《因式分解》教学设计方案
【推荐】因式分解教案4篇
【推荐】因式分解教案4篇因式分解教案篇1学习目标1、学会用平方差公式进行因式法分解2、学会因式分解的而基本步骤.学习重难点重点:用平方差公式进行因式法分解.难点:因式分解化简的过程自学过程设计教学过程设计看一看平方差公式:平方差公式的逆运用:做一做:1.填空题.(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).2.把下列各式分解因式结果为-(x-2y)(x+2y)的多项式是()A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y23.多项式-1+0.04a2分解因式的结果是()A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)4.把下列各式分解因式:(1)4x2-25y2;(2)0.81m2-n2;(3)a3-9a;(4)8x3y3-2xy.5.把下列各式分解因式:(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.6.用简便方法计算:3492-2512.想一想你还有哪些地方不是很懂?请写出来。
_____________________________________________________________ _______________________预习展示一:1、下列多项式能否用平方差公式分解因式?说说你的理由。
4x2+y24x2-(-y)2-4x2-y2-4x2+y2a2-4a2+32.把下列各式分解因式:(1)16-a2(2)0.01s2-t2(4)-1+9x2(5)(a-b)2-(c-b)2(6)-(x+y)2+(x-2y)2应用探究:1、分解因式4x3y-9xy3变式:把下列各式分解因式①x4-81y4②2a-8a2、从前有一位张老汉向地主租了一块“十字型”土地(尺寸如图)。
人教版因式分解教学设计(精选8篇)
人教版因式分解教学设计(精选8篇)篇一:《因式分解》教学设计教学准备教学目标知识与能力1.了解多项式公因式的意义,初步会用提公因式法分解因式;2.通过找公因式,培养观察能力.过程与方法1.了解因式分解的概念,以及因式分解与整式乘法的关系;2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.情感态度与价值观1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;2.培养观察、联想能力,进一步了解换元的思想方法;教学重难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:识别多项式的公因式.教学过程一、新课导入请同学们想一想?993-99能被100整除吗?解法一:993-99=970299-99=970200解法二:993-99=99(992-1)=99(99+1)(99-1)=100×99×98=970200(1)已知:x=5, a-b=3,求ax2-bx2的值.(2)已知:a=101,b=99,求a2-b2的值.你能说说算得快的原因吗?解:(1) ax2-bx2=x2(a-b)=25×3=75.(2)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400二、新知探究1、做一做:计算下列各式:①3x(x-2)=__3x2-6x②m(a+b+c)= ma+mb+mc③(m+4)(m-4)=m2-16④(x-2)2=x2-4x+4⑤a(a+1)(a-1)=a3-a根据左面的算式填空:①3x2-6x=(_3x__)(_x-2__)②ma+mb+mc=(_m_)(a+b+c_)③m2-16=(_m+4)(m-4_)④x2-4x+4=(x-2)2⑤a3-a=(a)(a+1)(a-1)左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?总结:把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.整式乘法因式分解与整式乘法是互逆过程因式分解在am+bm=m(a+b)中, m叫做多项式各项的公因式.公因式:即每个单项式都含有的相同的因式.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.确定公因式的方法:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取多项式各项中都含有的相同的字母;(3)相同字母的指数取各项中最小的一个,即最低次幂.三、例题分析例1把12a4b3+16a2b3c2分解因式.解:12a4b3+16a2b3c2=4a2b3·3a2+4a2b3·4c2=4a2b3(3a2+4c2)提公因式后,另一个因式:①项数应与原多项式的项数一样;②不再含有公因式.例2 把2ac(b+2c)- (b+2c)分解因式.解:2ac(b+2c) -(b+2c)= (b+2c)(2ac-1)公因式可以是数字、字母,也可以是单项式,还可以是多项式.例3把-x3+x2-x分解因式.解:原式=-(x3-x2+x)=-x(x2-x+1)多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).四、当堂训练1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.(2)5x2-25x的公因式为 5x .(3)-2ab2+4a2b3的公因式为-2ab2.(4)多项式x2-1与(x-1)2的公因式是x-1.2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2课后小结1.分解因式把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.2.确定公因式的方法一看系数二看字母三看指数3.提公因式法分解因式步骤(分两步)第一步找出公因式;第二步提公因式.4.用提公因式法分解因式应注意的问题(1)公因式要提尽;(2)其中一项全部提出时,这一项除以公因式时的商是1,这个1不能漏掉;(3)多项式的首项取正号.板书一、因式分解把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.二、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.am+bm=m(a+b)二、例题分析例1、例2、例3、三、当堂训练篇二:《因式分解》教学设计一、内容和内容解析1.内容用因式分解法解一元二次方程.2.内容解析教材通过实际问题得到方程,让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外,是否还有更简单的方法解方程,接着思考为什么用这种方法可以求出方程的解,从而引出本节课的教学内容.解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的.乘积为零,是解一些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要.基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.二、目标和目标解析1.教学目标(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;(2)学会观察方程特征,选用适当方法解决一元二次方程.2.目标解析(1)学生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步骤,会利用因式分解求解特殊的一元二次方程;(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.三、教学问题诊断分析学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的方法解决一元二次方程.本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.