八年级初二数学 销售打折题 含答案

合集下载

初中数学八年级下期末经典题(含答案解析)(2)

初中数学八年级下期末经典题(含答案解析)(2)

一、选择题1.(0分)[ID :10231]某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10205]以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形7.(0分)[ID :10199]将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒8.(0分)[ID :10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.(0分)[ID :10141]12751348)的结果是( ) A .6B .3C .3D .1210.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A.B.C.D.11.(0分)[ID:10192]如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD12.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定13.(0分)[ID:10161]如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m14.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤15.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10332]如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.17.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.18.(0分)[ID :10320]如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.19.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID :10290]一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .22.(0分)[ID :10284]如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .23.(0分)[ID :10274]如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.24.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .25.(0分)[ID :10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.三、解答题26.(0分)[ID :10380]如图,在平面直角坐标系xOy 中,一次函数y 1=−23x+2与x 轴、y轴分别相交于点A 和点B ,直线y 2=kx+b(k≠0)经过点C(1,0)且与线段AB 交于点P ,并把△ABO 分成两部分. (1)求A 、 B 的坐标; (2)求△ABO 的面积;(3)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式.27.(0分)[ID :10379]如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB(1)求证:△BCP ≌△DCP ; (2)求证:∠DPE=∠ABC ;(3)把正方形ABCD 改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.28.(0分)[ID :10347]先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,形如2a b ±,如果你能找到两个数m 、n ,使22m n a +=,且mn b =,则2a b ±可变形为2222()m n mn m n m n +±=±=±,从而达到化去一层根号的目的.例如:22232212221(2)212(12)-=+-=+-⨯⨯=-1221=-=-仿照上例完成下面各题: 填上适当的数:29.(0分)[ID :10346]011)1235-+⨯--.30.(0分)[ID :10340]设a =b =c =.(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.A 3.A 4.B 5.B 6.A 7.C 8.D 9.D 10.D 11.B 12.B 13.C 14.C 15.C二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°17.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD18.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD 和△CB19.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD ⊥AB于D∵AC2+B22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考24.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.A解析:A【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 4.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.7.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a b每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.9.D解析:D【解析】【分析】【详解】12===. 故选:D. 10.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.11.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B12.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∠ABC=90°,S△AOD=14S矩形ABCD,∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC =22AB BC +=221520+=25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.13.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.14.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm ,则在杯外的最大长度是24-8=16cm ;再根据勾股定理求得筷子在杯内的最大长度是(如图)2222158AB BC +=+,则在杯外的最小长度是24-17=7cm ,所以h 的取值范围是7cm ≤h ≤16cm ,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.15.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.17.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则18.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD和△CB解析:27°【解析】【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E 的大小.【详解】如下图,连接AE∵BE ⊥AC ,∴∠ADB=∠BDC=90°∴△ABD 和△CBD 是直角三角形在Rt △ABD 和Rt △CBD 中AB BC BD BD=⎧⎨=⎩ ∴Rt △ABD ≌Rt △CBD∴AD=DC∵BD=DE∴在四边形ABCE 中,对角线垂直且平分∴四边形ABCE 是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE ,然后利用证Rt △ABD ≌Rt △CBD 推导菱形.19.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF ⊥OA 于F ,同理证得△AOB ≌△DFA ,∴OA=DF ,∴b=6;综上,b 的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长= AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.24.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差三、解答题26.(1)A(3,0),B(0,2);(2)3;(3)P (34,32),y=-6x+6 【解析】【分析】(1)已知直线y 1的解析式,分别令x=0和y=0即可求出A 和B 的坐标;(2)根据(1)中求出的A 和B 的坐标,可知OA 和OB 的长,利用三角形的面积公式即可求出S △ABO ;(3)由(2)中的S △ABO ,可推出S △APC 的面积,求出y p ,继而求出点P 的坐标,将点C 和点P 的坐标联立方程组求出k 和b 的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y 1=-23x+2, 令x=0,得y 1=2,∴B(0,2),令y 1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S △ABO =12OA•OB=12×3×2=3; (3)∵12S △ABO =12×3=32,点P 在第一象限, ∴S △APC =12AC•y p =12×(3-1)×y p =32, 解得:y p =32, 又点P 在直线y 1上, ∴32=-23x+2, 解得:x=34, ∴P 点坐标为(34,32), 将点C(1,0)、P(34,32)代入y=kx+b 中,得 03324k b k b =+⎧⎪⎨=+⎪⎩,解得:66kb=-⎧⎨=⎩.故可得直线CP的函数表达式为y=-6x+6.【点睛】本题是一道一次函数综合题,考查了一次函数的性质、三角形的面积公式、待定系数法求解一次函数的解析式等知识点,解题关键是根据S△APC =12AC•y p求出点P的纵坐标,难度中等.27.(1)详见解析(2)详见解析(3)58【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=58°.【详解】解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE.∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP ,在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=58°,故答案为:58.28.-【解析】【分析】①直接利用完全平方公式将原式变形进而得出答案;②直接利用完全平方公式将原式变形进而得出答案.【详解】先阅读下列材料,再解决问题:①填上适当的数:====②解:原式==325=+=【点睛】本题主要考查了二次根式的性质与化简,正确应用完全平方公式时关键是记住公式形式,把握公式特征. 29.【解析】【分析】原式第一项利用平方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】解:原式=8-1+4-5=6.【点睛】本题考查实数的运算;零指数幂;负整数指数幂.30.(1)483x-≤≤;(2)x=25或2.【解析】【分析】(1)根据二次根式的被开方数为非负数,列不等式组求解;(2)根据a、b、c分别作直角三角形的斜边,由勾股定理分别求解.【详解】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得48 3x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.【点睛】本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.。

初中数学打折销售问题的常见题型-精品文档

初中数学打折销售问题的常见题型-精品文档

初中数学打折销售问题的常见题型一、基本概念1.成本价:购买一件商品的买入价叫做这件商品的成本价,也叫进价。

2.标价:商品出售时标出的价格叫商品的标价。

3.销售价:商品销售时实际的卖价,也叫成交价。

4.利润:商品的销售价减去成本,即商品销售时所赚(赔)的钱。

5.利润率:利润和成本的比,我们叫做商品的利润率。

6.折扣数:商品销售时售价占标价的百分比。

7.关键公式:(1)利润=销售价(卖出价)-成本(2)利润率= =(3)销售价=标价×折扣数二、常见的题型1.求商品进价商店将超级VCD按进价提高35%以后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价为多少元?解:设这种VCD的进价为x元,则(1+35%)x×0.9-x-50=208,解得x=1200。

2.求商品标价某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得: =15.2%,解之得:x=320。

3.求折扣数某商品进价是1000元,标价是1500元,后由于商品积压,某商场要以利润率不低于5%的价格销售,问售货员最多可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500? -1000)÷1000=5%,解之得:x=7。

4.求利润率某商店将每台彩电先按进价提高40%标出售价,然后广告宣传将以八折的优惠价出售,结果每台彩电赚了300元,则经销这种彩电的利润率是多少?解:设该彩电的进价为x元,根据题意得:x×(1+40%)×80%-x=300。

解得x=2500。

所以经销这种彩电的利润率为:获取的利润/彩电的进价= =0.12=12%。

5.求价格升降某种商品进价是1000元,售价为1500元,由于商品滞销,商店决定降价销售,但又要保证利润率不低于5%,那么,商店最多降()元。

打折销售应用题带答案

打折销售应用题带答案

打折销售应用题带答案1. 问题描述:一家服装店为了促销,决定对部分商品进行打折销售。

一件原价为500元的外套现在打8折出售,请问打折后的价格是多少?2. 解题步骤:- 首先,确定原价:500元。

- 其次,计算折扣:8折,即80%。

- 然后,计算打折后的价格:原价乘以折扣率。

3. 计算过程:- 原价:500元- 折扣率:80% = 0.8- 打折后价格 = 原价× 折扣率= 500 × 0.84. 答案:- 打折后的价格为400元。

5. 问题描述:一家电器商店为了清仓,决定对一款原价为3000元的电视机进行打折销售。

如果打6折,那么打折后的价格是多少?6. 解题步骤:- 首先,确定原价:3000元。

- 其次,计算折扣:6折,即60%。

- 然后,计算打折后的价格:原价乘以折扣率。

7. 计算过程:- 原价:3000元- 折扣率:60% = 0.6- 打折后价格 = 原价× 折扣率= 3000 × 0.68. 答案:- 打折后的价格为1800元。

9. 问题描述:一家书店正在搞促销活动,一本原价为80元的书现在打7.5折出售,请问打折后的价格是多少?10. 解题步骤:- 首先,确定原价:80元。

- 其次,计算折扣:7.5折,即75%。

- 然后,计算打折后的价格:原价乘以折扣率。

11. 计算过程:- 原价:80元- 折扣率:75% = 0.75- 打折后价格 = 原价× 折扣率= 80 × 0.7512. 答案:- 打折后的价格为60元。

初二数学手拉手模型练习题

初二数学手拉手模型练习题

初二数学手拉手模型练习题手拉手模型是一种非常实用的数学解题方法,特别适用于初中数学。

它以形象生动的方式展示了解题思路,帮助学生更好地理解和掌握数学知识。

本文将介绍几道初二数学手拉手模型练习题,旨在加深学生对手拉手模型的理解和应用能力。

练习题一:比例小明和小杰一起在田地里耕作,小明一天可以耕种2个小时,而小杰一天可以耕种4个小时。

他们俩一起工作6天,完成了多少小时的耕种工作?解题思路:我们可以使用手拉手模型来解决这个问题。

我们先设小明耕种的小时数为x,小杰耕种的小时数为2x。

则小明和小杰一起耕种的小时数为x + 2x = 3x。

根据比例关系可得出:2:4 = x:6通过交叉相乘法,我们可以得到2x = 12,解方程可得x = 6。

所以,小明和小杰一起工作6天,完成了18个小时的耕种工作。

练习题二:百分数某商品打折销售,原价为100元,现以8折的价格出售。

若小明购买了两件该商品,请计算小明共支付了多少钱?解题思路:我们可以使用手拉手模型来解决这个问题。

我们先设小明支付的金额为x,商品的原价为100元。

则商品折后的价格为100 * 80% = 80元。

根据比例关系可得出:80:100 = x:200通过交叉相乘法,我们可以得到80x = 200 * 100,解方程可得x = 250。

所以,小明购买了两件商品,共支付了250元。

练习题三:速度小华驾驶一辆摩托车前往一个城市,全程200公里。

第一段路他以每小时40公里的速度行驶,而第二段路他以每小时60公里的速度行驶。

请计算小华前往城市所需的总时间。

解题思路:我们可以使用手拉手模型来解决这个问题。

我们先设小华行驶第一段路的时间为x,行驶第二段路的时间为y。

根据速度与时间的关系可得出:40:x = 60:y通过交叉相乘法,我们可以得到40y = 60x。

由于行驶的总路程为200公里,所以x + y = 200。

我们可以将x代入上式,得到40y =60(200 - y),解方程可得y = 120。

2019-2020年八年级数学打折销售问题(基础知识拔高练习)

