2+b2+c2+mb(a+c)≥0恒成立,则实数m 的取值范围是()A.(-∞,-√2]B.[-√2,+∞)C.[√2,+∞)D.(-∞,√2]9.设集合M={y|y=-e x+4},N={x|y=lg[(x+2)(3-x)]},则下列关系正确的是()A.∁R M⊆∁R NB.N⊇MC.M∩N=⌀D.∁R N⊆M10.若1a <1b<0,给出下列不等式正确的是()A.1a+b >1abB.|a|+b>0C.a-1a>b-1bD.ln a 2>ln b 211.已知命题p :x 2+3x-4<0,q :2ax-1<0,若p 是q 的充分不必要条件,则实数a 的值可以是( ) A.-12 B.1 C.2D.012.已知a>0,b>0,a log 42+b log 16√2=516,则下列结论错误的是( )A.4a+b=5B.4a+b=52C.ab 的最大值为2564D.1a +1b 的最小值为185二、填空题:本题共4小题,每小题5分,共20分.13.(2021辽宁抚顺高三期中)设集合A={a ,2a 2},B={|a|,a+b },若A ∩B={-1},则b= . 14.(2021山东淄博高三月考)已知函数f (x )=|2x+m|x 2+1,命题p :∀x ∈R ,f (x )-f (-x )=0,若命题p 为真命题,则实数m 的值为 .15.(2021天津一中高三期末)已知a>0,b>0,且ab=1,则12a+12b+8a+b的最小值为 .16.(2021江苏南京高三月考)已知f (x )={-x 2+2x +3,x ≤0,x 2+4x +3,x >0,若关于x 的不等式f (x+a )>f (2a-x 2)在区间[a-1,a+1]上恒成立,则实数a 的取值范围是 .三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集是R ,集合A={x|x 2-2x-3>0},B={x|1-a<x<2a+3}. (1)若a=1,求(∁R A )∩B ;(2)已知A ∩B=B ,求实数a 的取值范围.18.(12分)(2021广东湛江高三期中)已知命题p :∃x ∈R ,x 2+2ax-8-6a=0,命题q :∀x ∈[1,2],12x 2-lnx+k-a ≥0.(1)若当k=0时,命题p 和q 都是真命题,求实数a 的取值范围;(2)若“命题q 为真命题”是“命题p 为假命题”的必要不充分条件,求实数k 的取值范围.19.(12分)(2021湖北黄冈高三月考)已知f(x)=ax2+(a2-3)x-3a.(1)若关于x的不等式f(x)<0的解集为{x|x>1或x<-3},求实数a的值;(2)若关于x的不等式f(x)+x+a<0的解集中恰有2个整数,求正整数a的值.20.(12分)(2021湖南湘潭高三期中)已知函数f(x)={x2+mx,x>0,log2(-x),x<0在(0,+∞)上有最小值1.(1)求实数m的值;(2)若关于x的方程[f(x)]2-(2k+1)f(x)+k2+k=0恰好有4个不相等的实数根,求实数k的取值范围. 21.(12分)某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左、右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14 400元.设屋子的左、右两面墙的长度均为x米(3≤x≤6).(1)当左、右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(2)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为1800a(1+x)x元(a>0),若无论左、右两面墙的长度为多少米,乙工程队都能竞标成功,试求实数a的取值范围.22.(12分)已知函数f(x)=mx2-(m+1)x+1.(1)若m>0,求不等式f(x)<0的解集;(2)若对任意x∈[1,2],f(x)≤2恒成立,求实数m的取值范围;(3)若a,b,c为正实数,且2ab+bca2+b2+c2的最大值等于f(2),求实数m的值.单元质检卷一集合、常用逻辑用语与不等式1.C解析:由已知得A={x|x>0且x≠1},B={y|y<2},所以A∩B=(0,1)∪(1,2),故选C.2.C解析:∵定义域为R的函数f(x)不是奇函数,∴∀x∈R,f(-x)=-f(x)为假命题,∴∃x∈R,f(-x)≠-f(x)为真命题,故选C.3.C 解析:因为-ax+1x+2>0,即ax -1x+2<0,即不等式(ax-1)(x+2)<0的解集为(-2,a ),所以a>0,且1a =a ,所以a=1,故选C .4.A 解析:因为2x+2-x-a ≥2√2x ·2-x -a=2-a (当且仅当x=0时,等号成立),所以由a<1,得f (x )>1>0;由f (x )>0,得a<2.故“a<1”是“f (x )>0”的充分不必要条件,故选A . 5.B 解析:由题意得N=1000V0.4V 2+V+40=10000.4V+40V+1,因为V>0,所以0.4V+40V ≥2√0.4V ·40V =8,当且仅当0.4V=40V ,即V=10时,等号成立,所以N ≤10008+1≈111,故选B .6.B 解析:设f (x )=x 2-6x+a ,其图象为开口向上、对称轴为直线x=3的抛物线,根据题意可得,Δ=36-4a>0,解得a<9.∵f (x )≤0解集中有且仅有5个整数,结合二次函数图象的对称性可得{f(1)≤0,f(0)>0,解得0<a ≤5.又a ∈Z ,∴a=1,2,3,4,5,即符合题意的a 的值之和是1+2+3+4+5=15,故选B .7.B 解析:由题意知,当f (x )=ax+bx =c 时,有ax 2-cx+b=0(x ≠0).由f (m )=f (n )=c ,知m ,n 是ax 2-cx+b=0(x ≠0,a ≠0,b ≠0)两个不相等的实数根,∴m+n=c a ,mn=b a ,而|m-n|=√(m +n)2-4mn =√c 2-4ab a 2.∵a+4b+c=0,即c=-4b-a ,∴|m-n|=√16b 2+4ab+a 2a 2=√16·(b a ) 2+4·b a +1.令t=ba ,则|m-n|=√16t 2+4t +1=√4(2t +14) 2+34,∴当t=-18时,|m-n|的最小值为√32,故选B .8.B 解析:由于a ,b ,c 是正实数,所以不等式可化为m ≥-a 2+b 2+c 2b(a+c),而a 2+b 2+c 2b(a+c)=a 2+b 22+b 22+c 2b(a+c)≥2√a 2·b 22+2√b22·c 2b(a+c)=√2(ab+bc)b(a+c)=√2,因此-a 2+b 2+c 2b(a+c)≤-√2,当且仅当a 2=b 22且b 22=c 2,即b=√2a=√2c 时,等号成立,故-a 2+b 2+c 2b(a+c)的最大值为-√2,因此m ≥-√2,即实数m 的取值范围是[-√2,+∞),故选B .9.A 解析:因为M={y|y=-e x+4}={y|y<4},N={x|y=lg[(x+2)(3-x )]}={x|(x+2)(3-x )>0}={x|(x+2)(x-3)<0}={x|-2<x<3},所以N ⊆M ,∁R M={y|y ≥4},∁R N={x|x ≤-2或x ≥3},所以∁R M ⊆∁R N ,M ∩N ≠⌀,故选A .10.C 解析:因为1a<1b<0,所以b<a<0.对于A,1a+b<0<1ab ,故A 错误;对于B,因为b<a<0,所以|a|<|b|,即|a|+b<0,故B 错误;对于C,由于b<a<0,故a-b>0,1ab>0,所以a-1a-b-1b =(a-b )+a -bab =(a-b )1+1ab>0,所以a-1a >b-1b ,故C 正确;对于D,由于b<a<0,所以b 2>a 2,所以ln a 2<ln b 2,故D 错误.故选C .11.D 解析:对于p :-4<x<1,对于q :2ax<1.对于A,当a=-12时,q :x>-1,p 是q 的既不充分也不必要条件,故A 错误;对于B,当a=1时,q :x<12,p 是q 的既不充分也不必要条件,故B 错误;对于C,当a=2时,q :x<14,p 是q 的既不充分也不必要条件,故C 错误;对于D,当a=0时,q :x ∈R ,p 是q 的充分不必要条件,故D 正确.故选D .12.A 解析:由a log 42+b log 16√2=516可得,a2+b8=516,即4a+b=52,故A 错误,B 正确;因为52=4a+b ≥2√4ab⇒ab ≤2564,当且仅当a=516,b=54时,等号成立,所以ab 的最大值为2564,故C 正确;因为1a +1b =251a +1b(4a+b )=255+b a+4a b≥25(5+2√4)=185,当且仅当a=512,b=56时,等号成立,所以1a+1b的最小值为185,故D 正确.故选A .13.0 解析:因为2a 2≥0,|a|≥0,所以a=-1,a+b=-1,所以b=0. 14.0 解析:命题p 为真命题,即函数f (x )为偶函数,所以|2×(-x)+m|(-x)2+1=|2x+m|x 2+1,因此|2x-m|=|2x+m|,故m=0.15.4 解析:∵a>0,b>0,∴a+b>0.又ab=1,∴12a +12b +8a+b =ab2a +ab2b +8a+b =a+b 2+8a+b ≥2√a+b 2·8a+b =4,当且仅当a+b=4时,等号成立,结合ab=1,解得当a=2-√3,b=2+√3,或a=2+√3,b=2-√3时,等号成立.16.-∞,-14∪(2,+∞) 解析:∵y=-x 2+2x+3在(-∞,0]上单调递增,y=x 2+4x+3在(0,+∞)上单调递增,-02+2×0+3=02+4×0+3,∴f (x )={-x 2+2x +3,x ≤0,x 2+4x +3,x >0在(-∞,+∞)上单调递增.又不等式f (x+a )>f (2a-x 2)在区间[a-1,a+1]上恒成立,∴x+a>2a-x 2,即a<x 2+x 在区间[a-1,a+1]上恒成立.当a+1≤-12,即a ≤-32时,(x 2+x )min =(a+1)2+a+1,∴(a+1)2+a+1>a ,∴a ∈R ,∴a ≤-32;当a-1<-12<a+1,即-32<a<12时,(x 2+x )min =-122-12,∴-122-12>a ,∴a<-14,∴-32<a<-14;当a-1≥-12,即a ≥12时,(x 2+x )min =(a-1)2+a-1,∴(a-1)2+a-1>a ,∴a>2或a<0,∴a>2.综上,a<-14或a>2. 17.解(1)解不等式x 2-2x-3>0得A={x|x<-1或x>3}, 所以(∁R A )={x|-1≤x ≤3}. 若a=1,则B={x|0<x<5}, 所以(∁R A )∩B={x|0<x ≤3}. (2)A ∩B=B ,则B ⊆A.当B=⌀时,则有1-a ≥2a+3,即a ≤-23;当B ≠⌀时,则有{1−a <2a +3,2a +3≤−1或{1−a <2a +3,1−a ≥3,此时两不等式组均无解.综上,所求实数a 的取值范围是-∞,-23.18.解(1)若命题p 为真命题,则有Δ=4a 2-4(-8-6a )≥0,即a 2+6a+8≥0,解得a ≤-4或a ≥-2; 若当k=0时,命题q 为真命题,则12x 2-ln x-a ≥0,即a ≤12x 2-ln x 在[1,2]上恒成立, 令g (x )=12x 2-ln x ,则g'(x )=x-1x=x 2-1x≥0,且只有f'(1)=0,所以g (x )在[1,2]上单调递增,最小值为g (1)=12,故a ≤12.因此当命题p 和q 都是真命题时,实数a 的取值范围是(-∞,-4]∪-2,12; (2)当命题q 为真命题时,12x 2-ln x+k-a ≥0在[1,2]上恒成立,由(1)可知a ≤12+k ;当命题p 为假命题时,由(1)可知-4<a<-2.由于“命题q 为真命题”是“命题p 为假命题”的必要不充分条件, 所以12+k ≥-2,解得k ≥-52.故实数k 的取值范围是-52,+∞. 19.解f (x )=ax 2+(a 2-3)x-3a=(ax-3)(x+a ).(1)若不等式f (x )<0的解集为{x|x>1或x<-3},则a<0,且-a=1,3a =-3, 故a=-1.(2)不等式f (x )+x+a<0,即ax 2+(a 2-2)x-2a<0的解集中恰有2个整数, 即不等式(ax-2)(x+a )<0的解集中恰有2个整数.又a 为正整数,-a<x<2a , 所以解集必含0,即两整数解为-1,0或0,1. 当a>2时,整数解为-2,-1,0,不符合; 故a=1或a=2.20.解(1)当x>0时,f (x )=x 2+m x=x+mx ,若m ≤0,则f (x )在(0,+∞)上单调递增,无最小值,所以m>0,故f (x )=x+mx ≥2√m ,当且仅当x=√m 时,等号成立,f (x )取到最小值2√m =1, 所以m=14.(2)依题意,f (x )={x +14x ,x >0,log 2(-x),x <0,作出函数f (x )的大致图象如下:方程[f (x )]2-(2k+1)f (x )+k 2+k=0, 即[f (x )-k ][f (x )-k-1]=0, 故f (x )=k 或f (x )=k+1.方程恰好有4个不相等的实数根,作直线y=k 和y=k+1,则两直线与函数有4个交点,结合图象可知{k +1>1,k <1,解得0<k<1, 故实数k 的取值范围为(0,1). 21.解(1)设甲工程队的总造价为y 元, 则y=3300×2x+400×24x+14400=1800(x +16x )+14400≥1800×2×√x ×16x +14400=28800,3≤x ≤6,当且仅当x=16x ,即x=4时,等号成立.故当左、右两侧墙的长度为4米时,甲工程队的报价最低为28800元. (2)由题意可得1800(x +16x)+14400>1800a(1+x)x对任意的x ∈[3,6]恒成立.故(x+4)2x>a(1+x)x,从而(x+4)2x+1>a 恒成立,令x+1=t ,(x+4)2x+1=(t+3)2t=t+9t +6,t ∈[4,7].又y=t+9t +6在t ∈[4,7]上单调递增,故y min =12.25.所以a 的取值范围为(0,12.25).22.解(1)f (x )=mx 2-(m+1)x+1=(mx-1)(x-1). 当0<m<1时,f (x )<0的解集为x 1<x<1m;当m>1时,f (x )<0的解集为x 1m<x<1;当m=1时,f (x )<0无实数解. (2)当m=0时,f (x )=-x+1.对任意x ∈[1,2],f (x )≤f (1)=0<2恒成立.当m>0时,函数f (x )的图象开口向上,若对任意x ∈[1,2],f (x )≤2恒成立,只需{f(1)≤2,f(2)≤2,即{m -(m +1)+1≤2,4m -2(m +1)+1≤2,解得m ≤32. 故当0<m ≤32时,对任意x ∈[1,2],f (x )≤2恒成立.当m<0时,对任意x ∈[1,2],x-1≥0,mx-1<0,f (x )=(mx-1)(x-1)≤0<2恒成立. 综上可知,实数m 的取值范围为-∞,32. (3)若a ,b ,c 为正实数,则由基本不等式得,a 2+45b 2≥4√55ab ,15b 2+c 2≥2√55bc , 两式相加得a 2+b 2+c 2≥2√55(2ab+bc ),变形得2ab+bca 2+b 2+c 2≤√52, 当且仅当a 2=45b 2且c 2=15b 2,即a=2c=2√55b 时,等号成立.所以f (2)=√52,即2m-1=√52,m=2+√54.。
高考数学一轮精品复习 A单元 集合与常用逻辑用语(含解析)-人教版高三全册数学试题