四、教学过程设计1.创设情景,引出问题问题一根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么物体经过xs离地面的高度(单位:m)为.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.2.观察感知,理解方法问题二如何求出方程的解呢?师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.问题三如果,则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.3.例题示范,灵活运用例解下列方程师生活动:提问:(1)如何求出方程(1)的解呢?说说你的方法.(2)对比解法,说说各种解法的特点.学生积极思考,积极回答问题,对比解法的不同.【设计意图】问题(1)的提出是开放式的,学生可能会回答将括号打开,然后利用配方法或公式法,也有些学生会观察到如果将当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?(2)谈谈方程(2)的解法.学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.4.巩固练习,学以致用完成教材P14练习1,2.【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.5.小结提升,深化理解问题五(1)因式分解法的一般步骤是什么?解下列方程1.【设计意图】利用提取公因式法解方程.2.【设计意图】利用平方差公式解方程.3.【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.4.【设计意图】选用适当的方法解方程.篇三:《因式分解》教学设计教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系,相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
因式分解教案四篇
因式分解教案四篇因式分解教案篇1一、运用平方差公式分解因式教学目标1、使学生了解运用公式来分解因式的意义。
2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。
3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)重点运用平方差公式分解因式难点灵活运用平方差公式分解因式教学方法比照发现法课型新授课教具投影仪教师活动学生活动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定) 新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算以下各式:(1)(a+2)(a-2)=;(2)(a+b)(a-b)=;(3)(3a+2b)(3a-2b)=.2.下面请你根据上面的算式填空:(1)a2-4=;(2)a2-b2=;(3)9a2-4b2=;请同学们比照以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。
(投影)比方:a2–16=a2–42=(a+4)(a–4)例题1:把以下各式分解因式;(投影)(1)36–25x2;(2)16a2–9b2;(3)9(a+b)2–4(a–b)2.(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:A组题:1.填空:81x2-=(9x+y)(9x-y);=利用因式分解计算:=。
2、以下多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把以下各式分解因式(1)1-16a2(2)9a2x2-b2y2(3).49(a-b)2-16(a+b)2B组题:1分解因式81a4-b4=2假设a+b=1,a2+b2=1,那么ab=;3假设26+28+2n是一个完全平方数,那么n=.由学生自己先做(或互相讨论),然后答复,假设有答不全的,教师(或其他学生)补充.学生答复1:992-1=99某99-1=9801-1=9800学生答复2:992-1就是(99+1)(99-1)即100某98学生答复:平方差公式学生答复:(1):a2-4(2):a2-b2(3):9a2-4b2学生轻松口答(a+2)(a-2)(a+b)(a-b)(3a+2b)(3a-2b)学生答复:把乘法公式(a+b)(a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50某20π=1000π(m2)这个绿化区的面积是1000πm2学生归纳总结因式分解教案篇2教学目标1、会运用因式分解进行简单的多项式除法。
因式分解教案15篇
因式分解教案15篇因式分解教案1一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程教学环节:活动1:复习引入看谁算得快:用简便方法计算:(1)7/9 ×13-7/9 ×6+7/9 ×2= ;(2)-2.67×132+25×2.67+7×2.67= ;(3)992–1= 。
设计意图:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的.困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题P165的探究(略);2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?设计意图:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
2024年因式分解优秀标准教案通用
2024年因式分解优秀标准教案通用一、教学内容1. 因式分解的意义与基本概念2. 提公因式法与十字相乘法3. 完全平方公式与平方差公式4. 应用因式分解解决实际问题二、教学目标1. 理解因式分解的定义,掌握基本的因式分解方法。
2. 能够运用提公因式法、十字相乘法、完全平方公式及平方差公式解决因式分解问题。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:因式分解的基本概念及常用方法。
难点:灵活运用因式分解方法解决实际问题。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、笔、橡皮。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际生活中的因式分解问题,激发学生的兴趣。
2. 知识讲解(10分钟)详述因式分解的定义、意义,介绍提公因式法、十字相乘法、完全平方公式及平方差公式。
3. 例题讲解(15分钟)通过讲解典型例题,使学生掌握因式分解的基本方法。
4. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。
5. 小组讨论(10分钟)将学生分成小组,讨论解决实际问题时的因式分解方法。
6. 答疑解惑(5分钟)针对学生提出的问题,进行解答。
六、板书设计1. 因式分解的定义2. 常用因式分解方法:提公因式法、十字相乘法、完全平方公式、平方差公式3. 例题及解题步骤4. 练习题七、作业设计1. 作业题目:(1)利用提公因式法分解因式:2x^3 + 4x^2 6x(2)利用十字相乘法分解因式:x^2 5x + 6(3)利用完全平方公式分解因式:4x^2 4x + 1(4)利用平方差公式分解因式:9a^2 16b^22. 答案:(1)2x(x^2 + 2x 3)(2)(x 2)(x 3)(3)(2x 1)^2(4)(3a + 4b)(3a 4b)八、课后反思及拓展延伸2. 拓展延伸:布置一道具有挑战性的因式分解题目,鼓励学生思考,提高学生的逻辑思维能力。
因式分解优秀教案
因式分解优秀教案因式分解优秀教案(精选5篇)作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。
那么优秀的教案是什么样的呢?以下是店铺为大家整理的因式分解优秀教案(精选5篇),欢迎阅读,希望大家能够喜欢。