2019-2020年八年级数学打折销售问题(基础知识拔高练习)

2019-2020年八年级数学打折销售问题(基础知识拔高练习)【知识要点】商品打折销售中的相关关系式(1) 利润=售价-进价 (2) 利润=利润率X 成本(4) 定价=成本X ( 1 +期望的利润率)(利润率也称利润百分数,售价也称卖价)折数(5) 打折销售中的售价=标价X一10【基础测试】1、 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 ________________ ;2、 某种品牌的彩电降价 20%以后,每台售价为 a 元,则该品牌彩电每台原价应为 _____________________ 元;3、 某商品按定价的八折出售,售价是元,则原定售价是 ________________ ;4、 500元的9折价是 _________ 元,x 折是 ___________ 元.5、 某商品的每件销售利润是72元,进价是120,则售价是 _________________ 元.6、 某商品利润率13 %,进价为50元,则利润是 ______________ 元. 7•某商品的标价是1200元,打八折售出价后仍盈利 100元,则该商品的进价是多少元8、一件商品按30%勺利润定价,然后按七折卖出,结果亏损了 18元,这件商品的成本是多少元 【牛刀小试】1、 某种商品进价为1600元,按标价的8折出售利润率为10%问它的标价是多少2、 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利 25%另一件亏损25%卖这两件衣服总的是盈利还是亏损,或是不盈不亏3、 某商品的售价780元,为了薄利多销,按售价的 9折销售再返还30元礼券,此时仍获利10%此商品的进价是多少 元4、 一商店把彩电按标价的九折出售,仍可获利20%若该彩电的进价是 2400元,那么彩电的标价是多少元5、 某商品的标价为165元,若降价以9折出售(即优惠10%,仍可获利10% (相对于进价),那么该商品的进价是 多少6、 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于 5%勺售价打折出售,售货员最低可以打几折出 售此商品7、 某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费 相同,问共有多少学生参加旅游&某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚 20元,这种商品的定价为多少元9、 甲乙两件衣服成本共 500元,甲按50%勺利润定价,乙按 40%的利润定价,由于生意不好,两件都打九折,还获利 157元,原来甲乙两件衣服各多少元10、 学样准备组织教师和学生去旅游,其中教师2名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲(3)利润率=利润=售价进价 进价进价旅行社表示教师免费,学生按 8折费;乙旅行社表示教师和学生一律按折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游11、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。

2019-2020年八年级数学打折销售问题(基础知识拔高练习)

2019-2020年八年级数学打折销售问题(基础知识拔高练习)

2019-2020年八年级数学打折销售问题(基础知识拔高练习)【知识要点】商品打折销售中的相关关系式.(1)利润=售价-进价(2)利润=利润率×成本(3)利润率=进价利润=进价进价售价 (4)定价=成本×﹙1+期望的利润率﹚﹙利润率也称利润百分数,售价也称卖价﹚(5)打折销售中的售价=标价×10折数 【基础测试】1、某商品原来每件零售价是a 元, 现在每件降价10%,降价后每件零售价是 ;2、某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元;3、某商品按定价的八折出售,售价是14.8元,则原定售价是 ;4、500元的9折价是______元 ,x 折是_______元.5、某商品的每件销售利润是72元,进价是120,则售价是__________元.6、某商品利润率13﹪,进价为50元,则利润是________元.7.某商品的标价是1200元,打八折售出价后仍盈利100元,则该商品的进价是多少元?8.一件商品按30%的利润定价,然后按七折卖出,结果亏损了18元,这件商品的成本是多少元?【牛刀小试】1、某种商品进价为1600元,按标价的8折出售利润率为10%,问它的标价是多少?2、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?3、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?4、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元?5、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?6、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?7、某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?8、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?9、甲乙两件衣服成本共500元,甲按50%的利润定价,乙按40%的利润定价,由于生意不好,两件都打九折,还获利157元,原来甲乙两件衣服各多少元?10、学样准备组织教师和学生去旅游,其中教师2名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按8折费;乙旅行社表示教师和学生一律按7.5折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?11、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。

八年级初二数学 销售打折题 含答案

八年级初二数学 销售打折题 含答案

初中数学组卷一.选择题(共4小题)1.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏2.某商场购进一批服装,每件进价为100元,由于换季滞销,商场决定将这种服装按标价的7折销售,若打折后每件服装仍能获利5%,则该服装的标价是()A.150元B.140元C.130元D.120元3.在我们身边有一些股民,在每一次的股票交易中或盈利或亏损.某股民将甲,乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,该股民在这次交易中是()A.盈利125元B.亏损125元C.不赔不赚D.亏损625元4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元二.填空题(共2小题)5.某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解:设此商品按x折销售,则实际售价为元,利润为元,利润用含x的式子表示为,得方程,解得x=.6.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为.三.解答题(共4小题)7.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?8.欧亚超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.(1)打折前甲乙两种商品单价各为多少元?(2)张先生在店庆期间,购买10件甲商品和10件乙商品仅需735元,问这比不打折前少花多少钱?9.某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元.(1)甲、乙两种商品单价各多少元?(2)店庆期间,购买甲、乙两种商品各10件,省了多少钱?10.某超市出售A,B两种商品,买6件A商品和3件B商品共需要54元.买3样A商品和4件B商品共需要32元.(1)A,B两种商品的售价分别是多少元?(2)为了迎接春节,超市决定对A,B两种商品进行打折销售,打折后,买50件A商品和40件B商品共需要394元,这比打折前少花多少钱?初中数学组卷参考答案与试题解析一.选择题(共4小题)1.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【分析】设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入﹣成本=利润,即可得出商店卖这两件商品总的亏损20元.【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.某商场购进一批服装,每件进价为100元,由于换季滞销,商场决定将这种服装按标价的7折销售,若打折后每件服装仍能获利5%,则该服装的标价是()A.150元B.140元C.130元D.120元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.7x﹣100=100×5%,解得:x=150.故选:A.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.3.在我们身边有一些股民,在每一次的股票交易中或盈利或亏损.某股民将甲,乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,该股民在这次交易中是()A.盈利125元B.亏损125元C.不赔不赚D.亏损625元【分析】此题的关键是求得两种股票的买进价.设甲种股票、乙种股票的买进价分别是a 元,b元,根据甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,列方程求解.卖出价=买进价+买进价×利润率.【解答】解:设甲种股票、乙种股票买进价分别是a元,b元.根据题意得:a(1+20%)=1500,∴a=1250.b(1﹣20%)=1500,∴b=1875.1500×2﹣(1250+1875)=3000﹣3125=﹣125(元).故选:B.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.二.填空题(共2小题)5.某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解:设此商品按x折销售,则实际售价为600×元,利润为400×5%元,利润用含x的式子表示为600×﹣400,得方程600×﹣400=400×5%,解得x=7.【分析】设此商品按x折销售,根据商品进价和标价及利润间关系可得方程.【解答】解:设此商品按x折销售,则实际售价为600×元,利润为400×5%元,利润用含x的式子表示为600×﹣400,得方程600×﹣400=400×5%,解得x=7.故答案是:600×;400×5%;600×﹣400;600×﹣400=400×5%;7.【点评】本题考查了一元一次方程的应用.关键是利润=售价﹣进价,根据此等量关系可列方程求解.6.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为150元.【分析】此题的相等关系为,原价的80%等于销售价,依次列方程求解.【解答】解:设这款羊毛衫的原销售价为x元,依题意得:80%x=120,解得:x=150,故答案为:150元.【点评】此题考查的是一元一次方程的应用,关键是确定相等关系列方程求解.三.解答题(共4小题)7.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?【分析】可根据成本表示出相应的等量关系:定价×60%+20=定价×80%﹣15,把相关数值代入即可求解.【解答】解:设这种商品定价为x元,60%x+20=80%x﹣15,解得x=175.答:这种商品定价为175元.【点评】考查一元一次方程的应用,根据成本得到相应的等量关系是解决本题的关键.8.欧亚超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.(1)打折前甲乙两种商品单价各为多少元?(2)张先生在店庆期间,购买10件甲商品和10件乙商品仅需735元,问这比不打折前少花多少钱?【分析】(1)设打折前甲商品单价为x元/件,乙商品单价为y元/件,根据“购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出打折前需要的钱数,再减去735即可得出少花的钱数.【解答】解:(1)设打折前甲商品单价为x元/件,乙商品单价为y元/件,根据题意得:,解得:.答:打折前甲商品单价为50元/件,乙商品单价为40元/件.(2)10×50+10×40=900(元),900﹣735=165(元).答:这比不打折前少花165元钱.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,列式计算.9.某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元.(1)甲、乙两种商品单价各多少元?(2)店庆期间,购买甲、乙两种商品各10件,省了多少钱?【分析】(1)设甲商品的单价为x元/件,乙商品的单价为y元/件,根据“购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省金额=打折前购买费用﹣打折后购买费用列式计算,即可得出结论,【解答】解:(1)设甲商品的单价为x元/件,乙商品的单价为y元/件,根据题意得:,解得:.答:甲商品的单价为50元/件,乙商品的单价为40元/件.(2)(50+40)×10﹣735=165(元).答:店庆期间,购买甲、乙两种商品各10件,省了165元钱.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据节省金额=打折前购买费用﹣打折后购买费用列式计算.10.某超市出售A,B两种商品,买6件A商品和3件B商品共需要54元.买3样A商品和4件B商品共需要32元.(1)A,B两种商品的售价分别是多少元?(2)为了迎接春节,超市决定对A,B两种商品进行打折销售,打折后,买50件A商品和40件B商品共需要394元,这比打折前少花多少钱?【分析】(1)设A、B两种商品的售价分别是x元和y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值即可;(2)首先求出不打折时买50件A商品和40件B商品的价钱,再计算打折后少花多少钱.【解答】解:(1)设A、B两种商品的售价分别是x元和y元,根据题意得,解得.答:A、B两种商品的售价分别是8元和2元;(2)50×8+2×40﹣394=400+80﹣394=86(元).答:这比打折前少花86元.【点评】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。