A单元集合与常用逻辑用语A1 集合及其运算1.A1[2014·卷] 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( )A.{0} B.{0,1}C.{0,2} D.{0,1,2}1.C [解析] ∵A={0,2},∴A∩B={0,2}∩{0,1,2}={0,2}.15.A1、M1[2014·某某卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.15.6 [解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2;综上所述,满足条件的有序数组的个数为6.1.A1[2014·某某卷] 已知集合M={-1,0,1},N={0,1,2,},则M∪N=( )A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}1.C [解析] 本题考查集合的运算.因为M={-1,0,1},N={0,1,2},所以M∪N ={-1,0,1,2}.3.A1 A2[2014·某某卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.C [解析] 若存在集合C使得A⊆C,B⊆∁U C,则可以推出A∩B=∅;若A∩B=∅,由维思图可知,一定存在C=A,满足A⊆C,B⊆∁U C,故“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充要条件.故选C.1.A1[2014·某某卷] 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}1.D [解析] 由题意可知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.2.A1、E3[2014·全国卷] 设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]2.B [解析] 因为M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.1.A1[2014·新课标全国卷Ⅰ] 已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)B.[-1,1] D.[1,2)1.A [解析] 集合A=(-∞,-1]∪[3,+∞),所以A∩B=[-2,-1].1.A1[2014·新课标全国卷Ⅱ] 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =( )A.{1} B.{2} C.{0,1} D.{1,2}1.D [解析] 集合N=[1,2],故M∩N={1,2}.2.A1,B6[2014·某某卷] 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=( )A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.C [解析] 根据已知得,集合A={x|-1<x<3},B={y|1≤y≤4},所以A∩B={x|1≤x<3}.故选C.1.A1[2014·某某卷] 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.[0,1) C.(0,1] D.(0,1)1.B [解析] 由M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|-1<x<1,x∈R},得M∩N =[0,1).1.A1[2014·某某卷] 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=( ) A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}1.A [解析] 由题意可知,集合A={x|-1≤x≤2},其中的整数有-1,0,1,2,故A∩B={-1,0,1,2},故选A.19.A1、D3、E7[2014·某某卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q -1)+(q -1)q +…+(q -1)q n -2-qn -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .1.A1[2014·某某卷] 设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( )A .∅B .{2}C .{5}D .{2,5}1.B[解析] ∁U A ={x ∈N |2≤x <5}={2},故选B.11.A1[2014·某某卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析] 由题知∁U A ={4,6,7,9,10}, ∴(∁U A )∩B ={7,9}.A2 命题及其关系、充分条件、必要条件2.A2[2014·某某卷] “x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.B [解析] ln(x +1)<0⇔0<1+x <1⇔-1<x <0,而(-1,0)是(-∞,0)的真子集,所“x <0”是“ln(x +1)<0”的必要不充分条件.5.A2[2014·卷] 设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.D [解析] 当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.故选D.6.A2、H4[2014·某某卷] 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A [解析] 由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0.当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.3.A1 A2[2014·某某卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.C [解析] 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由维思图可知,一定存在C =A ,满足A ⊆C ,B ⊆∁U C ,故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.故选C.8.A2[2014·某某卷] 原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 8.B [解析] 设z 1=a +b i ,z 2=a -b i ,且a ,b ∈R ,则|z 1|=|z 2|=a 2+b 2,故原命题为真,所以其否命题为假,逆否命题为真.当z 1=2+i ,z 2=-2+i 时,满足|z 1|=|z 2|,此时z 1,z 2不是共轭复数,故原命题的逆命题为假.7.A2[2014·某某卷] 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件7.C [解析] 当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .2.L4、A2[2014·某某卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A. 6.A2[2014·某某卷] 已知命题p :对任意x ∈R ,总有2x>0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.A3 基本逻辑联结词及量词5.A3[2014·某某卷] 已知命题p :若x >y ,则-x <-y ,命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④5.C [解析] 依题意可知,命题p 为真命题,命题q 为假命题.由真值表可知p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.5.A3、F1[2014·某某卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b∥c ,则a∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.9.E5、A3[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值X 围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.A4 单元综合2.[2014·某某期末] 已知全集U =R ,集合A ={1,2,3,4,5},B =[3,+∞),则图X11中阴影部分所表示的集合为(A .{0,1,2}B .{0,1}C .{1,2}D .{1}2.C [解析] 由题意,阴影部分表示A ∩(∁U B ).因为∁U B ={x |x <3},所以A ∩(∁U B )={1,2}.4.[2014·某某十三校一联] 下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x 20+x 0-1<0”的否定是“∀x ∈R ,x 2+x -1>0” C .命题“若x =y ,则sin x =sin y ”的逆否命题为假命题 D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题4.D [解析] A 中否命题应为“若x 2≠1,则x ≠1”;B 中否定应为“∀x ∈R ,x 2+x -1≥0”;C 中原命题为真命题,故逆否命题为真命题;易知D 正确.6.[2014·某某质检] 已知集合A ={x |x >2},B ={x |x <2m },且A ⊆(∁R B ),则m 的值可以是( )A .1B .2C .3D .46.A [解析] 易知∁R B ={x |x ≥2m },要使A ⊆(∁R B ),则2m ≤2,∴m ≤1,故选A.9.[2014·某某八市联考] 已知集合M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )|ax +2y +a=0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-29.A [解析] 易知集合M 中的元素表示的是过(2,3)点且斜率为3的直线上除(2,3)点外的所有点.要使M ∩N =∅,则N 中的元素表示的是斜率为3且不过(2,3)点的直线,或过(2,3)点且斜率不为3的直线,∴-a2=3或2a +6+a =0,∴a =-6或a =-2.11.[2014·某某实验中学模拟] 已知集合A ={1,2a},B ={a ,b }.若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B =____________.11.{-1,12,1} [解析] ∵A ∩B =12,∴2a=12,∴a =-1,∴b =12,∴A =⎩⎨⎧⎭⎬⎫1,12,B=-1,12,∴A ∪B ={-1,12,1}.12.[2014·某某一模] “λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的____________条件.12.充分不必要 [解析] ∵{a n }为递增数列⇔a n +1>a n ⇔2n +1-2λ>0⇔2n +1>2λ⇔3>2λ⇔λ<32,∴“λ<0”是“数列{a n }(a n =n 2-2λn ,n ∈N *)为递增数列”的充分不必要条件.。
新高考2023版高考数学一轮总复习练案1第一章第一讲集合
第一章 集合、常用逻辑用语、不等式第一讲 集合一、单选题1.已知集合M={x|x2-x-6=0},则下列表述正确的是( D )A.{-2}∈M B.2∈MC.-3∈M D.3∈M[解析] ∵集合M={x|x2-x-6=0}.∴集合M={-2,3},∴-2∈M,3∈M,故选D.2.(2019·课标全国Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=( C )A.{1,6} B.{1,7}C.{6.7} D.{1,6,7}[解析] 依题意得∁U A={1,6,7},故B∩(∁U A)={6,7}.故选C.3.(2021·全国甲)设集合M={x|0<x<4},N=,则M∩N=( B )A. B.C.{x|4≤x<5} D.{x|0<x≤5}[解析] 由得≤x<4,故选B.4.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有( A )A.7个 B.8个 C.15个 D.16个[解析] ∵集合A={x∈N*|x2-3x-4<0}={x∈N*|-1<x<4}={1,2,3},∴集合A中共有3个元素,∴真子集有23-1=7(个).5.(2021·山东新高考模拟)设集合A={(x,y)|x+y=2},B={(x,y)|y=x2},则A∩B=( C )A.{(1,1)} B.{(-2,4)}C.{(1,1),(-2,4)} D.∅[解析] A∩B==={(1,1),(-2,4)},故选C.6.已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是( D )A.a<1 B.a≤1C.a>2 D.a≥2[解析] 集合B={x|x2-3x+2<0}={x|1<x<2},由A∩B=B可得B⊆A,作出数轴如图,可知a≥2.7.(2021·广东肇庆二模,1)图中阴影部分所对应的集合是( C )A.(A∪B)∩(∁U B)B.∁U(A∩B)C.(∁U(A∩B))∩(A∪B)D.(∁U(A∪B))∪(A∩B)[解析] 由题意可得(A∩(∁U B))∪(B∩(∁U A))=((∁U A)∪(∁U B))∩(A∪B)=(∁U(A∩B))∩(A∪B),故选C.思路分析 阴影的左边部分在A内且在B外,转化为集合语言A∩(∁U B),阴影的右边部分在B内且在A外,转化为集合语言B∩(∁U A),取两个集合的并集再化简即可.二、多选题8.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合M可以为( ABD )A.{4,7} B.∅C.{4,7,8} D.{7}[解析] 由题意,M=∅,{7},{4,7},{7,8},{4},{8},共六个,对照选项,A、B、D均可.故选A、B、D.9.(2021·济宁高三月考)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B 可能为( AD )A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}[解析] 集合A={2,3,4},集合A∪B={1,2,3,4,5},所以集合B中必有元素1和5,且有元素2,4,4中的0个,1个,2个或3个都可以,A、D符合,B、C不符合.10.已知集合A={x|x2-3x+2≤0},B={x|2<2x≤8},则下列判断正确的是(CD )A.A∪B=BB.(∁R B)∪A=RC.A∩B={x|1<x≤2}D.(∁R B)∪(∁R A)={x|x≤1或x>2}[解析] 因为x2-3x+2≤0,所以1≤x≤2,所以A={x|1≤x≤2};因为2<2x≤8,所以1<x≤3,所以B={x|1<x≤3}.所以A∪B={x|1≤x≤3},A∩B={x|1<x≤2}.(∁R B)∪A={x|x≤2或x>3},(∁R B)∪(∁R A)={x|x≤1或x>2}.三、填空题11.(2021·上海,2,4分)已知A={x|2x≤1},B={-1,0,1},则A∩B= { -1,0} .[解析] 由题意得A=,又B={-1,0,1},所以A∩B={-1,0}.12.2∈{x2+x,2x},则x= -2 ;-2∉{x2+x,2x},则x≠ 0且x ≠1且x ≠- 1 .[解析] x2+x=2得x=-2或1(舍去),2x=2得x=1(舍去),综上x=-2;不属于按属于处理,-2=x2+x无解.-2=2x,得x=-1,又x2+x与2x不同,∴x≠0,1.13.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=4 .[解析] 因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x +m=0的两根,由根与系数的关系可得m=1×4=4.14.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=(2,3),A∪B= (1,4) ,(∁R A)∪B= ( -∞,1]∪(2 ,+∞) .[解析] 由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x| 2<x<3},A∪B={x|1<x<4},(∁R A)∪B=(x|x≤1或x>2).15.已知集合A=,B={x|x<2m-1},且A⊆∁R B,则m的最大值是 .[解析] 依题意,A==,∁R B={x|x≥2m-1},又A⊆∁R B,所以2m-1≤,解得m≤.故m的最大值为.B组能力提升1.(多选题)已知集合A={1,3,},B={1,m}.若A∪B=A,则m=( AD ) A.0 B.1 C. D.3[解析] 本题考查根据集合间关系求参数.因为A∪B=A,所以B⊆A,所以m=3或m=,若m=3,则A={1,3,},B={1,3},满足A∪B=A.若m=,解得m=0或m=1.当m=0时,A={1,3,0},B={1,0},满足A∪B=A.当m=1时,A={1,3,1},B={1,1},不满足集合元素的互异性.综上,m=0或m=3,故选AD.2.(2021·北京人大附中月考)定义集合运算:A★B={z|z=x2-y2,x∈A,y∈B}.设集合A={1,},B={-1,0},则集合A★B的元素之和为( C )A.2 B.1 C.3 D.4[解析] 当时,z=0;当或时,z=1;当时,z=2.∴A★B={0,1,2},A★B所有元素之和为0+1+2=3.故选C.3.已知全集U=R,集合A={x|x2-2x-3≤0},集合B={x|log2x≤1},则A∩(∁U B)=( D )A.(2,3] B.∅C.[-1,0)∪(2,3] D.[-1,0]∪(2,3][解析] 集合U=R,A={x|x2-2x-3≤0}={x|-1≤x≤3},集合B={x| log2x≤1}={x|0<x≤2},所以∁U B={x|x≤0或x>2},所以A∩(∁U B)={x|-1≤x≤0或2<x≤3}=[-1,0]∪(2,3],故选D.4.(2022·湖北孝感模拟)已知集合A={x|y=ln(1-2x)},B={x|x2≤x},则∁A∪B(A∩B)=( C )A.(-∞,0) B.C.(-∞,0)∪ D.[解析] 根据题意可知A=,B=[0,1],所以A∪B=(-∞,1],A∩B=,所以∁A∪B(A∩B)=(-∞,0)∪,故选C.5.已知集合A={x∈R|x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m= -1 ,n= 1 .[解析] A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.。
2023年高考数学一轮复习第一章集合常用逻辑用语不等式5一元二次方程不等式练习含解析