因式分解优秀教案篇1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解(7).2πR+2πr=2π(R+r) 因式分解2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.分解因式要注意以下几点: (1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)24、强化训练试一试把下列各式因式分解:(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)三、例题讲解例1、分解因式(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)(3) (4)y2+y+例2、分解因式1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b) 2+2(a+b)-15=4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=例3、分解因式1、72-2(13x-7) 22、8a2b2-2a4b-8b3三、知识应用1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)24、.若x=-3,求20x2-60x的值.5、1993-199能被200整除吗?还能被哪些整数整除?四、拓展应用1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)2、20042+2004被2005整除吗?3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.五、课堂小结:今天你对因式分解又有哪些新的认识?因式分解优秀教案篇2教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
《因式分解》教学设计范文(精选10篇)
《因式分解》教学设计范文(精选10篇)《因式分解》教学设计 1教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现能力立意。
3.寓德育教学方法1采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。
2把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。
3在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。
4在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
教学过程安排一、提出问题,创设情境问题:看谁算得快?(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400(2)若a=99,b=-1,则a2-2ab+b2=(a-b) 2=(99+1)2 =10000(3)若x=-3,则20x2+60x=20x(x+3)=20x(-3)(-3+3)=0二、观察分析,探究新知(1)请每题想得最快的同学谈思路,得出最佳解题方法(2)观察:a2-b2=(a+b)(a-b) ①的左边是一个什么式子?右边又是什么形式? a2-2ab+b2 =(a-b) 2 ②20x2+60x=20x(x+3) ③(3)类比小学学过的因数分解概念,(例42=2某3某7 ④)得出因式分解概念。
2023年关于因式分解教案3篇
2023年关于因式分解教案3篇因式分解教案篇1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
因式分解教案模板(10篇)
因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
因式分解教案【优秀5篇】
因式分解教案【优秀5篇】在教学工作者开展教学活动前,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
那么问题来了,教案应该怎么写?下面是小编辛苦为大家带来的因式分解教案【优秀5篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
因式分解教案篇一15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示ⅠABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示ⅠABC的周长,需要知道它的各边边长.要表示ⅠABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么ⅠABC的周长可以表示为a+b+c;ⅠABC的面积可以表示为?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅰ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅰ.随堂练习1.课本P162练习Ⅰ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅰ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。
初中数学因式分解教案6篇
初中数学因式分解教案6篇初中数学因式分解教案6篇初中数学因式分解教案1 教学目的1、知识与技能会应用平方差公式进展因式分解,开展学生推理才能。
2、过程与方法经历探究利用平方差公式进展因式分解的过程,开展学生的逆向思维,感受数学知识的完好性。
3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键1、重点:利用平方差公式分解因式。
2、难点:领会因式分解的解题步骤和分解因式的彻底性。
3、关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成可以应用公式的方面上来。
教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。
教学过程一、观察讨论,体验新知【问题牵引】请同学们计算以下各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【学生活动】动笔计算出上面的两道题,并踊跃上台板演。
(1)(a+5)(a—5)=a2—52=a2—25;(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【老师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【学生活动】从逆向思维入手,很快得到下面答案:(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【老师活动】引导学生完成a2—b2=(a+b)(a—b)的同时,导出课题:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。
二、范例学习,应用所学【例1】把以下各式分解因式:(投影显示或板书)(1)x2—9y2;(2)16x4—y4;(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;(5)m2(16x—y)+n2(y—16x)。
因式分解教案五篇
因式分解教案五篇因式分解教案五篇作为一位优秀的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
怎样写教案才更能起到其作用呢?下面是小编为大家整理的因式分解教案五篇,欢迎阅读与收藏。
因式分解教案五篇1教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【说明】(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y—xy+y=y(3x2—x);(2)x2—2x+3=(x—1)2+2;(3)x2y2+2xy—1=(xy+1)(xy—1);(4)xn(x2—x+1)=xn+2—xn+1+xn。