折扣应用题及答案

折扣应用题及答案

折扣应用题及答案1. 某商店进行促销活动,原价为200元的商品打8折销售,顾客购买后发现商品有瑕疵,要求退货。

问顾客实际支付了多少钱?答案:原价200元的商品打8折,即200元× 0.8 = 160元。

所以顾客实际支付了160元。

2. 一家服装店进行换季促销,一件原价为500元的外套,现在打7.5折出售。

如果顾客使用一张50元的优惠券,那么顾客最终需要支付多少钱?答案:原价500元的外套打7.5折,即500元× 0.75 = 375元。

使用50元优惠券后,顾客最终需要支付375元 - 50元 = 325元。

3. 某书店进行促销活动,购买书籍满100元减20元。

小华购买了原价为150元的书籍,那么他实际需要支付多少钱?答案:小华购买的书籍原价为150元,满足满100元减20元的条件。

所以实际支付金额为150元 - 20元 = 130元。

4. 一家电器商店进行促销,原价为3000元的电视机,现在打9折出售,并且如果顾客使用信用卡支付,还可以额外享受9.5折优惠。

问顾客最终需要支付多少钱?答案:原价3000元的电视机打9折,即3000元× 0.9 = 2700元。

使用信用卡支付额外享受9.5折优惠,即2700元× 0.95 = 2565元。

所以顾客最终需要支付2565元。

5. 某超市进行促销,购买满200元的商品可以享受8折优惠。

小李购买了原价为300元的商品,那么他实际需要支付多少钱?答案:小李购买的商品原价为300元,满足满200元的条件,可以享受8折优惠。

所以实际支付金额为300元× 0.8 = 240元。

八年级数学题100道(含答案)

八年级数学题100道(含答案)

八年级数学题100道带答案1) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-141021x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2006答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=325494x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530(45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350(52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45(59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=706485x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21(81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=829540x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。

有关服装店的数学题目初二

有关服装店的数学题目初二

有关服装店的数学题目初二
当然,我可以为你提供一些关于服装店的数学问题,这些问题的难度适合初二年级的学生。

1. 一家服装店以每件80元的价格购入100件衬衫,并以每件100元的价格卖出。

如果这家店希望获得至少20%的利润,那么它至少需要卖出多少件衬衫?
2. 一家服装店有100件连衣裙,每件连衣裙的成本是80元。

如果这家店希望获得至少20%的利润,那么每件连衣裙的售价应该是多少?
3. 一家服装店在一天内售出了50件衣服,其中25%是衬衫,30%是裤子,45%是外套。

如果这家店每售出一件衣服的利润是15元,那么这一天内这家店通过销售衣服获得了多少利润?
4. 一家服装店在一周内售出了1000件衣服,其中周一至周三售出的是运动装,周四至周日售出的是休闲装。

运动装的售价是每件80元,休闲装的售价是每件120元。

如果这家店希望一周内的总利润至少为8000元,那么它一周内至少需要卖出多少件休闲装?
5. 一家服装店正在打折销售一批衣服,每件衣服的原价是100元,现在打8折出售。

如果这家店希望通过这次打折销售至少获得1000元的利润,那么它最多可以打折销售多少件衣服?。

2023届北京市房山区燕山地区八年级数学第一学期期末检测试题含解析

2023届北京市房山区燕山地区八年级数学第一学期期末检测试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是( ) A .2V Vt x x+= B .4V V t x x += C .11224V Vt x x⋅+⋅= D .24V V t x x+= 2.在平面直角坐标系xOy 中,点()2,3P -关于x 轴对称的点为( )A .()2,3- B .()2,3--C .()23D .()23-,3.﹣2的绝对值是( ) A .2B .12C .12-D .2-4.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( ) A .众数是2册 B .中位数是2.5册C .极差是2册D .平均数是1.62册5.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A .PD =PEB .OD =OEC .∠DPO =∠EPOD .PD =OP6.()020202019π-的计算结果是( ) A .20202019π-B .20192018π-C .0D .17.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.我们要节约用水,平时要关好水龙头.没有关好水龙头,每滴水约0.05毫升,每分钟滴60滴.如果小明忘记关水龙头,则x 分钟后,小明浪费的水y (毫升)与时间x (分钟)之间的函数关系是( ) A .y =60xB .y =3xC .y =0.05xD .y =0.05x+609.下列计算正确的是( ) A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 210.下列命题的逆命题为假命题的是( )A .如果一元二次方程()200a bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方. 11.不等式2x -1≤5的解集在数轴上表示为( ) A . B .C .D .12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩二、填空题(每题4分,共24分)13.如果△ABC 的三边长分别为7,5,3,△DEF 的三边长分别为2x ﹣1,3x ﹣2,3,若这两个三角形全等,则x=__________.14.如图,下列推理:①若∠1=∠2,则AB//CD ;②若AB//CD 则∠3=∠4;③若180ABC BCD ︒∠+∠=,则AD //BC ;④若∠1=∠2,则ADB CBD ∠=∠。

八年级初二数学 销售问题 含答案

八年级初二数学 销售问题 含答案

2019年八年级数学——销售问题
1、李云以8折的优惠价买了一双鞋,节省了20元,他买鞋实际用了多少?
2、小明去商店买练习本,店主告诉他,如果多买一些就给他8折优惠,小明买了30本,便宜了2.4元,原来每本练习本的价格是多少?
3、某商店将一种裤子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获得10元,这种裤子的成本是多少元?
4、甲商品的进价是1400元,按标价1700元的9折出售,乙商品的进价是400元,按标价560元的8折出售,哪种商品的利润率更高?
5、某种电脑按原零售价的9折出售,商家的利润率为20%,该电脑的原零售价是多少?进价是多少?
6、新华书店准备将一套图书打折出售,如果按定价的6折出售将赔60元,按定价8.5折出售将赚20元,这套图书的定价是多少元?
7、某商场鞋帽部经理让售货员小王给新到的一批皮鞋定标价,他说:“这批鞋每双的进价是200元,按标价的8折出售,利润率为20%”你能帮助小王确定每双皮鞋的标价吗?
8、新华书店一天内销售两种书籍,甲种书籍共卖得1560元,为发展农业科技,乙种书籍送下乡共卖得1350元。

若按甲、乙两种书的成本分别计算,甲种书盈利25%,乙种书亏本10%,该书店这天共盈利(或亏本)多少元?
9、某商品的进价是2000元,标价是3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
10、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件盈利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
11、市场鸡蛋按个数计价,一商贩以每个0.24元进购一批鸡蛋,但在运输中,不慎碰坏了12个,剩下的蛋以每个0.28元售出,结果盈利11.2元,问商贩当初买进多少鸡蛋?。

初二数学销售问题试卷答案

初二数学销售问题试卷答案

一、选择题(每题3分,共15分)1. 一家商店销售一件商品,定价为100元,打折后售价为80元,折扣率为()。

A. 20%B. 25%C. 30%D. 35%答案:A. 20%解析:折扣率 = (原价 - 现价) / 原价 = (100 - 80) / 100 = 20%2. 某商店原价出售一批商品,降价10%后,实际售价为90元,原价为()。

A. 100元B. 90元C. 80元D. 70元答案:A. 100元解析:原价 = 实际售价 / (1 - 折扣率) = 90 / (1 - 10%) = 100元3. 一件商品打八折后的价格是60元,原价为()。

A. 75元B. 80元C. 85元D. 90元答案:B. 80元解析:原价 = 实际售价 / 折扣率 = 60 / 80% = 75元4. 一件商品降价20%,现价为原价的()。

A. 80%B. 85%C. 90%D. 95%答案:A. 80%解析:现价 = 原价× (1 - 折扣率) = 原价× 80% = 原价× 0.85. 一件商品打九折后的价格是原价的()。

A. 10%B. 20%C. 80%D. 90%答案:C. 80%解析:现价 = 原价× 折扣率 = 原价× 90% = 原价× 0.9二、填空题(每题3分,共15分)1. 一件商品原价为120元,打八折后的价格是()元。

答案:96元解析:现价 = 原价× 折扣率= 120 × 80% = 96元2. 一件商品降价10%,现价为原价的()。

答案:90%解析:现价 = 原价× (1 - 折扣率) = 原价× 90% = 原价× 0.93. 一件商品打九折后的价格是原价的()。

答案:90%解析:现价 = 原价× 折扣率 = 原价× 90% = 原价× 0.94. 一件商品降价20%,现价为原价的()。

新人教版八年级下册数学各章专项训练试题 第20章 数据的分析(含答案)

新人教版八年级下册数学各章专项训练试题 第20章 数据的分析(含答案)