一元二次方程、不等式考试要求 1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.知识梳理1.二次函数与一元二次方程、不等式的解的对应关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象方程ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x <x 1,或x >x 2}错误!Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅ ∅2.分式不等式与整式不等式 (1)f xg x>0(<0)⇔f (x )g (x )>0(<0);(2)f xg x≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.3.简单的绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞),|x |<a (a >0)的解集为(-a ,a ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若方程ax 2+bx +c =0无实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (2)若不等式ax 2+bx +c >0的解集为(x 1,x 2),则a <0.( √ ) (3)若ax 2+bx +c >0恒成立,则a >0且Δ<0.( × )(4)不等式x -ax -b≥0等价于(x -a )(x -b )≥0.( × ) 教材改编题1.若集合A ={x |x 2-9x >0},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A .R B .{x |x >-1} C .{x |x <3或x >9} D .{x |x <-1或x >3} 答案 C解析 A ={x |x >9或x <0},B ={x |-1<x <3}, ∴A ∪B ={x |x <3或x >9}.2.若关于x 的不等式ax 2+bx +2>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b =________. 答案 -14解析 依题意知⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.3.一元二次不等式ax 2+ax -1<0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-4,0)解析 依题意知⎩⎪⎨⎪⎧a <0,Δ<0,即⎩⎪⎨⎪⎧a <0,a 2+4a <0,∴-4<a <0.题型一 一元二次不等式的解法 命题点1 不含参的不等式例1 (1)不等式-2x 2+x +3<0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <32 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <1C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-1或x >32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-32或x >1答案 C解析 -2x 2+x +3<0可化为2x 2-x -3>0, 即(x +1)(2x -3)>0, ∴x <-1或x >32.(2)(多选)已知集合M ={}x ||x -1|≤2,x ∈R ,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5x +1≥1,x ∈R ,则( ) A .M ={}x |-1≤x ≤3 B .N ={}x |-1≤x ≤4 C .M ∪N ={}x |-1≤x ≤4 D .M ∩N ={}x |-1<x ≤3 答案 ACD解析 由题设可得M =[-1,3],N =(-1,4], 故A 正确,B 错误;M ∪N ={x |-1≤x ≤4},故C 正确;而M ∩N ={x |-1<x ≤3},故D 正确. 命题点2 含参的不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0,因为a >0,所以⎝⎛⎭⎪⎫x -1a (x -1)<0.所以当a >1时,解得1a<x <1; 当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1.延伸探究 在本例中,把a >0改成a ∈R ,解不等式. 解 当a >0时,同例2,当a =0时, 原不等式等价于-x +1<0,即x >1, 当a <0时,1a<1,原不等式可化为⎝⎛⎭⎪⎫x -1a (x -1)>0,解得x >1或x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a , 当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1, 当a =0时,不等式的解集为{x |x >1},当a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a或x >1. 教师备选解关于x 的不等式x 2-ax +1≤0. 解 由题意知,Δ=a 2-4,①当a 2-4>0,即a >2或a <-2时,方程x 2-ax +1=0的两根为x =a ±a 2-42,∴原不等式的解为a -a 2-42≤x ≤a +a 2-42.②若Δ=a 2-4=0,则a =±2.当a =2时,原不等式可化为x 2-2x +1≤0, 即(x -1)2≤0,∴x =1;当a =-2时,原不等式可化为x 2+2x +1≤0, 即(x +1)2≤0,∴x =-1. ③当Δ=a 2-4<0,即-2<a <2时, 原不等式的解集为∅.综上,当a >2或a <-2时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -a 2-42≤x ≤a +a 2-42; 当a =2时,原不等式的解集为{1}; 当a =-2时,原不等式的解集为{-1};当-2<a <2时,原不等式的解集为∅.思维升华 对含参的不等式,应对参数进行分类讨论,常见的分类有 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(多选)已知关于x 的不等式ax 2+bx +c ≥0的解集为{x |x ≤-3或x ≥4},则下列说法正确的是( ) A .a >0B .不等式bx +c >0的解集为{x |x <-4}C .不等式cx2-bx +a <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-14或x >13 D .a +b +c >0 答案 AC解析 关于x 的不等式ax 2+bx +c ≥0的解集为(-∞,-3]∪[4,+∞), 所以二次函数y =ax 2+bx +c 的开口方向向上,即a >0,故A 正确; 对于B ,方程ax 2+bx +c =0的两根分别为-3,4,由根与系数的关系得⎩⎪⎨⎪⎧-ba=-3+4,ca =-3×4,解得⎩⎪⎨⎪⎧b =-a ,c =-12a .bx +c >0⇔-ax -12a >0,由于a >0,所以x <-12,所以不等式bx +c >0的解集为{}x |x <-12, 故B 不正确;对于C ,由B 的分析过程可知⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以cx 2-bx +a <0⇔-12ax 2+ax +a <0⇔12x 2-x -1>0⇔x <-14或x >13,所以不等式cx 2-bx +a <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-14或x >13,故C 正确; 对于D ,a +b +c =a -a -12a =-12a <0,故D 不正确. (2)解关于x 的不等式(x -1)(ax -a +1)>0.解 ①当a =0时,原不等式可化为x -1>0,即x >1; 当a ≠0时,(x -1)(ax -a +1)=0的两根分别为1,1-1a.②当a >0时,1-1a<1,∴原不等式的解为x >1或x <1-1a.③当a <0时,1-1a>1,∴原不等式的解为1<x <1-1a.综上,当a =0时,原不等式的解集为{x |x >1};当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <1-1a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1-1a . 题型二 一元二次不等式恒(能)成立问题 命题点1 在R 上恒成立问题例3 (2022·漳州模拟)对∀x ∈R ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .-2<a ≤2 B .-2≤a ≤2 C .a <-2或a ≥2 D .a ≤-2或a ≥2答案 A解析 不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,当a -2=0,即a =2时,-4<0恒成立,满足题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧a -2<0,Δ<0,即有⎩⎪⎨⎪⎧a <2,4a -22+16a -2<0,解得-2<a <2.综上可得,a 的取值范围为(-2,2]. 命题点2 在给定区间上恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围为________. 答案 ⎝⎛⎭⎪⎫-∞,67 解析 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上单调递减, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎝⎛⎭⎪⎫-∞,67.方法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0在x ∈[1,3]上恒成立, 所以m <6x 2-x +1在x ∈[1,3]上恒成立.令y =6x 2-x +1,因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.命题点3 给定参数范围的恒成立问题例5 (2022·宿迁模拟)若不等式x 2+px >4x +p -3,当0≤p ≤4时恒成立,则x 的取值范围是( ) A .[-1,3] B .(-∞,-1] C .[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 不等式x 2+px >4x +p -3 可化为(x -1)p +x 2-4x +3>0,由已知可得[(x -1)p +x 2-4x +3]min >0(0≤p ≤4), 令f (p )=(x -1)p +x 2-4x +3(0≤p ≤4),可得⎩⎪⎨⎪⎧f 0=x 2-4x +3>0,f4=4x -1+x 2-4x +3>0,∴x <-1或x >3.教师备选函数f (x )=x 2+ax +3.若当x ∈[-2,2]时,f (x )≥a 恒成立,则实数a 的取值范围是________. 若当a ∈[4,6]时,f (x )≥0恒成立,则实数x 的取值范围是________________. 答案 [-7,2](-∞,-3-6]∪[-3+6,+∞)解析 若x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 令g (x )=x 2+ax +3-a ,则有①Δ≤0或②⎩⎪⎨⎪⎧Δ>0,-a2<-2,g -2=7-3a ≥0.或③⎩⎪⎨⎪⎧Δ>0,-a 2>2,g 2=7+a ≥0,解①得-6≤a ≤2,解②得a ∈∅, 解③得-7≤a <-6.综上可得,满足条件的实数a 的取值范围是[-7,2]. 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 思维升华 恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ,一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.跟踪训练2 (1)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}答案 A解析 因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解, 即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点, 所以Δ=(-4)2-4×(a 2-3a )≥0, 即a 2-3a -4≤0,所以(a -4)(a +1)≤0, 解得-1≤a ≤4,所以实数a 的取值范围是{a |-1≤a ≤4}.(2)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是( ) A .(-∞,4] B .(-∞,-5) C .(-∞,-5] D .(-5,-4)答案 C解析 令f (x )=x 2+mx +4, ∴当x ∈(1,2)时,f (x )<0恒成立, ∴⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0,解得m ≤-5.课时精练1.不等式9-12x ≤-4x 2的解集为( ) A .RB .∅C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32 答案 C解析 原不等式可化为4x 2-12x +9≤0,即(2x -3)2≤0, ∴2x -3=0,∴x =32,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =32. 2.(2022·揭阳质检)已知p :|2x -3|<1,q :x (x -3)<0,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .既不充分也不必要条件 D .必要不充分条件 答案 B解析 ∵p :|2x -3|<1,则-1<2x -3<1, 可得p :1<x <2,又∵q :x (x -3)<0,由x (x -3)<0,可得q :0<x <3, 可得p 是q 的充分不必要条件.3.(2022·南通模拟)不等式(m +1)x 2-mx +m -1<0的解集为∅,则m 的取值范围是( ) A .m <-1 B .m ≥233C .m ≤-233D .m ≥233或m ≤-233答案 B解析 ∵不等式(m +1)x 2-mx +m -1<0的解集为∅, ∴不等式(m +1)x 2-mx +m -1≥0恒成立.①当m +1=0,即m =-1时,不等式化为x -2≥0, 解得x ≥2,不是对任意x ∈R 恒成立,舍去; ②当m +1≠0,即m ≠-1时,对任意x ∈R , 要使(m +1)x 2-mx +m -1≥0,只需m +1>0且Δ=(-m )2-4(m +1)(m -1)≤0, 解得m ≥233.综上,实数m 的取值范围是m ≥233.4.(2022·合肥模拟)不等式x 2+ax +4≥0对一切x ∈[1,3]恒成立,则a 的最小值是( ) A .-5B .-133C .-4D .-3答案 C解析 ∵x ∈[1,3]时,x 2+ax +4≥0恒成立,则a ≥-⎝⎛⎭⎪⎫x +4x 恒成立,又x ∈[1,3]时,x +4x≥24=4,当且仅当x =2时取等号.∴-⎝⎛⎭⎪⎫x +4x ≤-4,∴a ≥-4.故a 的最小值为-4.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是( ) A .(-2,-1) B .(-3,-6) C .(2,4) D.⎝⎛⎭⎪⎫-3,-32答案 AD解析 不等式(ax -b )(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2,且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,故选AD.6.(多选)(2022·湖南长郡中学月考)已知不等式x 2+ax +b >0(a >0)的解集是{x |x ≠d },则下列四个结论中正确的是( ) A .a 2=4b B .a 2+1b≥4C .若不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则c =4 答案 ABD解析 由题意,知Δ=a 2-4b =0, 所以a 2=4b ,所以A 正确; 对于B ,a 2+1b =a 2+4a2≥2a 2·4a 2=4,当且仅当a 2=4a2,即a =2时等号成立,所以B 正确;对于C ,由根与系数的关系, 知x 1x 2=-b =-a 24<0,所以C 错误;对于D ,由根与系数的关系,知x 1+x 2=-a ,x 1x 2=b -c =a 24-c ,则|x 1-x 2|=x 1+x 22-4x 1x 2=a 2-4⎝ ⎛⎭⎪⎫a 24-c =2c =4, 解得c =4,所以D 正确. 7.不等式3x -1>1的解集为________. 答案 (1,4) 解析 ∵3x -1>1, ∴3x -1-1>0,即4-x x -1>0, 即1<x <4.∴原不等式的解集为(1,4).8.一元二次方程kx 2-kx +1=0有一正一负根,则实数k 的取值范围是________. 答案 (-∞,0)解析 kx 2-kx +1=0有一正一负根,∴⎩⎪⎨⎪⎧Δ=k 2-4k >0,1k<0,解得k <0.9.已知关于x 的不等式-x 2+ax +b >0.(1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×-4=-b ,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0. 当a +1=-1,即a =-2时, 原不等式的解集为∅; 当a +1<-1,即a <-2时, 原不等式的解集为(a +1,-1);当a +1>-1,即a >-2时, 原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅; 当a >-2时,不等式的解集为(-1,a +1).10.若二次函数f (x )=ax 2+bx +c (a ≠0),满足f (x +2)-f (x )=16x 且f (0)=2. (1)求函数f (x )的解析式;(2)若存在x ∈[1,2],使不等式f (x )>2x +m 成立,求实数m 的取值范围. 