初二数学因式分解教案优秀10篇
初二数学因式分解教案优秀10篇因式分解教案篇一教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【说明】(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式。
初中数学因式分解教案3篇
初中数学因式分解教案3篇初中数学因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:运用平方差公式分解因式。
教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是,如何用语言描述?把上述公式反过来就得到,如何用语言描述?2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?①-x2+y2 ②-x2-y2 ③4-9x2④ (x+y)2-(x-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么?4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?5、试总结因式分解的步骤是什么?师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。
……反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
因式分解教案(优秀9篇)
因式分解教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!因式分解教案(优秀9篇)作为一名教师,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
因式分解教案教学设计3篇
因式分解教案教学设计精选3篇因式分解教案(一):因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点.教学目标认知目标:(1)理解因式分解的概念和好处[由整理] (2)认识因式分解与整式乘法的相互关系――相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
教学方法1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑――感知――概括――运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
因式分解教案模板5篇
因式分解教案模板5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!因式分解教案模板5篇下面是本店铺分享的因式分解教案模板5篇(因式分解优秀教案),以供参考。
《因式分解》优秀教案一等奖
《因式分解》优秀教案一等奖1、《因式分解》优秀教案一等奖教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变形过程,哪个是因式分解?2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2xa2b-ab3、根据乘法公式进行计算:(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=二、合作探究学习新知(一) 猜一猜:你能将下面的多项式分解因式吗?(1)= (2)= (3)=(二)想一想,议一议: 观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________公式右边是__________________________________________________________ 这个公式你能用语言来描述吗?_______________________________________(三)练一练:1、下列多项式能否用平方差公式来分解因式?为什么?① ② ③ ④2、你能把下列的数或式写成幂的形式吗?(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2(四)做一做:例3 分解因式:(1) 4x2- 9 (2) (x+p)2- (x+q)2(五)试一试:例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
因式分解教案4篇
因式分解教案4篇因式分解教案范文1教学设计思想:本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。
第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。
第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的`,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标知识与技能:会用平方差公式对多项式进行因式分解;会用完全平方公式对多项式进行因式分解;能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
因式分解教案范文2教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的`积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】(1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc 分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学难点
准确运用提公因式法、公式法将多项式分解因式。
问题与情景
师生行为
设计意图
活动1
提出问题:当x2﹣2x﹣3=0时,代数式x4-2x3-5x2+4x+5的值是多少?有什么巧妙的方法解答这个问题吗?
教师提出问题,学生独立思考
教师重点关注:
2)因式分解的定义。
教师提出问题后,让学生通过比较,认识什么是因式分解,明白因式分解与整式乘法的联系。重点关注:
§1因式分解的定义的理解。
§2因式分解与整式乘法互逆性。
让学生通过比较,小组合作探究,搞明白因式分解与整式乘法的联系,清楚因式分解的意义。
活动……
自我点评
根据教学目标、教学重点和教学难点的分析,我在复习整式乘法的基础上,利用问题激发学生的学习兴趣导入新课,再利用整式乘法与因式分解的比较,让学生明白什么是因式分解,以及因式分解与整式乘法的联系。在这个教学过程中,学生经历了知识产生、形成的过程;体验观察、感受、讨论、探究、总结的学习方法;实现学生主动探索、合作交流学习方式的转变;提升学生自己观察问题、分析问题、解决问题的能力。
§1学生能否由想x4-2x3-5x2+4x+5有多少个当x2﹣2x﹣3,而得到将x4-2x3-5x2+4x+5变形为(x2﹣2x﹣3)(?)
§2学生逆向思维。
通过创设问题情境,激发学生学习兴趣。
活动2
1)观察下面两个式子:
ma+mb+mc=m(a+b+c)
m(a+b+c) =ma+mb+mc
思考:你能发现这两个式子之间的联系和区别?
《因式分解》教学设计方案
山西省潞城市黄牛蹄中学黄晓东
课程名称
《因式分解》
教学目标
知识技能:
1.了解因式分解与整式乘法之间的关系,理解因式分解的过程,发现因式分解的基本方法。
2.学会分解因式。
过程与方法:
将因式分解与整式乘法进行类比,理解因式分解的意义和方法。
情感态度价值观:
在学习因式分解的意义和探究发现因式分解的方法的过程中,体会事物之间可以相互转化的辩证思想,培养学生逆向思维的能力。
本节课的设计体现了“以学生为主体,教师为主导”的教育理念,突出学生在活动过程中的参与意识、探究方式意识,最大限度地实现学生的主体地位,使数学教学成为一种探究性的“过程”教学,让学生在“数学活动”中获得数学的“思想、方法、能力、素质”,同时获得对数学的情感。教师在整节课的活动中,扮演的是学生学习的参与者、合作者、指导者和支持者的角色。