第20章数据的分析专项训练专训1.平均数、中位数、众数实际应用四种类型名师点金:利用统计量中“三数”的实际意义解决实际生活中的一些问题时,关键要理解“三数”的特征,然后根据题目中的已知条件或统计图表中的相关信息,通过计算相关数据解答.平均数的应用a.平均数在商业营销中的决策作用1.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的单价为9元/kg,乙种糖果的单价为10元/kg,丙种糖果的单价为12元/kg.(1)若甲、乙、丙三种糖果数量按2∶5∶3的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?(2)若甲、乙、丙三种糖果数量按6∶3∶1的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?b.平均数在人员招聘中的决策作用2.某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目教学能力科研能力组织能力人员甲86 93 73乙81 95 79(1)根据实际需要,将教学能力、科研能力、组织能力三项测试得分按5∶3∶2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.(第2题)c.平均数在样本估计总体中的作用3.为了估计某市空气的质量情况,某同学在30天里做了如下记录:污染指数w 40 60 80 100 120 140天数 3 5 10 6 5 1其中w≤50时空气质量为优,50<w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为________.4.(图表信息题)某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用(第4题)平均数和中位数的应用5.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:(1)在图①中,“7分”所在扇形的圆心角等于______.(2)请你将如图②所示的统计图补充完整.(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分,请写出甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?甲校成绩统计表成绩7分8分9分10分人数11 0 8中位数和众数的应用6.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1~8这8个整数,现提供统计图的部分信息(如图所示),请解答下列问题:(第6题)(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3时为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.平均数、中位数、众数的综合应用7.甲、乙、丙三个家电厂家在广告中都声称,他们的某品牌节能灯在正确使用的情况下,使用寿命都不低于8年.后来质量检测部门对他们的产品进行抽查,抽查的各8个产品使用寿命的统计结果如下(单位:年):甲厂:6,6,6,8,8,9,9,12乙厂:6,7,7,7,9,10,10,12丙厂:6,8,8,8,9,9,10,10(1)把以上三组数据的平均数、众数、中位数填入下表.平均数众数中位数甲厂乙厂丙厂(2)估计这三个厂家的推销广告分别利用了哪一种统计量.(3)如果你是顾客,应该选哪个厂家的节能灯?为什么?专训2.方差的几种常见应用名师点金:用方差解决实际应用问题,主要是通过计算实际问题中数据的离散程度,从而得出哪个稳定性更好,进行“择优选用”.2·1·c·n·j·y工业方面的应用1.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据(单位:s)如下表:编一二三四五六七八九十号类型甲种电1 -3 -4 42 -2 2 -1 -1 2子钟乙种4 -3 -1 2 -2 1 -2 2 -2 1电子钟(1)计算甲、乙两种电子钟走时误差的平均数.(2)计算甲、乙两种电子钟走时误差的方差.(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你会买哪种电子钟?为什么?农业方面的应用2.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活率为98%,现已挂果,经济效益初步显现.为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵树的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算估计,哪个山上的杨梅产量较稳定.(第2题)教育科技方面的应用3.七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答下列问题.进球数/个10 9 8 7 6 5一班人数/人 1 1 1 4 0 3二班人数/人0 1 2 5 0 2(1)分别求一班和二班选手进球数的平均数、众数、中位数.(2)如果要从这两个班中选出一个班代表本年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?社会生活方面的应用4.在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题: (1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s 甲2=23,数据11,15,18,17,10,19的方差s 乙2=353.(第4题)专训3.分析数据作决策的三种常见类型 名师点金:解决决策问题时,经常从数据的变化趋势及平均数、众数、中位数、方差等多个统计量进行分析,根据实际需要结合数据的特征,选择恰当的数据,作出合理的决策.用“平均数”决策1.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩/分甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由用“中位数、众数”决策2.某家电商场的一个柜组出售容积分别为268升、228升、185升、182升四种型号同一品牌的冰箱,每卖出一台冰箱,售货员就在一张纸上写出它的容积作为原始记录,到月底,柜组长清点原始记录,得到一组由10个182、18个185、66个228和16个268组成的数据.(1)这组数据的平均数有实际意义吗?(2)这组数据的中位数、众数分别等于多少?(3)这个商场总经理关心的是中位数还是众数,说明理由?3.公园里有甲、乙两群游客正在做团体游戏,甲群是同一居民小区的初中生在进行联谊游戏活动;乙群是居民小区的两位退休教师义务带领一群学前儿童在做游戏.调查这两群游客的年龄(单位:周岁)得到甲、乙两组数据:甲:12,13,13,13,14,14,14,14,14,15,15,15,16.乙:3,4,4,5,5,5,5,5,6,6,56,58.(1)求甲、乙两组数据的平均数、中位数、众数.(2)在各组数据的平均数、中位数和众数中,哪几个能反映各群游客的年龄特征?用“方差”决策4.为选派一名学生参加全市实践活动技能竞赛,A,B两位同学在校实习基地现场进行加工直径为20 mm的零件的测试,他俩各加工的10个零件的相关数据(单位:mm)依次如图表所示:平均数方差完全符合要求个数A 20 0.026 2B 20 sB2 5根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为________的成绩好些.(2)计算出sB2的大小,考虑平均数与方差,说明谁的成绩好些.(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参加竞赛较合适?说明你的理由.(第4题)专训4.七种常见热门考点名师点金:分析数据主要是根据数据的特征,恰当选择平均数、中位数、众数作出符合实际需要的分析,善于利用样本的数据估算总体的数据.本章要考查的主要考点可概括为:四个概念、三个应用.四个概念概念1 平均数1.某种蔬菜按品质分成三个等级销售,销售情况如下表:等级单价/(元/kg) 销售量/kg一等 5.0 20二等 4.5 40三等 4.0 40则售出蔬菜的平均单价为________.2.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是( )(第2题)A.2 B.2.8 C.3 D.3.3概念2 中位数3.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额/元 5 10 20 50人数/人10 13 12 15则学生捐款金额的中位数是( )A.13元B.12元C.10元D.20元概念3 众数3.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100 m男子比赛中,获得好成绩,成为历史上首位突破10 s大关的黄种人.下表是苏炳添近五次大赛参赛情况:比赛日期2012­8­4 2013­5­21 2014­9­28 2015­5­20 2015­5­31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩/s 10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为( )A.10.06 s,10.06 s B.10.10 s,10.06 sC.10.06 s,10.08 s D.10.08 s,10.06 s概念4 方差4.在一次数学测试中,某小组五名同学的成绩(单位:分)如下表(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是( )A.80,2 B.80,10 C.78,2 D.78,106.在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8,则关于这组数据的说法不正确的是( )A.平均数是5 B.中位数是6C.众数是4 D.方差是3.2三个应用应用1 平均数、中位数、众数的应用7.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:2-1-c-n-j-y每人加工零件个数540 450 300 240 210 120 人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?应用2 方差的应用8.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:(第8题)乙校成绩统计表分数/分人数/人70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.应用3 用样本估计总体的应用(第9题)9.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的表和图(如图).组别个人年消费金额x/元频数(人数) 频率A x≤2 000 18 0.15B 2 000<x≤4 000 a bC 4 000<x≤6 000D 6 000<x≤8 000 24 0.20E x>8 000 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a=________,b=________,c=________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3 000名员工,请你估计个人旅游年消费金额在6 000元以上的人数.答案专训11.解:(1)9×2+10×5+12×32+5+3=10.4(元).答:混合后得到的什锦糖果的单价定为每千克10.4元才能保证获得的利润不变. (2)9×6+10×3+12×16+3+1=9.6(元).答:混合后得到的什锦糖果的单价定为每千克9.6元才能保证获得的利润不变. 2.解:(1)甲的成绩:86×5+93×3+73×25+3+2=85.5(分),乙的成绩:81×5+95×3+79×25+3+2=84.8(分),所以甲将被录用.(2)甲能,乙不一定能.理由:由频数分布直方图可知,85分及以上的共有7人, 因此甲能被录用,乙不一定能被录用. 3.2924.解:(1)50-6-12-16-8=8(名),补全统计图如图所示.(第4题)(2)由统计图可得x -=6×1+12×2+16×3+8×4+8×550=3(h),估计该校全体学生平均每天完成作业所用总时间为3×1 800=5 400(h).点拨:本题综合考查平均数的应用、样本估计总体以及由统计图获取信息的能力.5.解:(1)144°(2)4÷72°360°=20(人),20-8-4-5=3(人),补全统计图如图所示.(第5题)(3)由(2)知乙校的参赛人数为20人.因为两校参赛人数相等,所以甲校的参赛人数也为20人,所以甲校得9分的有1人,则甲校学生成绩的平均数为(7×11+8×0+9×1+10×8)×120=8.3(分),中位数为7分.由于两个学校学生成绩的平均数一样,因此从中位数的角度进行分析.因为乙校学生成绩的中位数为8分,大于甲校学生成绩的中位数,所以乙校的成绩较好.(4)甲校的前8名学生成绩都是10分,而乙校的前8名学生中只有5人的成绩是10分,所以应选甲校.6.解:(1)因为把合格品数从小到大排列,第25个和第26个数据都为4,所以中位数为4.(2)众数的取值为4或5或6.(3)这50名工人中,单位时间内加工的合格品数低于3的人数为2+6=8(人),故估计该厂将接受技能再培训的人数为400×850=64(人).点拨:此题考查了条形统计图、用样本估计总体、中位数以及众数,弄清题意是解决本题的关键.7.解:(1)甲厂:8,6,8;乙厂:8.5,7,8;丙厂:8.5,8,8.5.(2)甲厂利用平均数或中位数;乙厂利用了平均数或中位数;丙厂利用了平均数或众数或中位数.(3)选丙厂的节能灯.因为无论从哪种统计量来看,与其他两个厂家相比,丙厂水平都比较高或持平,说明多数样本的使用寿命达到或超过8年. 专训21.解:(1)甲种电子钟走时误差的平均数是 110(1-3-4+4+2-2+2-1-1+2)=0(s), 乙种电子钟走时误差的平均数是110(4-3-1+2-2+1-2+2-2+1)=0(s). (2)s 甲2=110[(1-0)2+(-3-0)2+…+(2-0)2]=110×60=6,s 乙2=110[(4-0)2+(-3-0)2+…+(1-0)2]=110×48=4.8. (3)我会买乙种电子钟,因为平均走时误差相同,且甲种电子钟走时误差的方差比乙大,说明乙种电子钟的走时稳定性更好,所以乙种电子钟的质量更优.2.解:(1)x 甲=14(50+36+40+34)=40(kg),x 乙=14(36+40+48+36)=40(kg),估计甲、乙两山杨梅的产量总和为40×100×98%×2=7 840(kg). (2)s 甲2=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s 乙2=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24,所以s 甲2>s 乙估计乙山上的杨梅产量较稳定.3.解:(1)一班进球平均数:110(10×1+9×1+8×1+7×4+6×0+5×3)=7(个),二班进球平均数:110(10×0+9×1+8×2+7×5+6×0+5×2)=7(个);一班投中7个球的有4人,人数最多,故众数为7个, 二班投中7个球的有5人,人数最多,故众数为7个;一班中位数:按顺序排第五、第六名同学进7个球,故中位数为7个, 二班中位数:按顺序排第五、第六名同学进7个球,故中位数为7个.(2)一班的方差s12=110[(10-7)2+(9-7)2+(8-7)2+4×(7-7)2+0×(6-7)2+3×(5-7)2]=2.6,二班的方差s22=110[0×(10-7)2+(9-7)2+2×(8-7)2+5×(7-7)2+0×(6-7)2+2×(5-7)2]=1.4,二班选手水平发挥更稳定,如果争取夺得总进球数团体第一名,应该选择二班;一班前三名选手的成绩突出,分别进10个、9个、8个球,如果要争取个人进球数进入学校前三名,应该选择一班.4.解:(1)因为x 甲=16(15+16+16+14+14+15)=15;x 乙=16(11+15+18+17+10+19)=15.甲路段的中位数为:15;乙路段的中位数为:16. 甲路段极差:16-14=2;乙路段极差:19-10=9. s 甲2=23,s 乙2=353.所以相同点:两段台阶路每一级台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差不同(2)甲段台阶路走起来更舒服一些,因为它的每一级台阶高度的方差小.(3)每一级台阶高度均整修为15 cm(原数据的平均数),使得方差为0,此时游客行走最方便.专训31.解:(1)丙将被录用.理由:甲的平均成绩为(85+70+64)÷3=73(分),乙的平均成绩为(73+71+72)÷3=72(分),丙的平均成绩为(73+65+84)÷3=74(分).因为74>73>72,所以候选人丙将被录用.(2)甲将被录用.理由:甲的测试成绩为(85×5+70×3+64×2)÷(5+3+2)=76.3(分),乙的测试成绩为(73×5+71×3+72×2)÷(5+3+2)=72.2(分),丙的测试成绩为(73×5+65×3+84×2)÷(5+3+2)=72.8(分),因为76.3>72.8>72.2,所以候选人甲将被录用.2.解:(1)这组数据的平均数没有实际意义.(2)这组数据共有110个数据,中位数应是从小到大排列后第55个和第56个数据的平均数,这两个数据都是228,这组数据中228出现的次数最多,所以这组数据的中位数、众数都是228.(3)商场总经理关心的是众数.理由:众数是228,表明容积为228升的冰箱的销量最大,它能为商场带来较多的利润,因此,这种型号的冰箱要多进货,其他的型号则要少进货.3.解:(1)甲组数据的平均数是14,中位数是14,众数是14;乙组数据的平均数是13.5,中位数是5,众数是5.(2)对于甲群游客,平均数、众数、中位数都能反映这群游客的年龄特征;对于乙群游客,只有中位数和众数能反映这群游客的年龄特征.4.解:(1)B(2)由统计图可知sB2=110×[5×(20-20)2+3×(19.9-20)2+(20.1-20)2+(20.2-20)2]=0.008,平均数相同,而sA2=0.026,此时有sA2>sB2,所以B 的波动性小,即B 的成绩较好.(3)派A 去参加竞赛较合适.理由:从图中折线走势可知,尽管A 的成绩前面起伏较大,但后来逐渐稳定,误差小,预测A 的潜力大,选派A 去参加竞赛更容易出好成绩. 专训4 1.4.4元/kg 2.C3.D 点拨:因为10+13+12+15=50(人),按照从小到大顺序排列的第25个和第26个数据都是20元,所以中位数=20+202=20(元).4.C5.C 点拨:根据题意得丙的得分为80×5-(81+79+80+82)=78(分),方差为15×[(81-80)2+(79-80)2+(78-80)2+(80-80)2+(82-80)2]=2.故选C. 6.B7.解:(1)平均数是260个,中位数是240个,众数是240个.(2)不合理.因为表中数据显示,每月能完成260个的人数一共有4人,还有11人不能达到此定额,尽管260个是平均数,但不利于调动多数员工的积极性,而240个既是中位数,又是众数,是大多数人能达到的定额,故定额为240个较为合理. 8.解:(1)54° (2)6÷30%=20(人),20-6-3-6=5(人),统计图补充如下:(第8题)(3)20-1-7-8=4(人),x乙=707804901100820⨯+⨯+⨯+⨯=85(分).(4)因为s甲2<s乙2,所以甲校20名同学的成绩相对乙校较整齐.9.解:(1)36;0.30;120 补全条形统计图如图:(第9题)(2)C(3)估计个人旅游年消费金额在6 000元以上的人数为3 000×(0.10+0.20)=900(人).八年级数学下册知识点汇聚单元测试:第二十章(中考冲刺复习通用,含详解)一、选择题(每小题4分,共28分)1.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(2021·天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(2013·雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(2013·重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(2013·营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2013年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(2013·扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(2013·威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(2013·黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.。