解 (1)由f (0)=2,得c =2, 所以f (x )=ax 2+bx +2(a ≠0),由f (x +2)-f (x )=[a (x +2)2+b (x +2)+2]-(ax 2+bx +2)=4ax +4a +2b , 又f (x +2)-f (x )=16x , 得4ax +4a +2b =16x ,所以⎩⎪⎨⎪⎧4a =16,4a +2b =0,故a =4,b =-8,所以f (x )=4x 2-8x +2. (2)因为存在x ∈[1,2], 使不等式f (x )>2x +m 成立,即存在x ∈[1,2],使不等式m <4x 2-10x +2成立, 令g (x )=4x 2-10x +2,x ∈[1,2], 故g (x )max =g (2)=-2,所以m <-2, 即m 的取值范围为(-∞,-2).11.(多选)已知函数f (x )=4ax 2+4x -1,∀x ∈(-1,1),f (x )<0恒成立,则实数a 的取值可能是( )A .0B .-1C .-2D .-3 答案 CD解析 因为f (x )=4ax 2+4x -1, 所以f (0)=-1<0成立.当x ∈(-1,0)∪(0,1)时,由f (x )<0可得4ax 2<-4x +1,所以4a <⎝⎛⎭⎪⎫1x 2-4xmin ,当x ∈(-1,0)∪(0,1)时, 1x∈(-∞,-1)∪(1,+∞),所以1x2-4x =⎝ ⎛⎭⎪⎫1x -22-4≥-4,当且仅当x =12时,等号成立,所以4a <-4,解得a <-1.12.(2022·南京质检)函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0,即x 2-2x -c <0的解集为(m ,m +4),所以m ,m +4是方程x 2-2x -c =0的两个根,所以⎩⎪⎨⎪⎧m +m +4=2,m m +4=-c ,解得m =-1,c =3.13.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________. 答案 [-4,3]解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3. 14.若不等式x 2+ax -2>0在[1,5]上有解,则a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-235,+∞解析 对于方程x 2+ax -2=0, ∵Δ=a 2+8>0,∴方程x 2+ax -2=0有两个不相等的实数根, 又∵两根之积为负, ∴必有一正根一负根, 设f (x )=x 2+ax -2,于是不等式x 2+ax -2>0在[1,5]上有解的充要条件是f (5)>0, 即5a +23>0, 解得a >-235.故a 的取值范围是⎝ ⎛⎭⎪⎫-235,+∞.15.(2022·湖南多校联考)若关于x 的不等式x 2-(2a +1)x +2a <0恰有两个整数解,则a 的取值范围是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪32<a ≤2 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1<a ≤-12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1<a ≤-12或32≤a <2D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1≤a <-12或32<a ≤2答案 D解析 令x 2-(2a +1)x +2a =0,解得x =1或x =2a . 当2a >1,即a >12时,不等式x 2-(2a +1)x +2a <0的解集为{x |1<x <2a }, 则3<2a ≤4, 解得32<a ≤2;当2a =1,即a =12时,不等式x 2-(2a +1)x +2a <0无解, 所以a =12不符合题意;当2a <1,即a <12时,不等式x 2-(2a +1)x +2a <0的解集为{x |2a <x <1},则-2≤2a <-1,解得-1≤a <-12.综上,a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1≤a <-12或32<a ≤2. 16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧fx >0,f x +k <0的正整数解只有一个,求实数k 的取值范围;(2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎪⎨⎪⎧0+5=-b2,0×5=c2,解得⎩⎪⎨⎪⎧b =-10,c =0.所以f (x )=2x 2-10x .不等式组⎩⎪⎨⎪⎧f x >0,f x +k <0,即⎩⎪⎨⎪⎧2x 2-10x >0,2x 2+2kx +k 2-10x +k <0,解得⎩⎪⎨⎪⎧x <0或x >5,-k <x <5-k ,因为不等式组的正整数解只有一个, 可得该正整数解为6, 可得6<5-k ≤7, 解得-2≤k <-1,所以k 的取值范围是[-2,-1). (2)tf (x )≤2,即t (2x 2-10x )≤2, 即tx 2-5tx -1≤0, 当t =0时显然成立,当t >0时,有⎩⎪⎨⎪⎧t ·1-5t ·-1-1≤0,t ·1-5t ·1-1≤0,即⎩⎪⎨⎪⎧t +5t -1≤0,t -5t -1≤0,解得-14≤t ≤16,所以0<t ≤16;当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增, 所以只要其最大值满足条件即可, 所以t -5t -1≤0, 解得t ≥-14,即-14≤t <0,综上,t 的取值范围是⎣⎢⎡⎦⎥⎤-14,16.。
2022高考数学一轮复习单元质检卷一集合与常用逻辑用语文含解析新人教A版
高考数学一轮复习:单元质检卷一 集合与常用逻辑用语(时间:45分钟 满分:80分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020湖南百校联考,2)设集合A={x|x<x 2},B={x|x 2+x-6<0},则A ∩B=( )A.(0,1)B.(-2,0)∪(1,3)C.(-3,1)D.(-3,0)∪(1,2) 2.命题“若α=π3,则sin α=√32”的逆否命题是( )A.若α≠π3,则sin α≠√32B.若α=π3,则sin α≠√32C.若sin α≠√32,则α≠π3D.若sin α≠√32,则α=π33.设a ,b ∈R ,则“ln a>ln b ”是“ln a b >0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.(2020辽宁高三上学期检测,3)“∀x ∈R ,x+1≤3x ”的否定是( )A.∃x ∈R ,x+1>3xB.∀x ∈R ,x+1>3xC.∀x ∈R ,x+1≥3xD.∃x ∈R ,x+1≥3x5.(2020浙江,6)已知空间中不过同一点的三条直线l ,m ,n.“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知命题p :∀x ∈R ,x 2-2ax+1>0;命题q :∃x ∈R ,ax 2+2≤0.若p ∨q 为假命题,则实数a 的取值范围是( )A.[1,+∞)B.(-∞,-1]C.(-∞,-2]D.[-1,1]7.下列命题正确的是()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若ac2<bc2,则a<bD.若a>b,c>d,则a-c>b-d8.(2020湖南百校联考,4)若0<b<1,则“a>b3”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(2020湖南百校联考,6)设集合A={y|y=x2-4x+a},B={y|y=-sin2x+2sin x},若A∪B=A,则a的取值范围是()A.(-∞,5]B.[1,+∞)C.(-∞,1]D.[5,+∞)10.若关于x的不等式(a-2)x2+2(a-2)x-4<0对一切实数x恒成立,则实数a的取值范围是()A.(-∞,2]B.(-∞,-2)C.(-2,2)D.(-2,2]11.已知命题p:∀x>0,e x>x+1,命题q:∃x∈(0,+∞),ln x≥x,则下列命题正确的是()A.p∧qB.( p)∧qC.p∧( q)D.( p)∧( q)12.(2020河南高三质检,10)若p :a<b ,q :3a -3b <5-a -5-b ,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分.13.已知集合A={x ∈N |y=lg(4-x )},则A 的子集个数为 .14.(2020全国百强名校联考,理14)已知集合A=x (13)x 2-x -6≤1,B={x|log 3(x+a )≥1,a ∈R },若x ∈A 是x ∈B 的必要不充分条件,则实数a 的取值范围是 .15.若命题“∀x ∈0,π3,1+tan x ≤m ”的否定是假命题,则实数m 的取值范围是 .16.已知命题p :方程x 2+2mx+1=0有两个不相等的正根;命题q :方程x 2+2(m-2)x-3m+10=0无实根,且p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是 . 参考答案单元质检卷一 集合与常用逻辑用语1.D 因为A=(-∞,0)∪(1,+∞),B=(-3,2),所以A ∩B=(-3,0)∪(1,2).2.C 根据互为逆否命题的两个命题的特征解答,即“若p ,则q ”的逆否命题为“若¬q ,则¬p ”.3.A 由题知,ln a>ln b ⇔a>b>0,ln a b >0⇒ab >1,当a ,b 同为正时,a>b ;当a ,b 同为负时,a<b ,所以“ln a>ln b ”是“ln a b >0”的充分不必要条件.故选A .4.A “∀x ∈R ,x+1≤3x ”的否定为“∃x ∈R ,x+1>3x ”,故选A .5.B 由条件可知,当m ,n ,l 在同一平面内时,三条直线不一定两两相交,有可能两条直线平行;或三条直线平行;反过来,当空间中不过同一点的三条直线m ,n ,l 两两相交时,如图,三个不同的交点确定一个平面,则m ,n ,l 在同一平面内,所以“m ,n ,l ”共面是“m ,n ,l 两两相交”的必要不充分条件.故选B .6.A ∵p ∨q 为假命题,∴p ,q 均为假命题,若命题p 为假命题,则Δ≥0,即4a 2-4≥0,解得a ≤-1,或a ≥1;若命题q 为假命题,则a ≥0,∴实数a 的取值范围是a ≥1,故选A .7.C 取a=2,b=1,c=-1,d=-2,可知A 错误;∵当c<0时,ac>bc ⇒a<b ,∴B 错误;∵a c 2<bc 2,∴c ≠0,又c 2>0,∴a<b ,C 正确;取a=c=2,b=d=1,可知D 错误.故选C .8.B 因为0<b<1,所以b>b 3.故“a>b 3”是“a>b ”的必要不充分条件.9.C 因为y=x 2-4x+a=(x-2)2+a-4≥a-4,所以A=[a-4,+∞).因为y=-sin 2x+2sin x=-(sin x-1)2+1,则可得y ∈[-3,1],即B=[-3,1].因为A ∪B=A ,所以B ⊆A ,则a-4≤-3,即a ≤1.10.D 不等式(a-2)x 2+2(a-2)x-4<0恒成立的条件:当a=2时,-4<0恒成立;当a ≠2时,{a <2,4(a -2)2-4(a -2)×(-4)<0,解得-2<a<2.故-2<a ≤2.故选D . 11.C 令f (x )=e x -x-1,f'(x )=e x -1,当x>0时,f'(x )>0,所以f (x )在(0,+∞)上单调递增,f (x )>f (0)=0,∴e x >x+1,p 真;令g (x )=ln x-x ,g'(x )=1x -1=1-x x ,x ∈(0,1),g'(x )>0;x ∈(1,+∞),g'(x )<0,∴g (x )max =g (1)=-1<0,所以g (x )<0,即ln x<x 在(0,+∞)上恒成立,q 假.故选C .12.C 令f (x )=3x -5-x ,则f (x )为R 上的单调递增函数,若3a -3b <5-a -5-b ,则3a -5-a <3b -5-b ,即f (a )<f (b ),所以a<b.所以p 是q 的必要条件.反之,若a<b ,则f (a )<f (b ),所以3a -5-a <3b -5-b ,即3a -3b <5-a -5-b ,所以p 是q 的充分条件.所以p 是q 的充要条件,故选C.13.16 A={x ∈N |y=lg(4-x )}={x ∈N |x<4}={0,1,2,3},则A 的子集个数为24=16.14.(-∞,0] 由13 x 2-x -6≤1可得x 2-x-6≥0,解得x ≤-2或x ≥3,由log 3(x+a )≥1可得x ≥3-a ,若x ∈A 是x ∈B的必要不充分条件,则集合B 是集合A 的真子集,所以3-a ≥3,解得a ≤0,故实数a 的取值范围是(-∞,0].15.[1+√3,+∞) 因为命题的否定是假命题,所以原命题为真命题,即不等式1+tan x ≤m 对∀x ∈0,π3恒成立,又y=1+tan x 在x ∈0,π3上单调递增,所以(1+tan x )max =1+tan π3=1+√3,即m ≥1+√3.故实数m 的取值范围是[1+√3,+∞).16.(-∞,-2]∪[-1,3) 设方程x 2+2mx+1=0的两根分别为x 1,x 2,由题意得{Δ1=4m 2-4>0,x 1+x 2=-2m >0,得m<-1,故p 为真时,m<-1. 由方程x 2+2(m-2)x-3m+10=0无实根,可知Δ2=4(m-2)2-4(-3m+10)<0,得-2<m<3,故q 为真时,-2<m<3. 由p ∨q 为真命题,p ∧q 为假命题,可知命题p ,q 一真一假.当p 真q 假时,{m <-1,m ≥3或m ≤-2, 此时m ≤-2;当p 假q 真时,{m ≥-1,-2<m <3,此时-1≤m<3.故实数m的取值范围是(-∞,-2]∪[-1,3).。
2019届高考数学一轮复习第一单元《集合与常用逻辑用语》综合检测A卷附答案解析
第一单元 集合与常用逻辑用语一、选择题(本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合 A x x 1 ,则( ) A .3AB .2AC .1AD .0 A2.下列表示正确的是( )A . 0B .2C . 3D . π73.集合 Ax, y y x 和 B2x y 1 ,则下列结论中正确的是( )x, y4 y 5xA .1 AB . BAC . 1,1 BD .A4.已知集合 A 0,1,2 , B 1,m .若 B A ,则实数 m 的值是()A . 0B . 2C .0或2D .0或 1或 25.设集合 A x x a , B,2 ,若 AB ,则实数 a 的取值范围是( )A . a 2B . a 2C . a 2D . a 26.已知集合 Mx 1 x 3 , N x x 0 ,则集合 x 0x 3( )A .M NB .M NC . M e R ND . e R MN7.已知集合 Ax, y x 2y 2 1 , Bx, y yx ,则 AB 中元素的个数为()A . 3B . 2C .1D . 08.命题:“若 a 2 b 2 0 a,b ,则 ab 0 ”的逆否命题是A .若 ab 0 a,b,则 a 2 b 2 0 B .若 a b 0 a,b ,则 a 2 b 2 0C .若 a 0 且 b 0 a, b ,则 a 2 b 2D .若 a 0 或 b 0 a, b ,则 a 2b 2 09.设有下面四个命题p 1 : a 1 , b 1 是 ab1 的必要不充分条件; p2 : x0,1 , log 1 x log 1 x ;e π1xp : 函数 f x2 x2有两个零点; p 4 :x1,, .xlog 1 x3π2π1其中真命题是()A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4 10.若x,y ,则“ x2 y2”是“x y ”的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件11.下面四个命题:p1:命题“n,n2 2n”的否定是“n0 , n0 2 2 n0 ”;p2 :向量m,1 ,1, n ,则 m n 是的充分且必要条件;p3 :“在△ ABC 中,若A B ,则“sin A sin B ”的逆否命题是“在△ ABC中,若sin A sin B ,则“A B”;p4:若“pq ”是假命题,则p 是假命题.其中为真命题的是()A.p1,p2 B.p2,p3 C.p2,p4 D.p1,p312.给出下列四个命题:①命题“若π,则 tan 1 ”的逆否命题为假命题;4②命题 p : x,sin x 1 .则p : x0 ,使 sin x0 1 ;③“ππk ”是“函数y sin 2x 为偶函数”的充要条件;2 k④命题 p :“x0 ,使 sin x0 cosx03”;命题 q :“若sin sin ,则”,那么p q 为2真命题.其中正确的个数是()A. 1 B. 2 C.3 D. 4二、填空题(本大题有小题,每小题分,共分.请把答案填在题中横线上)13.已知全集为,集合A x 2 x 4 , B x x2 3x 0 ,则 A e B __________.14.已知A , a , B 1,2 ,且 A B ,则实数 a 的范围是___________.15.命题“存在x ,使 x2 x 2m 0 ”是假命题,则 m 的取值范围是_______.16.已知p : x 1 2 , q : x2 2 x 1 a2 0 , a 0 ,若 p 是 q 的充分不必要条件,则实数 a 的取值范围是 _____________.三、解答题(本大题有小题,共分.解答应写出文字说明、证明过程或演算步骤)17. (10 分)已知集合Ax x2 2x 3 0, x,Bx x a 3, x.2(1)求集合 A和B;(2)若A B A,求实数a的取值范围.18. (12 分)已知集合 A x 2 x 6 , B x 3 x 9 , C x x a ,全集为实数集.( 1)求e A和 e A B ;(2)如果A C ,求 a 的取值范围.19. (12 分)设全集是实数集,A x 1 2 x 0 , B x x2 a 0 .x 3( 1)当a 4时,求A B;( 2)若 e A B B ,求实数 a 的取值范围.20. (12 分)已知命题p : m且m10 ,命题q :x,x2mx 1 0 恒成立.(1)若命题 q 为真命题,求m的取值范围;(2)若p q为假命题且p q为真命题,求m的取值范围.21. (12 分)设命题p :实数x满足x a x 3a0 ,其中a0 ,命题q:实数x满足x 3 x 20 .(1)若a 1,且 p q 为真,求实数x的取值范围.(2)若 p 是 q 的充分不必要条件,求实数a的取值范围.22. (12 分)已知命题p : 4 x 6,q : x 1m 1 x1m 2 0 .2 2 2( 1)若 p 是q 的充分而不必要条件,求实数m 的取值范围;( 2)若 q 是p 的必要而不充分条件,求实数m 的取值范围.32019 届高考数学一轮复习第一单元《集合与常用逻辑用语》综合检测A 卷附答案解析 一轮单元训练金卷 ?高三 ?数学卷答案( A )第一单元 集合与常用逻辑用语一、选择题(本大题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】 D【解析】Ax x1 , 集合 A 就是由全体大于1 的数构成的集合,显然 01 ,故0 A ,故选 D . 2.【答案】 A【解析】 0,2, 3, π ,故选 A .73.【答案】 B【解析】 Bx, y2 x y 1 = 1,1,而 Ax, y yx , B 中的元素在 A 中,x 4 y 5所以 B A ,故选 B .4.【答案】 C【解析】 当 m 0时, B 1,0 ,满足 B A ;当 m 2 时, B1,2 ,满足 B A ;所以 m 0 或 m2 ,所以实数 m 的值是 0 或 2,故选 C . 5.【答案】 D【解析】 因为 , a,2 ,所以 a2 ,故选 D .6.【答案】 C【解析】 M x 1 x 3, N x x 0 ,e或, e N x x 0 ,Mx x 1 x 3M e Nx | 0 x3 ,故选 C .7.【答案】 B【解析】 集合中的元素为点集,由题意可知集合A 表示以 0,0为圆心, 1 为半径的单位圆上所有点组成的集合,集合 B 表示直线 yx 上所有的点组成的集合, 又圆x2y 2 1 与直线 yx 相交于两点2 , 2 ,222 , 2 ,则 A B 中有 2 个元素.故选 B . 228.【答案】 D4【解析】 “且”的否定为“或”,因此其逆否命题为“若 a 0 或 b 0 ,则 a 2 b 2 0 ”; 故选 D .9.【答案】 D【解析】 对于命题 p 1 , p 2 举例子即可得出结论,可令 a2 , b 2 ,此时 ab 1 无法得到 a1 , b 1 ,令 x1即可得 p 2 :1log 1 1,故 p 正确; p :根据图像必有一个负根,另外还有2, 4 也是方程的根,eπe 2 31x故 p 3 错误; p 4 : 的最大值为接近于 1,而 log 1 x 的最小值接近于 1,故 p 4 正确.2π故选 D .10.【答案】 D【解析】 由 x 2y 2 ,解得 xy ,因此“ x 2y 2 ”是“ xy ”的既不充分也不必要条件.故选D .11.【答案】 B【解析】 对于 p 1 :命题“ n , n 2 2n ”的否定是“ n 0 , n 0 22n 0 ”,所以是假命题;对于 p 2 :等价于 mn0 即 m n ,所以向量m,1, 1, n ,则 mn 是的充分且必要条件,所以是真命题;对于 p 3 :在 △ ABC 中,若 A B ,则“ sin Asin B ”的逆否命题是“在 △ ABC 中,若 sin Asin B ,则“ A B ”,所以是真命题;对于 p 4 :若“ p q ”是假命题,则 p 或 q 是假命题,所以命题是假命题.故答案为 B . 12.【答案】 B【解析】 ①命题“若π,则 tan1 ”为真命题,所以其逆否命题为真命题;4②命题 p : x , sin x 1 .则 p :x 0,使 sin x 0 1 ;③“π πk”是“函数 ysin 2x为偶函数”的充要条件;2 k④因为命题 p: “ x 0,使 sin x 0cos x 03”为假命题;命题q :“若 sinsin,则”,为假2命题,所以 p q 为假命题.综上②③正确,选B .二、填空题(本大题有小题,每小题分,共分.请把答案填在题中横线上) 13.【答案】 2,3【解析】 A x 2x 4x x 2 , B x x 2 3x 0x x 0或 x3 , e B0,3 ,则 A e B[2,3 .514.【答案】a 1【解析】由题意,当 a 1时,A B ,所以实数 a 的范围是a 1 .15.【答案】1,8【解析】由题意得命题“存在x ,使 x2 x 2m 0 ”的否定为“任意x ,使 x2 x 2m 0 ”且为真命题,即 x2 x 2m 0 在上恒成立,∴ 1 8m 0 ,解得 m 1.∴ m 的取值范围是1,.8 816.【答案】0,2【解析】求解绝对值不等式x 1 2 可得 x x 3或 x 1 ,求解二次不等式 x2 2 x 1 a 2 0 可得 x | x 1 a或x 1 a ,若 p 是 q 的充分不必要条件,则 1 a 3,求解关于 a 的不等式组可得 a 2 ,1 a 1结合 a 0 可得实数 a 的取值范围是0,2 .三、解答题(本大题有小题,共分.解答应写出文字说明、证明过程或演算步骤)17.【答案】( 1)A x 1 x 3 ,B x a 3 x a 3;(2)0,2 .【解析】( 1)由题意得 A x x2 2 x 3 0 x 1 x 3 ,B x x a 3 x 3 x a 3 x a 3 x a 3 .( 2) A B A , A B ,∴a31,解得0 a 2 .a 3 3∴实数 a 的取值范围为0,2 .ex x 或, e A B x 6 x 9 ;(2)a 6.18.【答案】( 1)A 2 x 6【解析】( 1)因为A x 2 x 6 , B x 3 x 9 ,所以 e A x x 2或x 6 ;所以 e A B x 6 x 9 .( 2)当a 6 时满足 A C .19.【答案】( 1)A B x | 2 x 3 ;(2) a 1 .4【解析】( 1)A x 1x 3 ,当 a 4时,B x 2 x 2 ,26则 A B x| 2 x 3 .( 2)e 或x1,由 e A B B 得 B e A ,A x x 3 2则当 a 0 时, B 满足 B e A ,则a 0 成立,则当 a 0 时, B 0 ,满足 B e A ,则a 0 成立,当 a 0时,B x a x a ,则可得 a 1,即 1 a 0 ,综上 a 1 .2 4 420.【答案】( 1) 2 m 2 ;(2) m 2 或 1 m 2 .【解析】( 1)m2 4 0 ,解得 2 m 2 .( 2)若命题 p :m 且 m 1 0 ,解得 m 1 .p q 为假命题且 p q 为真命题,p ,q必然一真一假.当 p 真 q 假时,m 或 1 ,解得 m 2 ,m m2 2当 p 假 q 真时,m 1 ,解得 1 m 2 .2 m 2m 的取值范围是m 2 或1 m 2 .21.【答案】( 1)2 x 3 ;(2)1 a 2 .【解析】( 1)由x 1 x 3 0,得 P x |1 x 3 ,由 x 3 x 2 0 ,可得 Q x | 2 x 3 ,由p q 为真,即为 p , q 均为真命题,可得 x 的取值范围是 2 x 3 .( 2)若p 是q 的充分不必要条件,可得q 是 p 的充分不必要条件,由题意可得 P x a x 3a , Q x 2 x 3 ,由 Q ? P ,可得a 2 且 3 3a ,解得 1 a 2 .22.【答案】( 1), 8 21, ;(2)3,16 .【解析】( 1)由题意得,命题p : 6 x 4 6 ,即命题p: 2 x 10 .命题 q :m 1x1m 2 .所以q :x m1或x1m 2 ,2 2 2 2又∵p 是q 充分而不必要条件,m 1 或1 2 2 ,∴ m 8或 m 21 ;2 10 m2所以实数 m 的取值范围为, 8 21, .72019 届高考数学一轮复习第一单元《集合与常用逻辑用语》综合检测A 卷附答案解析( 2)由( 1)知 p :x 2 或 x 10 ;q :x m 1或 x1m 2 ;2 2m 122又∵q 是p 的必要而不充分条件,∴,12 10m2∴ 3 m 16 .所以实数m的取值范围为3,16 .8。
2023版高考数学一轮总复习专题检测1-2常用逻辑用语
1.2 常用逻辑用语一、选择题1.(2022届豫北名校联盟10月联考,4)已知命题p:若x>0,y>0,则xy>0,则p的否命题是( )A.若x>0,y>0,则xy≤0B.若x≤0,y≤0,则xy≤0C.若x,y至少有一个不大于0,则xy<0D.若x,y至少有一个小于或等于0,则xy≤0答案 D 否命题应在否定条件的同时否定结论,原命题中的条件是“且”的关系,所以条件的否定形式是“x≤0或y≤0”.而结论的否定是“xy≤0”,故选D.2.(2022届贵州五校联考(二),3)已知命题p:“∀x∈N,x2<2x”的否定是“∃x0∈N,x02>2x0”;命题q:∃α0∈R,sinα0+cosα0=1.下列说法不正确的是( )A.(xp)∧q为真命题B.p∨(x q)为真命题C.p∨q为真命题D.x q为假命题答案 B 由全称命题的否定为特称命题知,命题“∀x∈N,x2<2x”的否定为“∃x0∈N,x02≥2x0”,所以命题p为假命题,x p为真命题.当α0=0时,sinα0+cosα0=1,所以命题q为真命题,x q为假命题,所以(xp)∧q为真命题,p∨(x q)为假命题,p∨q为真命题,所以A,C,D正确,B不正确,故选B.3.(2022届山西百校联盟强化训练(一),5)有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中,是真命题的为( )A.①②B.②③C.④D.①②③答案 D ①中逆命题为“若x,y互为倒数,则xy=1”,是真命题;②中否命题为“面积不相等的三角形不是全等三角形”,是真命题;③中原命题是真命题,所以它的逆否命题也是真命题;④中原命题是假命题,所以它的逆否命题也是假命题.故选D.4.(2022届重庆西南大学附中9月考试,2)命题“∃x>0,x+1x≥3且sinx≥1”的否定是( )A.∀x≤0,x+1x<3且sinx<1B.∃x>0,x+1x<3或sinx<1C.∀x>0,x+1x<3且sinx<1D.∀x>0,x+1x<3或sinx<1答案 D 因为存在量词命题的否定是全称量词命题,所以命题“∃x>0,x+1x≥3且sinx≥1”的否定是“∀x>0,x+1x<3或sinx<1”.故选D.5.(2022届T8联考,1)“0<θ<π3”是“0<sinθ<√32”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A 由正弦函数的单调性可知,当0<θ<π3时,0<sinθ<√32,充分性成立;当0<sinθ<√32时,θ∈(2xπ,2xπ+π3)∪(2xπ+2π3,2kπ+π),k∈Z,必要性不成立,所以“0<θ<π3”是“0<sinθ<√32”的充分不必要条件,故选A.6.(2022届山东日照校际联考,2)“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B |x-1|<2的解集为{x|-1<x<3},令A={x|-1<x<3}.x(x-3)<0的解集为{x|0<x<3}.令B={x|0<x<3}.因为B⫋A,所以“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件,故选B.7.(多选)(2022届河北武强中学月考,10)下列命题中为真命题的是( )A.“a-b=0”的充要条件是“xx=1”B.“a>b”是“1x <1x”的既不充分也不必要条件C.命题“∃x∈R,x2-2x<0”的否定是∀x∈R,x2-2x≥0”D.“a>2,b>2”是“ab>4”的必要条件答案BC 对于A,由xx =1⇒a-b=0,但a-b=0⇒/xx=1,所以“xx=1”是“a-b=0”的充分非必要条件,故A中命题错误.对于B,取a=2,b=-1,满足a>b,但1x >1x,所以a>b⇒/1x<1x;同理,取a=-1,b=2,满足1x <1x,但a<b,所以1x<1x⇒/a>b,所以“a>b”是“1x<1x”的既不充分也不必要条件,故B中命题正确.对于C,命题“∃x∈R,x2-2x<0”的否定是∀x∈R,x2-2x≥0”,故C中命题正确.对于D,因为a>2,b>2⇒ab>4,但ab>4⇒/a>2,b>2,所以“a>2,b>2”是“ab>4”的充分不必要条件,故D中命题错误.故选BC.8.(2022届重庆巴蜀中学月考(一),1)已知命题p:∀x∈(0,+∞),lnx>x-1,则命题p的否定是( )A.∀x∈(0,+∞),lnx≤x-1B.∃x∈(0,+∞),lnx>x-1C.∀x∈(0,+∞),lnx<x-1D.∃x∈(0,+∞),lnx≤x-1答案 D 命题∀x∈(0,+∞),lnx>x-1的否定是∃x∈(0,+∞),lnx≤x-1,故选D.9.(2022届河南10月调研,8)设p:∀x∈[2,3],kx>1,q:∃x∈R,x2+x+k≤0.若p或q为真,p 且q为假,则k的取值范围为( )A.(-∞,14)∪(12,+∞)B.[14,1 2 )C.(-∞,14]∪(12,+∞)D.(14,12)答案 C 若p 为真,则{2x >1,3x >1,解得k>12,若q 为真,则Δ=1-4k≥0,解得k≤14.因为p 或q 为真,p 且q 为假,所以p,q 一真一假. ①若p 假q 真,则{x ≤12,x ≤14,解得k≤14;②若p 真q 假,则{x >12,x >14,解得k>12.故k 的取值范围是(-∞,14]∪(12,+∞).故选C.10.(2022届江西新余月考(三),5)已知命题p:∃x∈R,使sinx=√52;命题q:∀x∈R,都有x 2+x+1>0.给出下列结论: ①命题“p∧q”是真命题 ②命题“p∧xq”是假命题 ③命题“xp∨q”是真命题 ④命题“xp∨xq”是假命题 其中正确的是( ) A.①②③ B.②③ C.②④ D.③④答案 B 由已知得命题p 为假命题,命题q 为真命题,所以p∧q 为假命题,p∧x q 为假命题,xp∨q 为真命题,xp∨x q 为真命题,所以正确的结论序号有②③,故选B. 二、填空题11.(2022届吉林10月月考,14)已知命题“∃x 0∈R,x 02-ax 0+a≤0”是假命题,则实数a 的取值范围是 . 答案 (0,4)解析 由已知可得,“∀x∈R,x 2-ax+a>0”是真命题,则Δ=a 2-4a<0,解得0<a<4.12.(2022届豫北名校联考(二),14)若命题“∀a>0,长为1,2,a 的三条线段不能构成三角形”是假命题,则实数a 的取值范围是 . 答案 (1,3)解析 根据题意可知,命题“∃a>0,使得长为1,2,a 的三条线段能构成三角形”是真命题,故{x >2-1,x <1+2,x >0,解得1<a<3,即实数a 的取值范围为(1,3).三、解答题13.(2022届广东湛江一中、深圳实验学校10月联考,18)函数f(x)=sinx+cosx+sin2x,x∈(0,π2)的值域为集合A,函数g(x)=ln x -x 2-√2x -x的定义域为集合B,记p:x∈A,q:x∈B.(1)若a=0,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数a 的取值范围.解析 令t=sinx+cosx=√2sin (x +π4),则sin2x=t 2-1,因为x∈(0,π2),所以t∈(1,√2],函数f(x)的值域就是函数y=t 2+t-1,t∈(1,√2]的值域,根据二次函数的性质可知,函数y=t 2+t-1在(1,√2]上单调递增,于是可求得A=(1,√2+1].要使函数g(x)=ln x -x 2-√2x -x有意义,则有x -x 2-√2x -x>0,即[x-(a 2+√2)](x-a)<0.因为a 2+√2-a=(x -12)2+√2-14>0,所以B=(a,a 2+√2).(1)若a=0,则B=(0,√2),又A=(1,√2+1],所以可得p 是q 的既不充分也不必要条件. (2)若p 是q 的充分不必要条件,则A ⫋B,即{x ≤1,x 2+√2>√2+1,解得a<-1.14.(2022届山东济宁兖州期中,18)已知p:函数f(x)=(a-2m)x在R 上单调递减,q:关于x 的方程x 2-2ax+a 2-1=0的两根都大于1. (1)当m=3时,p 是真命题,求a 的取值范围;(2)若p 为真命题是q 为真命题的充分不必要条件,求m 的取值范围. 解析 (1)因为m=3,所以f(x)=(a-6)x.因为p 是真命题,所以0<a-6<1,解得6<a<7,故a 的取值范围是(6,7).(2)若p 是真命题,则0<a-2m<1,解得2m<a<2m+1.关于x 的方程x 2-2ax+a 2-1=0的两根分别为a-1和a+1.若q 是真命题,则a-1>1,解得a>2.因为p 为真命题是q 为真命题的充分不必要条件,所以2m≥2,所以m≥1.。
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。
2020年高考数学一轮复习讲练测专题1.4集合与常用逻辑用语(单元测试)文(含解析)(最新整理)