江苏省无锡天一、格致中学2024-2025学年上学期八年级数学12月联考卷(含简要答案)

江苏省无锡天一、格致中学2024-2025学年上学期八年级数学12月联考卷(含简要答案)

无锡天一、格致中学2024-2025学年上学期八年级数学12月联考卷一、选择题(共10小题,每小题3分)1. 在平面直角坐标系中,点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在平面直角坐标系内有一点P ,若点P 位于第四象限,并且点P 到x 轴和y 轴的距离分别为5,4,则点P 的坐标是( )A. B. C. D. 3. 在平面直角坐标系中,点关于x 轴对称的点的坐标为( )A. B. C. D. 4. 若点在y 轴上,则点在( )A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5. 若函数是一次函数,则m 的值为( )A. 1B.C.D. 06. 已知点,,都在直线上,则,,的值的大小关系是( )A. B. C. D. 7. 如图,将一块等腰直角三角尺按如图所示放置在平面直角坐标系中,已知直角顶点C 的坐标为,点在第二象限,则点B 的坐标为( )A. B. C. D. 8. 在平面直角坐标系中,已知点,直线与线段有交点,则k 的取.(2,3)P -(5,4)-(4,5)-(4,5)--(5,4)-(4,)1-(4,1)-(1,4)-(4,1)(4,)1-(1,4)A n -(3,2)B n n +-||(1)5m y m x =+-1-1±()11,y ()22,y ()31,y -2y x b =+1y 2y 3y 321y y y <<123y y y <<312y y y <<213y y y <<()1,2(),A a b ()3,1b a -+()3,1b a -+()2,3a b --()2,3a b +-(2,3),(4,9)A B -(0)y kx k k =-≠AB值范围为( )A. B. 且 C. 或 D. 9. 一次函数与的图象如图,则下列结论:①;②关于x 的方程的解是;③当时,;④当时,.其中正确的是( )A. ①③B. ②④C. ①②③D. ①④10. 明明和亮亮都在同一直道A 、B 两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A 地出发,同时亮亮从B 地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y (米)与行走时间x (分)的函数关系的图象,则下列结论错误的是( )A. B. C. D. 二、填空题(共8小题,每小题3分)11. 在中,若y 是x 的正比例函数,则k 值为_______.12. 一次函数的图象不经过第 _____象限.13. 在一次函数图象中,随的增大而减小,则的取值范围是________.14. 已知点在一次函数的图象上,则代数式的值等于_______.15. 若函数y=4x +b 的图象与两坐标轴围成的三角形面积为2,则b=__________16. 如图,直线与分别交轴于点,,则不等式的解集为_________.的13k -≤≤13k -≤≤1k ≠1k ≤-3k ≥1k ≤-1y kx b =+2y x a =+0a k +<kx x a b -=-3x =-3x <12y y <1k =-6b a -=2100a =2000b =20c =1403d =1y x k =+-2y x =-()13y a x =--y x a (,)P a b 34y x =-+32a b +-y kx b =+y mx n =+x ()0.5,0A -()2,0B ()()0kx b mx n ++>17. 函数,当自变量时,这个函数的最大值为,则a 的值为_______.18. 如图,平面直角坐标系中,已知直线上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转900至线段PD ,过点D 作直线AB ⊥x 轴.垂足为B ,直线AB 与直线交于点A ,且BD=2AD ,连接CD ,直线CD 与直线交于点Q ,则点Q 的坐标为_______.三、解答题(共9小题)19. 已知,在如图所示的网格中建立平面直角坐标系后,三个顶点的坐标分别为.(1)画出关于y 轴的对称图形;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:在x 轴上画出一点Q ,使得的周长最小,则Q 点的坐标_______;53y x =--1x a -≤≤3a y x =y x =y x =ABC V (1,1)(4,2)(2,4)A B C 、、ABC V 111A B C △QAB(3)再把向下平移3个单位得到.若内有一点,则点P 经上述翻折、平移后得到的点的坐标是_______.20. 已知:与成正比例,且时,,(1)求y 与x 之间的函数关系式;(2)若该函数图象沿y 轴向上平移3个单位长度,求平移后图象与y 轴的交点坐标.21. 已知平面直角坐标系中有一点.(1)当点M 到x 轴的距离为1时,求点M 的坐标;(2)已知点,当轴时,求线段的长和点M 的坐标.22. 已知一次函数(a 为常数,)和.(1)当时,求两个函数图象的交点坐标;(2)不论a 为何值,(a 为常数,)的图象都经过一个定点,求这个定点坐标.23. 如图,平面直角坐标系中,直线交y 轴于点,交x 轴于点,直线交于点D ,交x 轴于点E .(1)点P 坐标为,求的面积;(2)以为腰在第一象限作等腰直角三角形,直接写出点C 的坐标.24. 如图,一次函数y 1=x +m 与x 轴,y 轴分别交于点A ,B ,函数y 1=x +m 与y 2=﹣2x 的图象交于第四象限的点C ,且点C 的横坐标为1.(1)求m 的值;(2)观察图象,当x 满足 时,y 1<y 2<0;(3)在x 轴上有一点P (n ,0),过点P 作x 轴的垂线,分别交函数y 1=x +m 和y 2=﹣2x 的图象于点D ,E .若DE =3OB ,求n的值.111A B C △222A B C △ABC V (,)P a b 2P 23y -31x +2x =5y =()123M m m -+,()54N ,MN x ∥MN 132y ax a =++0a ≠21y x =+1a =-132y ax a =++0a ≠:AB y kx b =+(0,3)A (6,0)B 2x =AB (2,4)-ABP AB ABC25. 甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶时间为,甲、乙两人距出发点的路程、关于x 的函数图象如图①所示,甲、乙两人之间的路程差y 关于x 的函数图象如图②所示,请你解决以下问题:(1)甲的速度是______km /h ,乙的速度是______km /h ;(2)对比图①、图②可知______,______;(3)乙出发多少时间,甲、乙两人路程差为7.5km ?26. 某公司有A 型产品80件,B 型产品120件,分配给下属甲、乙两个商店销售,其中140件给甲店,60件给乙店,且都能卖完.甲店销售A 型产品利润每件400元,销售B 型产品利润每件340元;乙店销售A 型产品利润每件320元,销售B 型产品利润每件300元.(1)若公司要求总利润不低于70280元,求出公司能采用几种不同的分配方案?(2)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利m 元,但让利后A 型产品每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?27. 已知:如图,一次函数的图像分别与x 轴、y 轴相交于点A 、B ,且与经过x 轴负半轴上的点C 的一次函数y =kx +b 的图像相交于点D ,直线CD 与y 轴相交于点E ,E 与B 关于x 轴对称,OA=的的()h x S 甲S 乙a =b =A B 、334y x =-3OC .(1)直线CD 的函数表达式为______;点D 的坐标______;(直接写出结果)(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将△ACD 的面积分为两部分,试求点P 的坐标;②点P 是否存在某个位置,将△BPD 沿着直线BP 翻折,使得点D 恰好落在直线AB 上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.79∶无锡天一、格致中学2024-2025学年上学期八年级数学12月联考卷简要答案一、选择题(共10小题,每小题3分)【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】B二、填空题(共8小题,每小题3分)【11题答案】【答案】1【12题答案】【答案】二【13题答案】【答案】##1a <1a>【14题答案】【答案】2【15题答案】【答案】±4【16题答案】【答案】﹣0.5<x <2【17题答案】【答案】1【18题答案】【答案】三、解答题(共9小题)【19题答案】【答案】(1)略(2)略;(2,0) (3)【20题答案】【答案】(1); (2).【21题答案】【答案】(1)或 (2),【22题答案】【答案】(1);(2).【23题答案】【答案】(1)18(2)或【24题答案】9944⎛⎫⎪⎝⎭,(),3a b --322y x =+()0,5()21M -,()31--,152MN =142M ⎛⎫- ⎪⎝⎭,(1,0)-(3,2)-(9,6)(3,9)【答案】(1)-3;(2)0<x <1;(3)n =4或n =﹣2.【25题答案】【答案】(1)25,10(2)10,15 (3)或【26题答案】【答案】(1)有四种不同的分配方案(2)略【27题答案】【答案】(1),(-4,-6) (2)①点坐标为或;②存在,点坐标为或.4h 37h 4934y x =+P 5334⎛⎫-- ⎪⎝⎭,918⎛⎫- ⎪⎝⎭,P 2421,1111⎛⎫-- ⎪⎝⎭833⎛⎫-- ⎪⎝⎭,。

北师大版八年级数学下册 2.4.2一元一次不等式的应用 能力提升 (含答案)

北师大版八年级数学下册 2.4.2一元一次不等式的应用 能力提升 (含答案)

2.4一元一次不等式的应用一、选择题1.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.120x≥80×5%B.120x−80≥80×5%C.120×x10≥80×5% D.120×x10−80≥80×5%2.某商品进价加价25%后出售,最后降价处理库存,要使后续销售不亏本,售价降价不能高于()A.20%B.25%C.30%D.40%3.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块4.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是()A.100B.396C.397D.4005.根据如图所示的计算程序框图,若要使输入的x的值只经过一次运行就能输出结果,则x的取值范围是( )A.x >3B.x <38C.x >38D.x >836.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为()元. A.370 B.380C.390D.410二、填空题7.今年,刘华的父亲年龄为50岁,刘华的年龄为x岁.若刘华的年龄的4倍再加上3岁还不超过他父亲的年龄,则可列出的不等式是________.8.商店以每辆300元的进价购入121辆自行车,并以每辆330元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出________辆自行车.9.某种品牌毛巾原零售价为每条8元,凡一次性购买三条以上(含三条),可享受商家推出的两种优惠销售办法中的任意一种,第一种三条按原价,其余按七折优惠;第二种:全部按原价的八折优惠.若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买________条毛巾.10.“618购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打________折. 11.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数比去年至少要增加________天.12.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金________元.三、解答题13.某学校为了迎接“中招考试理化生实验”,需购进A,B两种实验标本共75个.经调查,A种标本的单价为20元,B种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个A种标本?(列不等式解决)14.某批服装进价为每件200元,商店标价为每件300元.现商店准备将这批服装打折出售,但要保证毛利润不低于8%,商店最低可按标价的几折出售?(通过列不等式进行解答)15.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.16.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元;(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个.17.某商店欲购进A、B两种商品,已知购进A种商品3件和B种商品4件共需220元;若购进A种商品5件和B种商品2件共需250元.(1)求A、B两种商品每件的进价分别是多少元?(2)若每件A种商品售价48元,每件B种商品售价31元,且商店将购进A、B两种商品共50件全部售出后,要获得的利润不少于360元,问A种商品至少购进多少件?18.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?19.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为________,________;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)20.襄江中学组织九年级部分学生到古隆中参观,租用的客车有50座和30座两种可供选择.学校根据参加参观的学生人数计算可知:若只租用30座客车x辆,还差10人才能坐满;若只租用50座客车,比只租用30座客车少用2辆,且有一辆车没有坐满但超过30人.(1)写出九年级参观的学生人数y与x的关系式;(2)求出此次参观的九年级学生人数;(3)若租用一辆30座客车往返费用为260元,租用一辆50座客车往返费用为400元,如何选择租车方案费用最低?2.4一元一次不等式的应用参考答案一、选择题1.D2.A3.C4.B5.D6.B二、填空题7.4x+3≤508.1119.1010.八11.3712.3520三、解答题13.最多可以购买35个A种标本14.商店最低可按标价的7.2折出售15.设租用A型号客车x辆,则租用B型号客车(10−x)辆,依题意,得:600x +450(10−x)≤5600, 解得:x ≤713. 又∵x 为整数, ∴x 的最大值为7.答:最多能租用7辆A 型号客车.设租用A 型号客车x 辆,则租用B 型号客车(10−x)辆, 依题意,得:45x +30(10−x),≥380, 解得:x ≥513.又∵x 为整数,且x ≤713, ∴x =6,7.∴有两种租车方案,方案一:组A 型号客车6辆、B 型号客车4辆;方案二:组A 型号客车7辆、B 型号客车3辆. 16.解:(1)设一个篮球和一个足球的售价各是x 元、y 元, 由题意得{x +2y =1702x +y =190 , 得{x =70y =50, 答:一个篮球和一个足球的售价各是70元、50元; (2)设购进足球a 个,购进篮球(100−a)个, a ≤2(100−a), 解得,a ≤6623, ∴最多购买足球66个, 答:最多购买足球66个. 17.A 种商品每件的进价为40元,B 种商品每件的进价为25元 A 种商品至少购进30件18.设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元, 由题意可得:{y −x =0.6500x +200y =960 , 解得:{x =1.2y =1.8, 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元; 设该市明年购买A 型一体机m 套,则购买B 型一体机(1100−m)套, 由题意可得:1.8(1100−m)≥1.2(1+25%)m , 解得:m ≤600, 设明年需投入W 万元,W =1.2×(1+25%)m +1.8(1100−m) =−0.3m +1980, ∵−0.3<0,∴W 随m 的增大而减小, ∵m ≤600,∴当m =600时,W 有最小值−0.3×600+1980=1800, 故该市明年至少需投入1800万元才能完成采购计划. 19. 288,356小明每天读28页,小红每天读40页.(1)从第6天起,小明至少平均每天要比原来多读m 页. 由题意:84+28×5+5(28+m)−10×40≥0, 解得m ≥7.2, ∵m 是整数, ∴m =8,∴小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过 20.若只租用30座客车x 辆,还差10人才能坐满,则九年级参观的学生人数y =30x −10;依题意得:30<(30x−10)−50(x−3)<50,解之得,412<x<512.由于车辆数只能取整数,所以x=5.∴y=30×5−10=140.故此次参观的九年级学生有140人;①如果只租用30座客车,那么需要5辆,此时租车费用为260×5=1300(元);②如果只租用50座客车,那么需要3辆,此时租车费用为400×3=1200(元);③如果两种合租,那么需要30座客车3辆,50座客车1辆,此时租车费用为260×3+400=1180(元).故租用30座客车3辆,50座客车1辆时租车费用最低.。