第一单元单元测试【满分:100分时间:90分钟】一、选择题(本大题共18小题,每小题3分,共54分)1.(2019·福建漳州一中模拟)已知集合A={x∈R|x-错误!=0},则满足A∪B={-1,0,1}的集合B的个数是()A.2 B.3C.4 D.9【答案】C【解析】解方程x-错误!=0,得x=1或x=-1,所以A={1,-1},又A∪B={-1,0,1},所以B={0}或{0,1}或{0,-1}或{0,1,-1},集合B共有4个.2.(2019·江苏扬州二中模拟)已知集合A={x|(x+4)(x+5)≤0},B={x|y =ln(x+2)},则A∩(∁R B)=()A.(-∞,-4) B.[-5,+∞)C.[-5,-4]D.(-5,-4)【答案】C【解析】由题意得A={x|-5≤x≤-4},B={x|x+2>0}={x|x>-2},所以∁R B ={x|x≤-2},A∩(∁R B)={x|-5≤x≤-4}.故选C。
3.(2019·浙江衢州一中模拟)设全集U=R,集合A={x|x≥3},B={x|0≤x〈5},则(∁U A)∩B=( )A.{x|0〈x〈3} B.{x|0≤x≤3}C.{x|0<x≤3}D.{x|0≤x<3}【答案】D【解析】由题意得∁U A={x|x〈3},所以(∁U A)∩B={x|0≤x<3},故选D.4.(2019·湖南长沙实验中学模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为( )A.1 B.2C.3 D.1或2【答案】B【解析】当a=1时,x2-3x+1=0,无整数解,则A∩B=∅;当a=2时,B={1,2},A∩B ={1,2}≠∅;当a=3时,B=∅,A∩B=∅。
因此实数a=2.5.(2019·辽宁鞍山一中模拟)设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为()A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}【答案】D【解析】图中阴影部分表示集合∁U(A∪B),又A={x|-1<x<3},B={x|x≥1},∴A∪B ={x|x>-1},∴∁U(A∪B)={x|x≤-1},故选D.7.(2019·重庆巴蜀中学调研)定义在R上的可导函数f(x),其导函数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】∵f(x)为奇函数,∴f(-x)=-f(x).∴[f(-x)]′=[-f(x)]′=-f′(x),∴f′(-x)=f′(x),即f′(x)为偶函数;反之,若f′(x)为偶函数,如f′(x)=3x2,f(x)=x3+1满足条件,但f(x)不是奇函数,所以“f′(x)为偶函数”是“f(x)为奇函数”的必要不充分条件.故选B。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
高考总复习集合与常用逻辑用语单元检测(附答案)(答案含详解)
高考第一轮复习数学北师(江西版)理第一章集合与常用逻辑用语单元检测(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个命题与它的逆命题、否命题、逆否命题这四个命题中( ).A .真命题与假命题的个数相同B .真命题的个数一定是奇数C .真命题的个数一定是偶数D .真命题的个数可能是奇数,也可能是偶数2.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N 等于( ).A .{0}B .{0,1}C .{1,2}D .{0,2}3.(2011福建高考,理2)若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件4.命题“存在x ∈R ,x 2-3x +4>0”的否定是( ).A .存在x ∈R ,x 2-3x +4<0B .任意的x ∈R ,x 2-3x +4>0C .任意的x ∈R ,x 2-3x +4≥0D .任意的x ∈R ,x 2-3x +4≤05.集合P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( ).A .{(1,-2)}B .{(-13,-23)}C .{(1,2)}D .{(-23,-13)}6.对任意两个集合M ,N ,定义:M -N ={x |x ∈M 且x ∉N },M △N =(M -N )∪(N -M ),设M =⎩⎨⎧⎭⎬⎫x |x -31-x <0,N ={x |y =2-x },则M △N =( ). A .{x |x >3} B .{x |1≤x ≤2}C .{x |1≤x <2,或x >3}D .{x |1≤x ≤2,或x >3}7.已知全集U 为实数集R ,集合M =⎩⎨⎧⎭⎬⎫x |x +3x -1<0,N ={x ||x |≤1},则下图阴影部分表示的集合是( ).A .[-1,1]B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)8.下列判断正确的是( ).A .命题“负数的平方是正数”不是全称命题B .命题“任意的x ∈N ,x 3>x 2”的否定是“存在x ∈N ,x 3<x 2”C .“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期是π”的必要不充分条件D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件9.(2011陕西高考,文8)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x |⎪⎪⎪⎪x i <1,i 为虚数单位,x ∈R ,则M ∩N 为( ). A .(0,1) B .(0,1]C .[0,1)D .[0,1]10.设命题p :函数y =lg(x 2+2x -c )的定义域为R ,命题q :函数y =lg(x 2+2x -c )的值域为R ,若命题p ,q 有且仅有一个为真,则c 的取值范围为( ).A .B .(-∞,-1)C .[-1,+∞)D .R二、填空题(本大题共5小题,每小题5分,共25分)11.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=__________.12.(2011浙江温州模拟)已知条件p :a <0,条件q :a 2>a ,则p 是q 的__________条件.(填:充分不必要、必要不充分、充要、既不充分也不必要)13.若命题“存在x ∈R ,x 2-ax -a <0”为假命题,则实数a 的取值范围为__________.14.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R ”的逆命题.其中真命题是__________.(把你认为是正确命题的序号都填在横线上)15.已知命题p :不等式x x -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p 且q ”为真;③“p 或q ”为真;④p 假q 真,其中正确结论的序号是__________.(请把正确结论的序号都填上)三、解答题(本大题共6小题,共75分)16.(12分)(1)设全集I 是实数集,则M ={x |x +3≤0},N =212{|22}x x x +=,求(∁I M )∩N . (2)已知全集U =R ,集合A ={x |(x +1)(x -1)>0},B ={x |-1≤x <0},求A ∪(∁U B ).17.(12分)已知p :-2≤1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0).若“非p ”是“非q ”的充分而不必要条件,求实数m 的取值范围.18.(12分)已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.19.(12分)(2011福建四地六校联合考试)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.20.(13分)已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.21.(14分)已知三个不等式:①|2x -4|<5-x ;②x +2x 2-3x +2≥1;③2x 2+mx -1<0.若同时满足①和②的x 值也满足③,求m 的取值范围.参考答案一、选择题1.C 解析:在原命题、逆命题、否命题、逆否命题这四个命题中,互为逆否的命题是成对出现的,故真命题的个数和假命题的个数都是偶数. 2.D 解析:集合N ={0,2,4},所以M ∩N ={0,2}.3.A 解析:由(a -1)(a -2)=0,得a =1或a =2,所以a =2⇒(a -1)(a -2)=0.而由(a -1)(a -2)=0不一定推出a =2,故a =2是(a -1)(a -2)=0的充分而不必要条件.4.D 解析:含有存在量词的命题的否定,先把“存在”改为“任意的”,再把结论否定.5.B 解析:a =(m -1,2m +1),b =(2n +1,3n -2),令a =b ,得⎩⎪⎨⎪⎧ m -1=2n +1,2m +1=3n -2,解得⎩⎪⎨⎪⎧m =-12,n =-7. 此时a =b =(-13,-23),故选B.6.D 解析:∵M ={x |x >3或x <1},N ={x |x ≤2},∴M -N ={x |x >3},N -M ={x |1≤x ≤2},∴M △N ={x |1≤x ≤2,或x >3}.7.D 解析:∵M =⎩⎨⎧⎭⎬⎫x |x +3x -1<0={x |-3<x <1},N ={x ||x |≤1}={x |-1≤x ≤1},∴阴影部分表示的集合为M ∩(∁U N )={x |-3<x <-1},故选D.8.D 解析:依据各种命题的定义,可以判断A ,B ,C 全为假,由b =0,可以判断f (x )=ax 2+bx +c 是偶函数,反之亦成立. 9.C 解析:∵y =22|cos sin |x x -=|cos 2x |,x ∈R ,∴y ∈[0,1],∴M =[0,1].∵⎪⎪⎪⎪x i <1,∴|x |<1.∴-1<x <1.∴N =(-1,1).∴M ∩N =[0,1).10.D 解析:本题考查根据命题的真假求参数的取值范围.若函数y =lg(x 2+2x -c )的定义域为R ,则不等式x 2+2x -c >0对任意x ∈R 恒成立,则有Δ=4+4c <0,解得c <-1;若函数y =lg(x 2+2x -c )的值域为R ,则g (x )=x 2+2x -c 应该能够取到所有的正实数,因此Δ=4+4c ≥0,解得c ≥-1.当p 为真,q 为假时,有c <-1;当p 为假,q 为真时,有c ≥-1.综上,当命题p ,q 有且仅有一个为真时,c 的取值范围为R .故选D.二、填空题11.{2,5} 解析:∵A ∪B ={2,3,4,5},∁U C ={1,2,5},∴(A ∪B )∩(∁U C )={2,5}.12.必要不充分 解析:p 为:a ≥0,q 为a 2≤a ,a 2≤a ⇔a (a -1)≤0⇔0≤a ≤1, ∴p q ,而q ⇒p , ∴p 是q 的必要不充分条件.13.[-4,0] 解析:∵“存在x ∈R ,x 2-ax -a <0”为假命题,则“对任意的x ∈R ,x 2-ax -a ≥0”为真命题,∴Δ=a 2+4a ≤0,解得-4≤a ≤0.14.②③⑤ 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确,又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0,Δ=4(m +1)2-4m (m +3)<0⇒⎩⎪⎨⎪⎧ m >0,m >1⇒m >1.故⑤正确. 15.①③ 解析:解不等式知,命题p 是真命题,在△ABC 中,“A >B ”是“sin A >sinB ”的充要条件,所以命题q 是假命题,∴①正确,②错误,③正确,④错误.三、解答题16.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4},∴(∁I M )∩N ={4}.(2)∵A ={x |x <-1,或x >1},B ={x |-1≤x <0},∴∁U B ={x |x <-1,或x ≥0}.∴A ∪(∁U B )={x |x <-1,或x ≥0}.17.解:由p :-2≤1-x -13≤2, 解得-2≤x ≤10,∴“非p ”:A ={x |x >10,或x <-2}.由q :x 2-2x +1-m 2≤0,解得1-m ≤x ≤1+m (m >0).∴“非q ”:B ={x |x >1+m 或x <1-m ,m >0},由“非p ”是“非q ”的充分不必要条件得A B .∴⎩⎪⎨⎪⎧ m >0,1-m ≥-2,1+m ≤10,解得0<m ≤3.∴满足条件的m 的取值范围为{m |0<m ≤3}.18.证明:必要性:∵a +b =1,即b =1-a ,∴a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2=0,必要性得证.充分性:∵a 3+b 3+ab -a 2-b 2=0,∴(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=0,∴(a 2-ab +b 2)(a +b -1)=0.又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=22b a ⎛⎫- ⎪⎝⎭+3b 24≠0, ∴a +b =1,充分性得证.综上可知,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.19.解:由已知得:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3, ∴⎩⎪⎨⎪⎧m =2,m ≥1.∴m =2,即实数m 的值为2. (2)∁R B ={x |x <m -2,或x >m +2}.∵A ⊆∁R B ,∴m -2>3或m +2<-1.∴m >5或m <-3.∴实数m 的取值范围是(-∞,-3)∪(5,+∞).20.解:(1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,为真命题. 用反证法证明:假设a +b <0,则a <-b ,b <-a .∵f (x )是(-∞,+∞)上的增函数,则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设相矛盾,∴逆命题为真.(2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ),则a +b <0,为真命题. ∵原命题⇔它的逆否命题,∴证明原命题为真命题即可.∵a +b ≥0,∴a ≥-b ,b ≥-a .又∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ).∴逆否命题为真.21.解:设不等式|2x -4|<5-x ,x +2x 2-3x +2≥1, 2x 2+mx -1<0的解集分别为A ,B ,C ,则由|2x -4|<5-x 得,当x ≥2时,不等式化为2x -4<5-x ,得x <3,所以有2≤x <3. 当x <2时,不等式化为4-2x <5-x ,得x >-1,所以有-1<x <2,故A =(-1,3).x +2x 2-3x +2≥1⇔x +2x 2-3x +2-1≥0⇔-x 2+4x x 2-3x +2≥0⇔x (x -4)(x -1)(x -2)≤0⇔0≤x <1或2<x ≤4, 即B =[0,1)∪(2,4].若同时满足①②的x 值也满足③,则有A ∩B ⊆C .设f (x )=2x 2+mx -1,则由于A ∩B =[0,1)∪(2,3),故结合二次函数的图像,得⎩⎪⎨⎪⎧ f (0)<0,f (3)≤0⇒⎩⎪⎨⎪⎧-1<0,18+3m -1≤0⇒m ≤-173.。
天津2020届高考数学一轮复习单元质检1集合与常用逻辑用语含解析新人教A版