八年级初二数学销售问题之难题含答案

八年级初二数学销售问题之难题含答案

销售问题之难题一.选择题(共1小题)1.随着改革开放的不断深化,市场经济日益繁荣,与生产、生活、经济有关的数学问题不断渗透给我们,使我们了解了许多常识.针对“商品销售”中的一些问题,小明是这样理解的:(1)利润=售价﹣进价;(2)若一件商品按成本价x元提高20%后标价应为20%x元;(3)若商品的标价为200元,按x折打折后售价为200x元;(4)若一件商品的进价为100元,利润率为x,则售价为100(1+x)元.对于小明的理解,你认为正确的语句有()A.1个B.2个C.3个D.4个二.解答题(共10小题)2.销售问题:某商场将进价a元的货物提价40%后销售,后因积压又按售价的60%出售,用代数式表示实际的售价,问这次是亏了还是赚了?3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果公司想要在这段时间内获得不低于2250元的销售利润,求销售量w至少为多少千克?4.如图,l1反映了神州装载机厂一天的销售收入与销售量之间的函数关系,l2反映了装载机厂一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)当销售量为多少时该装载机厂销售收入等于销售成本?(2)分别求出l1与l2所对应的函数表达式;(3)当销售量为20辆时,该厂所获利润为多少(利润=销售收入﹣销售成本)?(4)要使每天的利润为10万元,该厂每天应保证销售多少辆?第1页(共13页)5.某商店经销一种成本为每千克40元的产品,若按每千克50元销售,一个月能售出500千克.销售单价每涨1元,月销售量就减少10千克,针对这种产品,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量与月销售利润;(2)商店想在销售额不超过20000元的情况下,使得月销售利润达到8000元,则销售单价应为多少?6.某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?7.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采取提高售价,减少进货量的办法增加利润,已知这种商品每涨价1元,每天的销售量就要减少10件,设该商人将每件售价定为x元,每天获得的总利润为y元,回答下列问题:(1)提价后,销售每件商品可获利元,每天少销售件商品;2x8.嵊州某公司经销一种花生,每千克成本为10元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,关系式为:w=﹣10x+300.设这种花生在这段时间内的销售利润为y(元).解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大;(3)如果物价部门规定这种花生的销售单价不得高于18元/千克,那么销售单价定为多少时,公司在这段时间内获得的销售利润最大?最大利润是多少?9.某商店经销一种成本为每千克40元的产品,若按每千克50元销售,一个月能售出500千克.销售单价每涨1元,月销售量就减少10千克,针对这种产品,请解答以下问题:则月销售量为千克月销售利润元(1)当销售单价定为每千克55元时,元时,则月销售量为(2)商店想在销售额不超过20000元的情况下,使得月销售利润达到8000元,则销售单价应为多少?(3)当销售单价定为多少时?月销售利润达到最大值,最大月销售利润为多少?10.某商场销售一种新商品,每天可销售100件,每件利润为12元,在试销期间发现,当每件商品销售价每降价1元时,日销售量就增加20件,据此规律,请回答下列问题:(1)当销售价降价x元时,该商品每天可销售件,每件盈利元;(2)在该商品销售正常的情况下,每件降价几元时,商场每天销售该商品的盈利可达到1400元?11.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题:(1)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;(2)在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为多少?(3)在月销售成本不超过10000元的情况下,销售单价定为多少时,月销售利润达到最大?销售问题之难题参考答案与试题解析一.选择题(共1小题)1.随着改革开放的不断深化,市场经济日益繁荣,与生产、生活、经济有关的数学问题不断渗透给我们,使我们了解了许多常识.针对“商品销售”中的一些问题,小明是这样理解的:(1)利润=售价﹣进价;(2)若一件商品按成本价x元提高20%后标价应为20%x元;(3)若商品的标价为200元,按x折打折后售价为200x元;(4)若一件商品的进价为100元,利润率为x,则售价为100(1+x)元.对于小明的理解,你认为正确的语句有()A.1个B.2个C.3个D.4个【分析】根据“商品销售”利润知识对(1)﹣(4)的说法逐一判断得出正确选项.【解答】解:(1)商品销售,其利润等于售价减去进价,故正确;(2)一件商品按成本价x元提高20%后标价应为(1+20%)x元,故错误;(3)商品的标价为200元,按x折打折后售价应为200×=20x元,故错误;(4)一件商品的进价为100元,利润率为x,售价应为100(1+x)元,故正确;所以正确的语句是(1)、(4),故选:B.【点评】此题考查的知识点是商品销售问题,关键是正确理解,准确列出代数式.二.解答题(共10小题)2.销售问题:某商场将进价a元的货物提价40%后销售,后因积压又按售价的60%出售,用代数式表示实际的售价,问这次是亏了还是赚了?【分析】实际售价=进价×(1+40%)×60%,和进价相比即可.【解答】解:实际售价=a×(1+40%)×60%=0.84a,0.84a<a,∴亏了.【点评】考查列代数式,得到实际售价的等量关系是解决本题的关键.3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =﹣2x +240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题:(1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大?(3)如果公司想要在这段时间内获得不低于2250元的销售利润,求销售量w 至少为多少千克?【分析】(1)根据利润=每件利润•销售量,列出函数关系式即可;(2)利用配方法,根据二次函数的性质解决问题即可;(3)列出不等式即可解决问题;【解答】解:(1)y =(x ﹣50)•w =(x ﹣50)(﹣2x +240)=﹣2x 2+340x ﹣12000, ∴y 与x 的关系式为:y =﹣2x 2+340x ﹣12000.(2)y =﹣2x 2+340x ﹣12000=﹣2(x ﹣85)2+2450,∴当x =85时,50<x ≤90内,y 的值最大为2450.(3)当y ≥2250时,可得不等式﹣2(x ﹣85)2+2450≥2250.(利用图象)解得75≤x ≤95.又∵x ≤90,∴75≤x ≤90,∵w =﹣2x +240,﹣2<0,W 随x 的增大而减小.∴x =90,w 有最小值为60.答:销售量w 至少为60千克【点评】本题考查二次函数的应用、配方法、二次不等式等知识,解题的关键是学会构建二次函数解决最值问题,学会用转化的思想思考问题.4.如图,l 1反映了神州装载机厂一天的销售收入与销售量之间的函数关系,l 2反映了装载机厂一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)当销售量为多少时该装载机厂销售收入等于销售成本?(2)分别求出l 1与l 2所对应的函数表达式;(3)当销售量为20辆时,该厂所获利润为多少(利润=销售收入﹣销售成本)? 410【分析】(1)由函数图象关键函数的意义可以得出结论;(2)设l1与x的关系式为y1=k1x,l2与x的关系式为y2=k2x+b2,由待定系数法求出其解即可;(3)设销售利润为w,根据利润=销售收入﹣销售成本就可以得出解析式,当x=20时代入解析式期初其解即可;(4)当w=10时代入(3)的解析式求出x的值即可.【解答】解:(1)由函数图象,得当销售量为4辆时,该装载机厂销售收入等于销售成本;(2)设l1与x的关系式为y1=k1x,l2与x的关系式为y2=k2x+b2,由题意,得4=4k1,,解得:k1=1,,∴y1=x,y2=0.5x+2.答:l1与l2所对应的函数表达式分别为:y1=x,y2=0.5x+2.(3)设销售利润为w,由题意,得w=x﹣0.5x﹣2,w=0.5x﹣2.当x=20时,w=0.5×20﹣2=8(万元).答:当销售量为20辆时,该厂所获利润为8万元;(4)由题意,得当w=10时,10=0.5x﹣2,解得:x =24.答:要使每天的利润为10万元,该厂每天应保证销售24辆.【点评】本题考查了一次函数的图象的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,一元一次方程的运用,由函数值求自变量的值的运用,由函数值求自变量的值的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.解答时求出函数的解析式是关键. 5.某商店经销一种成本为每千克40元的产品,若按每千克50元销售,一个月能售出500千克.销售单价每涨1元,月销售量就减少10千克,针对这种产品,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量与月销售利润;(2)商店想在销售额不超过20000元的情况下,使得月销售利润达到8000元,则销售单价应为多少?【分析】(1)根据单价每涨1元,月销售量就减少10千克可得出销量,继而能得出销售利润.(2)设销售单价为x 元,根据题意列出方程,再由销售额不超过20000元可得出符合题意的解.【解答】解:(1)当销售单价定为每千克55元时,月销售量:500﹣(55﹣50)×10=450(千克),利润:450×(55﹣40)=6750(元);(2)设销售单价为x 元,依题意得:(x ﹣40)[500﹣10(x ﹣50)]=8000,整理得:x 2﹣140x +4800=0,解得:x 1=60,x 2=80;当x =60时,月销售量为400千克,销售额为24000元(舍去).当x =80时,月销售量为200千克,销售额为16000元答:此时销售单价应为80元.【点评】此题考查了一元二次方程的应用,与实际结合的比较紧密,解答本题的关键是仔细审题,得出等量关系,有一定的难度.6.某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x (件)是销售商品的数量,y (元)是销售人员的月工资.如图所示,y 1为方案一的函数图象,y 2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少8元.从图中信息解答如下问题(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?【分析】(1)设l1所表示的函数关系式为y1=k1x,由待定系数法就可以求出解析式;(2)由函数图象就可以得出方案二中每月付给销售人员的底薪为560元;(3)由(1)可以求出方案1每件的提成,从而就可以求出方案2每件的提成,设销售m件时两种工资方案所得到的工资数额相等建立方程求出其解,可以得出销售方案即可.【解答】解:(1)设l1所表示的函数关系式为y1=k1x,由图象,得600=40k1,解得:k1=15,∴l1所表示的函数关系式为y1=15x;(2)∵每件商品的销售提成方案二比方案一少8元,∴y2=(15﹣8)x+b把(40,840)代入得840=7×40+b解得b=560∴方案二中每月付给销售人员的底薪是560元;(3)由题意,得方案一每件的提成为600÷40=15元,∴方案二每件的提成为15﹣8=7元,设销售m件时两种工资方案所得到的工资数额相等,由题意,得15m=560+7m,解得:m=70.∴销售数量为70时,两种工资方案所得到的工资数额相等;当销售件数少于70件时,提成方案二好些;当销售件数等于70件时,两种提成方案一样;当销售件数多于70件时,提成方案一好些.【点评】本题主要考查了待定系数法求一次函数的解析式的运用,本题主要考查了待定系数法求一次函数的解析式的运用,一元一次方程的运用,一元一次方程的运用,设计方案的运用,解答时认真分析,弄清函数图象的意义是关键.7.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采取提高售价,减少进货量的办法增加利润,已知这种商品每涨价1元,每天的销售量就要减少10件,设该商人将每件售价定为x元,每天获得的总利润为y元,回答下列问题:(1)提价后,销售每件商品可获利x﹣8元,每天少销售10x﹣100件商品;(2)当每件售价x定为多少元时可使每天所获利润最大?并求出每天的最大利润.【分析】(1)每件利润为x﹣8元,销售量为100﹣10(x﹣10),据此可得答案.(2)根据日利润=销售量×每件利润.利用配方法即可解决问题.【解答】解:(1)由题意知提价后,销售每件商品可获利(x﹣8)元,每天少销售10(x ﹣10)=10x﹣100件商品,故答案为:x﹣8、10x﹣100;(2)y=(x﹣8)[100﹣10(x﹣10)]=﹣10(x﹣14)2+360(10≤a<20),∵a=﹣10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元.