单元质检一集合与常用逻辑用语(时间:45分钟满分:100分)一、选择题(本大题共8小题,每小题8分,共64分)1.已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q=()A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)2.命题“∃x0∈R,ln x0+≤ ”的否定是()A.∀x∈R,ln x+2x<0B.∀x∈R,ln x+2x>0C.∃x0∈R,ln x0+>0D.∀x∈R,ln x+2x≤3.已知p:x≥k,q:<1,若p是q的充分不必要条件,则实数k的取值范围是()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1)4.若a,b∈R,且2a+3b=2,则4a+8b的最小值是()A.2B.4C.2D.45.关于x的不等式x2-2x+m>0在R上恒成立的必要不充分条件是()A.m>2B.0<m<1C.m>0D.m>16.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设命题p:∃x0∈(0,+∞),x0+>3,命题q:∀x∈(2,+∞),x2>2x,则下列说法正确的是()A.p真,q假B.p假,q真C.p真,q真D.p假,q假8.若正数a,b满足=1,则--的最小值为() A.1 B.6C.9D.16二、填空题(本大题共6小题,每小题6分,共36分)9.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B= .10.设a>b>0,m≠-a,则时,m满足的条件是.11.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,则每批应生产产品件.12.已知实数x,y均大于零,且x+2y=4,则log2x+log2y的最大值为.13.若在区间[0,1]上存在实数x,使2x(3x+a)<1成立,则a的取值范围是.14.(2018天津,文14)已知a∈R,函数f(x)=---若对任意x∈[-3,+∞),f(x)≤|x|恒成立,则a的取值范围是.单元质检一集合与常用逻辑用语1.A解析由题意知P∪Q={x|-1<x<2},故选A.2.B3.B解析∵<1,∴-1=-<0.∴x>2或x<-1.∵p是q的充分不必要条件,∴k>2,故选B.4.D解析4a+8b=22a+23b≥ =4,当且仅当a=,b=时取等号,故4a+8b的最小值为4.5.C解析当关于x的不等式x2-2x+m>0在R上恒成立时,Δ=4-4m<0,解得m>1;故m>1是不等式恒成立的充要条件;m>2是不等式成立的充分不必要条件;0<m<1是不等式成立的既不充分也不必要条件;m>0是不等式成立的必要不充分条件.故选C.6.A解析m,n为非零向量,若存在λ<0,使m=λn,即两向量反向,夹角是 ° 则m·n=|m||n|cos °=-|m||n|<0.反过来,若m·n<0,则两向量的夹角为( ° °] 并不一定反向,即不一定存在负数λ,使得m=λn,所以是充分不必要条件.故选A.7.A解析对于命题p,当x0=3时,x0+>3,所以命题p为真;对于命题q,当x=4时,42=24,所以命题q为假.故选A.8.B解析∵正数a,b满足=1,∴b=->0,解得a>1,同理b>1.∴------+9(a- )≥-· (- )=6,当且仅当-=9(a-1),即a=时等号成立,∴--的最小值为6.故选B.9.{0,1,2}解析∵x2-2x-3<0,∴(x-3)(x+1)<0,即-1<x<3.故B={x|-1<x<3}.又A={-2,-1,0,1,2,3},∴A∩B={0,1,2}.>0.10.m>0或m<-a 解析由,得(-)()因为a>b>0,所以a-b>0,所以>0,即或解得m>0或m<-a.故m满足的条件是m>0或m<-a.11.80解析设每件产品的平均生产准备费用为y元,由题意得y=≥ ·=20,当且仅当(x>0),即x=80时等号成立.12.1解析因为log2x+log2y=log22xy- ≤log2-1=2-1=1,当且仅当x=2y=2,即x=2,y=1时等号成立,所以log2x+log2y的最大值为1.13.(-∞,1)解析由2x(3x+a)<1可得a<--3x.故在区间[0,1]上存在实数x使2x(3x+a)<1成立,等价于a<(--3x)max,其中x∈[0,1].令y=2-x-3x,则函数y在[0,1]上单调递减.故y=2-x-3x的最大值为20-0=1.因此a<1.故a的取值范围是(-∞,1).14.解析当x>0时,f(x)≤|x|可化为-x2+2x-2a≤x,即-+2a-≥ 所以a≥.当- ≤x≤ 时,f(x)≤|x|可化为x2+2x+a- ≤-x,即x2+3x+a- ≤ .对于函数y=x2+3x+a-2,其图象的对称轴方程为x=-.因为当- ≤x≤ 时,y≤ 所以当x=0时,y≤ 即a- ≤ 所以a≤ .综上所述,a的取值范围为.。
集合与常用逻辑用语-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
第一章集合与常用逻辑用语综合检测(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.命题“20,10x x x ∀≥-+≥”的否定是()A .20,10x x x ∃≥-+<B .20,10x x x ∀<-+≥C .20,10x x x ∀≥-+<D .20,10x x x ∃≥-+≥2.已知集合{52},{3}A xx B x x =-<<=<∣∣,则A B ⋃=()A .()5,3-B .(),3-∞C .()3,2-D .(),2-∞3.已知,a b ∈R ,且0,0a b >>,则1ab >是ln ln 0a b ⋅>的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】D【分析】利用不等式的性质、对数运算及充分、必要条件的定义判定即可.【详解】若e,1a b ==,符合1ab >,但此时ln ln 0a b ⋅=,不满足充分性,若1e a b -==,符合ln ln 0a b ⋅>,但是1ab <,不满足必要性.故选:D 4.已知集合(){},,Z,4A x y x y xy =∈=且,(){},B x y x y =≤,则A B ⋂的子集的个数为()A .3B .4C .8D .165.若命题“0,3x ∃∈⎢⎥⎣⎦,使得6x k --< ⎪⎝⎭”为假命题,则实数k 的取值范围是()A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .[3,)-+∞D .(3,)-+∞6.对于集合A ,B ,定义A \B ={|x x A ∈且}x B ∉,则对于集合A ={|65N x x n n =+∈,},B ={|37N y y m m =+∈,},|C x x A =∈B 且1000}x <,以下说法正确的是()A .若在横线上填入”∩”,则C 的真子集有212﹣1个.B .若在横线上填入”∪”,则C 中元素个数大于250.C .若在横线上填入”\”,则C 的非空真子集有2153﹣2个.D .若在横线上填入”∪N ð”,则N ðC 中元素个数为13.7.在ABC 中,“ABC 是正三角形”是“A ,B ,C 成等差数列且sin A ,sin B ,sin C 成等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(),d P C .下列结论中正确的个数为()①若曲线C 是一个点,则点集(){},2D P d P C =≤所表示的图形的面积为4π;②若曲线C 是一个半径为2的圆,则点集(){},1D P d P C =≤所表示的图形的面积为9π;③若曲线C 是一个长度为2的线段,则点集(){},1D P d P C =≤所表示的图形的面积为π4+;④若曲线C 是边长为9的等边三角形,则点集(){},1D P d P C =≤所表示的图形的面积为54π+-A .1B .2C .3D .4对于③,不妨设点曲线当点Q与点A重合时,由①可知,则点集当点Q与点B重合时,则点集故当点Q在线段AB上滑动时,围成的区域,此时,点集D的面积为π⨯对于④,若曲线C是边长为因为π2 BAD CAE∠=∠=,由③可知,点集D 构成的区域由矩形以及分别由点,,A B C 为圆心,半径为和夹在等边三角形ABC 和等边三角形因此||1SG =,|||AG SG =所以,点集D 所表示的图形的面积为综上所述:正确的序号为①③④,共故选:C.【点睛】关键点点睛:解决本题的关键在于分析出点集二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知集合{|A x y ==,2{|1}B y y x ==+,则()A .AB ⋂=∅B .[1,2]A B =C .A B ⋃=RD .()(]R ,2A B ∞⋃=-ð【答案】BCD10.已知集合{}3A x x =≤,集合{}1B x x m =≤+,能使A B A = 成立的充分不必要条件有()A .0m >B .1m >C .3m >D .4m >【答案】CD【分析】由A B A = 成立的充要条件求出对应的参数m 的范围,结合充分不必要条件的定义即可得解.【详解】A B A = 当且仅当A 是B 的子集,当且仅当13m +≥,即2m ≥,对比选项可知使得2m ≥成立的充分不必要条件有3m >,4m >.故选:CD.11.高斯是德国著名的数学家,近代数学奠基者之一.用其名字命名的高斯取整函数为()[]f x x =,[]x 表示不超过x 的最大整数,例如[]3.54-=-,[]2.12=.下列命题中正确的有()A .x ∃∈R ,()1f x x =-B .x ∀∈R ,Z n ∈,()()f x n f x n +=+C .,0x y ∀>,()()()()lg lg lg f x f y f xy+=D .*N n ∃∈,()()()()lg1lg 2lg 3lg 92f f f f n +++⋅⋅⋅+=第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
浙江专版2020届高考数学一轮复习单元检测一集合与常用逻辑用语单元检测含解析
单元检测一 集合与常用逻辑用语(时间:120分钟 满分:150分) 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列关系正确的是( ) A .0∈∅ B .∅{0} C .∅={0} D .∅∈{0}答案 B解析 对于B ,因为空集是任何非空集合的真子集,而集合{0}不是空集,所以∅{0}正确,故选B.2.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x<2,则下列结论正确的是( ) A .N ⊆M B .M ⊆N C .N ∩M =∅ D .M ∩N =R答案 B解析 由1x <2,得1-2xx<0,所以x (1-2x )<0,解得x <0或x >12,则M ⊆N ,故选B.3.(2018·杭州高级中学模拟)已知原命题:已知ab >0,若a >b ,则1a <1b,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为( ) A .0B .2C .3D .4 答案 D解析 若a >b ,则1a -1b =b -aab,又ab >0,∴1a -1b <0,∴1a <1b,∴原命题是真命题;若1a <1b,则1a -1b =b -a ab<0,又ab >0,∴b -a <0,∴b <a ,∴逆命题是真命题. 故四个命题都是真命题.4.(2019·湖州模拟)设全集U =R ,集合A ={x |x <1},集合B ={x |0<x <2},则(∁U A )∩B 等于A .{x |x ≥1}B .{x |x ≤1}C .{x |0<x ≤1}D .{x |1≤x <2}答案 D解析 由题意得∁U A ={x |x ≥1},又B ={x |0<x <2},所以(∁U A )∩B ={x |1≤x <2}.故选D. 5.已知直线l 的斜率为k ,倾斜角为θ,则“0<θ≤π4”是“k ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当0<θ≤π4时,0<k ≤1;反之,当k ≤1时,0≤θ≤π4或π2<θ<π.故“0<θ≤π4”是“k ≤1”的充分不必要条件.6.(2018·浙江“七彩阳光”联考)命题p :x ∈R 且满足sin2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 由sin2x =1,得2x =π2+2k π,k ∈Z ,即x =π4+k π,k ∈Z ;由tan x =1,得x =π4+k π,k ∈Z ,所以p 是q 的充要条件,故选C.7.(2018·宁波模拟)已知a ∈R ,则“|a -1|+|a |≤1”是“函数y =a x在R 上为减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 当a <0时,|a -1|+|a |=-a +1-a ≤1, 解得a ≥0,无解.当0≤a ≤1时,|a -1|+|a |=1-a +a =1≤1成立. 当a >1时,|a -1|+|a |=2a -1≤1,解得a ≤1,无解. 故不等式的解集是a ∈[0,1].若函数y =a x在R 上为减函数,则a ∈(0,1).故“|a -1|+|a |≤1”是“函数y =a x在R 上为减函数”的必要不充分条件.8.若集合P ={0,1,2},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x -y +1>0,x -y -2<0,x ,y ∈P,则集合Q 中元素的个数A .4B .6C .3D .5 答案 D解析 Q ={(x ,y )|-1<x -y <2,x ,y ∈P } ={(0,0),(1,1),(2,2),(1,0),(2,1)}, ∴Q 中有5个元素. 9.已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B 解析 ∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1,∵p 是q 的充分不必要条件, ∴k >2,故选B.10.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B.⎣⎢⎡⎭⎪⎫34,43C.⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞)答案 B解析 集合A ={x |x <-3或x >1}, 设f (x )=x 2-2ax -1,因为a >0,所以f (-3)=8+6a >0, 则由题意得,f (2)≤0且f (3)>0, 即4-4a -1≤0,且9-6a -1>0, ∴34≤a <43, ∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫34,43. 第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)11.用列举法表示集合:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x +1∈Z ,x ∈Z=____________;A 的子集个数为________.答案 {-3,-2,0,1} 16 解析 因为2x +1∈Z ,x ∈Z ,所以x +1=±1或±2,所以x =0或-2或1或-3,子集个数为24=16.12.(2018·温州模拟)已知全集U =R ,集合A ={x ||x |<1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12,则A ∪B =____________,A ∩B =____________.答案 (-1,+∞) ⎝ ⎛⎭⎪⎫-12,1解析 解得A ={x |-1<x <1},所以求得并,交集是A ∪B =(-1,+∞),A ∩B =⎝ ⎛⎭⎪⎫-12,1. 13.集合A ={-1,0,1},B ={a +1,2a },若A ∩B ={0},则实数a 的值为________,集合B =________. 答案 -1 {-2,0} 解析 ∵0∈{a +1,2a }, ∴a =-1或a =0, 经验证a =-1符合题意. 此时集合B ={-2,0}.14.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是________.答案 3解析 当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素.15.由5个元素构成的集合M ={4,3,-1,0,1},记M 的所有非空子集为M 1,M 2,…,M 31,每一个M i (i =1,2,…,31)中所有元素的积为m i ,则m 1+m 2+…+m 31=________. 答案 -1解析 由题意得当集合M i 中包含元素0时,m i =0;集合中包含元素1而不包含元素-1的集合和包含元素-1而不包含元素1的集合成对出现,且每一对的和都为零;所以只需求集合中没有0,且同时包含元素1和-1的集合和元素0,1或-1都不在集合中的集合即可,即{1,-1},{1,-1,3},{1,-1,4},{1,-1,3,4},{3},{4},{3,4},所以m 1+m 2+…+m 31=-1+(-3)+(-4)+(-12)+3+4+12=-1.16.(2019·杭州质检)若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c,则称a ,b ,c是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2019,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 中的元素最大值为________;“好集”P 的个数为________.答案 2016 1008解析 若集合P 中元素a ,b ,c 既是调和的,又是等差的,则1a +1b =2c且a +c =2b ,令a =-2b ,c =4b ,则满足条件的“好集”为形如{-2b ,b ,4b }(b ≠0)的形式,则-2019≤4b ≤2019,解得-504≤b ≤504,且b ≠0,集合P 中元素的最大值为2016,符合条件的b 的值可取1008个,故“好集”P 的个数为1008.17.(2018·嘉兴质检)设集合P ={t |数列a n =n 2+tn (n ∈N *)递增},集合Q ={t |函数f (x )=kx 2+tx 在区间[1,+∞)上单调递增},若“t ∈P ”是“t ∈Q ”的充分不必要条件,则实数k 的最小值为________. 答案 32解析 由数列a n =n 2+tn (n ∈N *)递增,得a n +1-a n >0对n ∈N *恒成立,即2n +1+t >0,t >-(2n +1)对n ∈N *恒成立, 所以t >[-(2n +1)]max =-3.由函数f (x )=kx 2+tx 在区间[1,+∞)上单调递增, 得k =0,t >0或k >0,-t2k ≤1,即t ≥-2k .因为“t ∈P ”是“t ∈Q ”的充分不必要条件, 所以k >0,-2k ≤-3, 即k ≥32,k min =32.三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 18.(14分)(2018·宁波模拟)已知集合A ={x |x 2+ax -2a 2≤0}. (1)当a =1时,求集合∁R A ;(2)若[-1,1]⊆A ,求实数a 的取值范围.解 不等式x 2+ax -2a 2≤0可化为(x +2a )(x -a )≤0. (1)当a =1时,∁R A ={x |(x +2)(x -1)>0}, 即∁R A ={x |x <-2或x >1}.(2)方法一 当a ≥0时,A ={x |-2a ≤x ≤a },因为[-1,1]⊆A ,所以⎩⎪⎨⎪⎧-2a ≤-1,a ≥1,解得a ≥1.当a <0时,A ={x |a ≤x ≤-2a },因为[-1,1]⊆A ,所以⎩⎪⎨⎪⎧a ≤-1,-2a ≥1,解得a ≤-1.综上,实数a 的取值范围是(-∞,-1]∪[1,+∞).方法二 原题等价于f (x )=x 2+ax -2a 2≤0在x ∈[-1,1]上恒成立,所以⎩⎪⎨⎪⎧f (-1)=1-a -2a 2≤0,f (1)=1+a -2a 2≤0,即⎩⎪⎨⎪⎧a ≤-1或a ≥12,a ≤-12或a ≥1,解得a 的取值范围是(-∞,-1]∪[1,+∞).19.(15分)(2019·丽水模拟)已知集合A ={x |1-a ≤x ≤1+a },B ={x |x 2-4x +3≤0},U =R .(1)若a =1,求A ∪B ,∁U B ;(2)若A ∩B =A ,求实数a 的取值范围. 解 (1)a =1时,A ={x |0≤x ≤2},B ={x |1≤x ≤3}, A ∪B ={x |0≤x ≤3},∁U B ={x |x >3或x <1}. (2)因为A ∩B =A ,所以A ⊆B , 当A =∅时,1+a <1-a ,解得a <0; 当A ≠∅时,⎩⎪⎨⎪⎧1-a ≤1+a ,1-a ≥1,1+a ≤3,解得a =0.综上得a ≤0.20.(15分)(2018·浙江名校协作体联考)已知A ={x |y =lg(3-2x -x 2)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =log 4x ,116≤x ≤16,C ={x |y =ax 2-(a +1)x +1,a <0}.(1)求A ∩B ;(2)若(A ∩B )⊆C ,求实数a 的取值范围.解 (1)A =(-3,1),B =[-2,2],A ∩B =[-2,1). (2)根据题意,对于集合C 满足ax 2-(a +1)x +1 =(ax -1)·(x -1)≥0,又∵a <0,∴C =⎣⎢⎡⎦⎥⎤1a,1,∵(A ∩B )⊆C ,∴1a ≤-2,∴-12≤a <0.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,0.21.(15分)已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x <1+m (m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,如果p 和q 有且仅有一个真命题,求实数x 的取值范围. 解 (1)由命题p :(x +1)(x -5)≤0,解得-1≤x ≤5. 命题q :1-m ≤x <1+m (m >0). ∵p 是q 的充分条件, ∴[-1,5]⊆[1-m,1+m ),∴⎩⎪⎨⎪⎧1-m ≤-1,5<1+m ,解得m >4,则实数m 的取值范围为(4,+∞). (2)∵m =5,∴命题q :-4≤x <6. ∵p 和q 有且仅有一个为真命题,∴当p 真q 假时,可得⎩⎪⎨⎪⎧-1≤x ≤5,x <-4或x ≥6,解得x ∈∅.当q 真p 假时,可得⎩⎪⎨⎪⎧x <-1或x >5,-4≤x <6,解得-4≤x <-1或5<x <6.因此x 的取值范围是[-4,-1)∪(5,6).22.(15分)已知p :x 2≤5x -4,q :x 2-(a +2)x +2a ≤0. (1)若p 是真命题,求对应x 的取值范围; (2)若p 是q 的必要不充分条件,求a 的取值范围. 解 (1)因为x 2≤5x -4,所以x2-5x+4≤0,即(x-1)(x-4)≤0,所以1≤x≤4,即对应x的取值范围为{x|1≤x≤4}.(2)设p对应的集合为A={x|1≤x≤4}.设q对应集合为B,由x2-(a+2)x+2a≤0,得(x-2)(x-a)≤0.当a=2时,不等式的解为x=2,对应的解集为B={2};当a>2时,不等式的解为2≤x≤a,对应的解集为B={x|2≤x≤a};当a<2时,不等式的解为a≤x≤2,对应的解集为B={x|a≤x≤2}.若p是q的必要不充分条件,则B A,当a=2时,满足条件;当a>2时,因为A={x|1≤x≤4},B={x|2≤x≤a},要使B A,则满足2<a≤4;当a<2时,因为A={x|1≤x≤4},B={x|a≤x≤2},要使B A,则满足1≤a<2. 综上,a的取值范围为{a|1≤a≤4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元检测一 集合与常用逻辑用语(时间:120分钟 满分:150分) 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列关系正确的是( ) A .0∈∅ B .∅{0} C .∅={0} D .∅∈{0}答案 B解析 对于B ,因为空集是任何非空集合的真子集,而集合{0}不是空集,所以∅{0}正确,故选B.2.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x<2,则下列结论正确的是( ) A .N ⊆M B .M ⊆N C .N ∩M =∅ D .M ∩N =R答案 B解析 由1x <2,得1-2xx<0,所以x (1-2x )<0,解得x <0或x >12,则M ⊆N ,故选B.3.(·杭州高级中学模拟)已知原命题:已知ab >0,若a >b ,则1a <1b,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为( ) A .0B .2C .3D .4 答案 D解析 若a >b ,则1a -1b =b -aab,又ab >0,∴1a -1b <0,∴1a <1b,∴原命题是真命题;若1a <1b,则1a -1b =b -a ab<0,又ab >0,∴b -a <0,∴b <a ,∴逆命题是真命题. 故四个命题都是真命题.4.(·湖州模拟)设全集U =R ,集合A ={x |x <1},集合B ={x |0<x <2},则(∁U A )∩B 等于( )A .{x |x ≥1}B .{x |x ≤1}C .{x |0<x ≤1}D .{x |1≤x <2}答案 D解析 由题意得∁U A ={x |x ≥1},又B ={x |0<x <2},所以(∁U A )∩B ={x |1≤x <2}.故选D. 5.已知直线l 的斜率为k ,倾斜角为θ,则“0<θ≤π4”是“k ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当0<θ≤π4时,0<k ≤1;反之,当k ≤1时,0≤θ≤π4或π2<θ<π.故“0<θ≤π4”是“k ≤1”的充分不必要条件.6.(·浙江“七彩阳光”联考)命题p :x ∈R 且满足sin2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 由sin2x =1,得2x =π2+2k π,k ∈Z ,即x =π4+k π,k ∈Z ;由tan x =1,得x =π4+k π,k ∈Z ,所以p 是q 的充要条件,故选C.7.(·宁波模拟)已知a ∈R ,则“|a -1|+|a |≤1”是“函数y =a x在R 上为减函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 当a <0时,|a -1|+|a |=-a +1-a ≤1, 解得a ≥0,无解.当0≤a ≤1时,|a -1|+|a |=1-a +a =1≤1成立. 当a >1时,|a -1|+|a |=2a -1≤1,解得a ≤1,无解. 故不等式的解集是a ∈[0,1].若函数y =a x在R 上为减函数,则a ∈(0,1).故“|a -1|+|a |≤1”是“函数y =a x在R 上为减函数”的必要不充分条件.8.若集合P ={0,1,2},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x -y +1>0,x -y -2<0,x ,y ∈P,则集合Q 中元素的个数是( ) A .4B .6C .3D .5答案 D解析 Q ={(x ,y )|-1<x -y <2,x ,y ∈P } ={(0,0),(1,1),(2,2),(1,0),(2,1)}, ∴Q 中有5个元素. 9.已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B 解析 ∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1,∵p 是q 的充分不必要条件, ∴k >2,故选B.10.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34B.⎣⎢⎡⎭⎪⎫34,43C.⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞)答案 B解析 集合A ={x |x <-3或x >1}, 设f (x )=x 2-2ax -1,因为a >0,所以f (-3)=8+6a >0, 则由题意得,f (2)≤0且f (3)>0, 即4-4a -1≤0,且9-6a -1>0, ∴34≤a <43, ∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫34,43. 第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)11.用列举法表示集合:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x +1∈Z ,x ∈Z =____________;A 的子集个数为________. 答案 {-3,-2,0,1} 16解析 因为2x +1∈Z ,x ∈Z ,所以x +1=±1或±2,所以x =0或-2或1或-3,子集个数为24=16.12.(·温州模拟)已知全集U =R ,集合A ={x ||x |<1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12,则A ∪B =____________,A ∩B =____________.答案 (-1,+∞) ⎝ ⎛⎭⎪⎫-12,1解析 解得A ={x |-1<x <1},所以求得并,交集是A ∪B =(-1,+∞),A ∩B =⎝ ⎛⎭⎪⎫-12,1. 13.集合A ={-1,0,1},B ={a +1,2a },若A ∩B ={0},则实数a 的值为________,集合B =________. 答案 -1 {-2,0} 解析 ∵0∈{a +1,2a }, ∴a =-1或a =0, 经验证a =-1符合题意. 此时集合B ={-2,0}.14.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是________.答案 3解析 当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素.15.由5个元素构成的集合M ={4,3,-1,0,1},记M 的所有非空子集为M 1,M 2,…,M 31,每一个M i (i =1,2,…,31)中所有元素的积为m i ,则m 1+m 2+…+m 31=________. 答案 -1解析 由题意得当集合M i 中包含元素0时,m i =0;集合中包含元素1而不包含元素-1的集合和包含元素-1而不包含元素1的集合成对出现,且每一对的和都为零;所以只需求集合中没有0,且同时包含元素1和-1的集合和元素0,1或-1都不在集合中的集合即可,即{1,-1},{1,-1,3},{1,-1,4},{1,-1,3,4},{3},{4},{3,4},所以m 1+m 2+…+m 31=-1+(-3)+(-4)+(-12)+3+4+12=-1.16.(·杭州质检)若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 中的元素最大值为________;“好集”P 的个数为________. 答案 1008解析 若集合P 中元素a ,b ,c 既是调和的,又是等差的,则1a +1b =2c且a +c =2b ,令a =-2b ,c =4b ,则满足条件的“好集”为形如{-2b ,b ,4b }(b ≠0)的形式,则-≤4b ≤,解得-504≤b ≤504,且b ≠0,集合P 中元素的最大值为,符合条件的b 的值可取1008个,故“好集”P 的个数为1008.17.(·嘉兴质检)设集合P ={t |数列a n =n 2+tn (n ∈N *)递增},集合Q ={t |函数f (x )=kx2+tx 在区间[1,+∞)上单调递增},若“t ∈P ”是“t ∈Q ”的充分不必要条件,则实数k 的最小值为________. 答案 32解析 由数列a n =n 2+tn (n ∈N *)递增,得a n +1-a n >0对n ∈N *恒成立,即2n +1+t >0,t >-(2n +1)对n ∈N *恒成立, 所以t >[-(2n +1)]max =-3.由函数f (x )=kx 2+tx 在区间[1,+∞)上单调递增, 得k =0,t >0或k >0,-t2k ≤1,即t ≥-2k .因为“t ∈P ”是“t ∈Q ”的充分不必要条件, 所以k >0,-2k ≤-3, 即k ≥32,k min =32.三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 18.(14分)(·宁波模拟)已知集合A ={x |x 2+ax -2a 2≤0}. (1)当a =1时,求集合∁R A ;(2)若[-1,1]⊆A ,求实数a 的取值范围.解 不等式x 2+ax -2a 2≤0可化为(x +2a )(x -a )≤0.(1)当a =1时,∁R A ={x |(x +2)(x -1)>0}, 即∁R A ={x |x <-2或x >1}.(2)方法一 当a ≥0时,A ={x |-2a ≤x ≤a },因为[-1,1]⊆A ,所以⎩⎪⎨⎪⎧-2a ≤-1,a ≥1,解得a ≥1.当a <0时,A ={x |a ≤x ≤-2a },因为[-1,1]⊆A ,所以⎩⎪⎨⎪⎧a ≤-1,-2a ≥1,解得a ≤-1.综上,实数a 的取值范围是(-∞,-1]∪[1,+∞).方法二 原题等价于f (x )=x 2+ax -2a 2≤0在x ∈[-1,1]上恒成立,所以⎩⎪⎨⎪⎧f (-1)=1-a -2a 2≤0,f (1)=1+a -2a 2≤0,即⎩⎪⎨⎪⎧a ≤-1或a ≥12,a ≤-12或a ≥1,解得a 的取值范围是(-∞,-1]∪[1,+∞).19.(15分)(·丽水模拟)已知集合A ={x |1-a ≤x ≤1+a },B ={x |x 2-4x +3≤0},U =R . (1)若a =1,求A ∪B ,∁U B ;(2)若A ∩B =A ,求实数a 的取值范围. 解 (1)a =1时,A ={x |0≤x ≤2},B ={x |1≤x ≤3}, A ∪B ={x |0≤x ≤3},∁U B ={x |x >3或x <1}. (2)因为A ∩B =A ,所以A ⊆B , 当A =∅时,1+a <1-a ,解得a <0; 当A ≠∅时,⎩⎪⎨⎪⎧1-a ≤1+a ,1-a ≥1,1+a ≤3,解得a =0.综上得a ≤0.20.(15分)(·浙江名校协作体联考)已知A ={x |y =lg(3-2x -x 2)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =log 4x ,116≤x ≤16,C ={x |y =ax 2-(a +1)x +1,a <0}.(1)求A ∩B ;(2)若(A ∩B )⊆C ,求实数a 的取值范围.解 (1)A =(-3,1),B =[-2,2],A ∩B =[-2,1). (2)根据题意,对于集合C 满足ax 2-(a +1)x +1 =(ax -1)·(x -1)≥0,又∵a <0,∴C =⎣⎢⎡⎦⎥⎤1a,1,∵(A ∩B )⊆C ,∴1a ≤-2,∴-12≤a <0.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,0.21.(15分)已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x <1+m (m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,如果p 和q 有且仅有一个真命题,求实数x 的取值范围. 解 (1)由命题p :(x +1)(x -5)≤0,解得-1≤x ≤5. 命题q :1-m ≤x <1+m (m >0). ∵p 是q 的充分条件, ∴[-1,5]⊆[1-m,1+m ),∴⎩⎪⎨⎪⎧1-m ≤-1,5<1+m ,解得m >4,则实数m 的取值范围为(4,+∞). (2)∵m =5,∴命题q :-4≤x <6. ∵p 和q 有且仅有一个为真命题,∴当p 真q 假时,可得⎩⎪⎨⎪⎧-1≤x ≤5,x <-4或x ≥6,解得x ∈∅.当q 真p 假时,可得⎩⎪⎨⎪⎧x <-1或x >5,-4≤x <6,解得-4≤x <-1或5<x <6.因此x 的取值范围是[-4,-1)∪(5,6).22.(15分)已知p :x 2≤5x -4,q :x 2-(a +2)x +2a ≤0. (1)若p 是真命题,求对应x 的取值范围; (2)若p 是q 的必要不充分条件,求a 的取值范围. 解 (1)因为x 2≤5x -4, 所以x 2-5x +4≤0,即(x -1)(x -4)≤0,所以1≤x ≤4, 即对应x 的取值范围为{x |1≤x ≤4}.(2)设p对应的集合为A={x|1≤x≤4}.设q对应集合为B,由x2-(a+2)x+2a≤0,得(x-2)(x-a)≤0.当a=2时,不等式的解为x=2,对应的解集为B={2};当a>2时,不等式的解为2≤x≤a,对应的解集为B={x|2≤x≤a};当a<2时,不等式的解为a≤x≤2,对应的解集为B={x|a≤x≤2}.若p是q的必要不充分条件,则B A,当a=2时,满足条件;当a>2时,因为A={x|1≤x≤4},B={x|2≤x≤a},要使B A,则满足2<a≤4;当a<2时,因为A={x|1≤x≤4},B={x|a≤x≤2},要使B A,则满足1≤a<2. 综上,a的取值范围为{a|1≤a≤4}.。