【点评】本题考查二次函数的应用,解题的关键是理解利润、销售量、每件利润之间的关系,学会构建二次函数解决在问题,属于中考常考题型.8.嵊州某公司经销一种花生,每千克成本为10元.市场调查发现,在一段时间内,销售量w x w x+300花生在这段时间内的销售利润为y (元).解答下列问题:(1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大;(3)如果物价部门规定这种花生的销售单价不得高于18元/千克,那么销售单价定为多少时,公司在这段时间内获得的销售利润最大?最大利润是多少?【分析】(1)根据利润=每千克的利润×销售量,列式整理即可得解;(2)把二次函数关系式整理成顶点式形式,然后根据二次函数的最值问题解答;(3)根据二次函数的增减性可知,当x =18元时销售利润最大,然后把x 的值代入函数关系式进行计算即可得解.【解答】解:(1)每千克的销售利润是(x ﹣10)元,所以,y =(x ﹣10)w =(x ﹣10)(﹣10x +300)=﹣10x 2+400x ﹣3000,即y =﹣10x 2+400x ﹣3000;(2)y =﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,所以,当x =20时,y 的值最大;(3)y =﹣10(x ﹣20)2+1000,∵﹣10<0,0<x ≤18,∴当x =18时,销售利润最大,最大利润为﹣10(18﹣20)2+1000=960元.【点评】本题考查了二次函数的应用,主要利用了二次函数的最值问题,二次函数的增减性,整理得到利润的函数表达式是解题的关键.9.某商店经销一种成本为每千克40元的产品,若按每千克50元销售,一个月能售出500千克.销售单价每涨1元,月销售量就减少10千克,针对这种产品,请解答以下问题: (1)当销售单价定为每千克55元时,则月销售量为 450 千克 月销售利润 6750 元 (2)商店想在销售额不超过20000元的情况下,使得月销售利润达到8000元,则销售单价应为多少?(3)当销售单价定为多少时?月销售利润达到最大值,最大月销售利润为多少?【分析】(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500﹣(销售单价﹣50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利第11页(共13页)页)(2)根据月销售利润=销售每千克的利润×销售数量列方程,根据月销售利润=销售每千克的利润×销售数量列方程,解一元二次方程即可得出解一元二次方程即可得出x 的值,再根据月销售额不超过20000元,分别计算单价为60元和80元的销售额,可得结论;(3)设销售单价为每千克x 元,月销售利润为y 元,根据月销售利润=销售每千克的利润×销售数量,即可得出y 与x 之间的函数关系式;配方可得函数的最大值.【解答】解:(1)当销售单价定为每千克55元时,月销售量为500﹣(55﹣50)×10=450(千克),月销售利润为(55﹣40)×450=6750(元).故答案为:450;6750.(2)设销售单价为每千克x 元,根据题意得:(x ﹣40)[500﹣(x ﹣50)×10]=8000﹣10x 2+1400x ﹣40000=8000,﹣10x 2+1400x ﹣48000=0,x 2﹣140x +4800=0,(x ﹣60)(x ﹣80)=0,∴x 1=60,x 2=80.当x =60时,销售额:60×[500﹣(60﹣50)×10]=24000>20000,不符合题意, 当x =80时,销售额:80×[500﹣(60﹣50)×10]=16000<20000,符合题意, 所以销售单价应定为80元.(3)设销售单价为每千克x 元,月销售利润为y 元,根据题意得:y =(x ﹣40)[500﹣(x ﹣50)×10]=﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000.则当销售单价定为70元时,月销售利润达到最大值,最大月销售利润为9000元.【点评】本题主要考查了二次函数的应用,能正确表示出月销售量是解题的关键.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.10.某商场销售一种新商品,每天可销售100件,每件利润为12元,在试销期间发现,当每件商品销售价每降价1元时,日销售量就增加20件,据此规律,请回答下列问题: (1)当销售价降价x 元时,该商品每天可销售 100+20x 件,每件盈利 12﹣x 元; (2)在该商品销售正常的情况下,每件降价几元时,商场每天销售该商品的盈利可达到1400元?【分析】(1)根据每件商品销售价每降价1元时,日销售量就增加20件,得出当销售价降价x元时,该商品每天可销售100+20x件,再根据每件利润为12元,降了x元后,每件盈利是(12﹣x)元;(2)设每件降价x元时,商场每天销售该商品的盈利可达到1400元,根据一件的利润×总的件数=总利润列出方程,求出x的值即可得出答案.【解答】解:(1)∵每天可销售100件,当每件商品销售价每降价1元时,日销售量就增加20件,∴当销售价降价x元时,该商品每天可销售100+20x,∵每件利润为12元,∴每件盈利(12﹣x)元;故答案为:100+20x;12﹣x;(2)设每件降价x元时,商场每天销售该商品的盈利可达到1400元,根据题意得:(100+20x)(12﹣x)=1400,解得:x1=2,x2=5,答:每件降价2元或5元时,商场每天销售该商品的盈利可达到1400元.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解;本题的等量关系是:一件的利润×总的件数=总利润.11.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题:(1)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;(2)在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为多少?(3)在月销售成本不超过10000元的情况下,销售单价定为多少时,月销售利润达到最大?【分析】(1)根据题意可以列出y关于x的函数关系式;(2)令y=8000代入(1)中的函数关系式,可以求得销售单价,还要注意要使顾客获得实惠,可知利润不变的情况下,降价越多,顾客获得的实惠越多;页)第12页(共13页)第13页(共13页)页)(3)将(1)中函数关系式化为顶点式,再根据月销售成本不超过10000元,可以求得销售单价定为多少时,月销售利润达到最大.【解答】解:(1)由题意可得,y =(x ﹣40)[500﹣(x ﹣50)×10]=﹣10x 2+1400x ﹣40000,即y 与x 的函数关系式是:y =﹣10x 2+1400x ﹣40000;(2)将y =8000代入y =﹣10x 2+1400x ﹣40000,得﹣10x 2+1400x ﹣40000=8000,解得,x =60或x =80,∵要使顾客获得实惠,∴定价为每千克80元,即在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为每千克80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000,又∵40×[500﹣(x ﹣50)×10]≤10000,解得,x ≥75,∴当x =75时,月销售利润最大,即在月销售成本不超过10000元的情况下,元的情况下,销售单价定为每千克销售单价定为每千克75元时,元时,月销售利润达月销售利润达到最大.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,根据题意可以列出相应的函数关系式,可以发现题目中的隐含条件,如要使顾客获得实惠.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学组卷一.选择题(共4小题)1.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏2.某商场购进一批服装,每件进价为100元,由于换季滞销,商场决定将这种服装按标价的7折销售,若打折后每件服装仍能获利5%,则该服装的标价是()A.150元B.140元C.130元D.120元3.在我们身边有一些股民,在每一次的股票交易中或盈利或亏损.某股民将甲,乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,该股民在这次交易中是()A.盈利125元B.亏损125元C.不赔不赚D.亏损625元4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元二.填空题(共2小题)5.某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解:设此商品按x折销售,则实际售价为元,利润为元,利润用含x的式子表示为,得方程,解得x=.6.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为.三.解答题(共4小题)7.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?8.欧亚超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.(1)打折前甲乙两种商品单价各为多少元?(2)张先生在店庆期间,购买10件甲商品和10件乙商品仅需735元,问这比不打折前少花多少钱?9.某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元.(1)甲、乙两种商品单价各多少元?(2)店庆期间,购买甲、乙两种商品各10件,省了多少钱?10.某超市出售A,B两种商品,买6件A商品和3件B商品共需要54元.买3样A商品和4件B商品共需要32元.(1)A,B两种商品的售价分别是多少元?(2)为了迎接春节,超市决定对A,B两种商品进行打折销售,打折后,买50件A商品和40件B商品共需要394元,这比打折前少花多少钱?初中数学组卷参考答案与试题解析一.选择题(共4小题)1.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【分析】设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入﹣成本=利润,即可得出商店卖这两件商品总的亏损20元.【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.某商场购进一批服装,每件进价为100元,由于换季滞销,商场决定将这种服装按标价的7折销售,若打折后每件服装仍能获利5%,则该服装的标价是()A.150元B.140元C.130元D.120元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.7x﹣100=100×5%,解得:x=150.故选:A.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.3.在我们身边有一些股民,在每一次的股票交易中或盈利或亏损.某股民将甲,乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,该股民在这次交易中是()A.盈利125元B.亏损125元C.不赔不赚D.亏损625元【分析】此题的关键是求得两种股票的买进价.设甲种股票、乙种股票的买进价分别是a 元,b元,根据甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,列方程求解.卖出价=买进价+买进价×利润率.【解答】解:设甲种股票、乙种股票买进价分别是a元,b元.根据题意得:a(1+20%)=1500,∴a=1250.b(1﹣20%)=1500,∴b=1875.1500×2﹣(1250+1875)=3000﹣3125=﹣125(元).故选:B.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.二.填空题(共2小题)5.某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解:设此商品按x折销售,则实际售价为600×元,利润为400×5%元,利润用含x的式子表示为600×﹣400,得方程600×﹣400=400×5%,解得x=7.【分析】设此商品按x折销售,根据商品进价和标价及利润间关系可得方程.【解答】解:设此商品按x折销售,则实际售价为600×元,利润为400×5%元,利润用含x的式子表示为600×﹣400,得方程600×﹣400=400×5%,解得x=7.故答案是:600×;400×5%;600×﹣400;600×﹣400=400×5%;7.【点评】本题考查了一元一次方程的应用.关键是利润=售价﹣进价,根据此等量关系可列方程求解.6.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为150元.【分析】此题的相等关系为,原价的80%等于销售价,依次列方程求解.【解答】解:设这款羊毛衫的原销售价为x元,依题意得:80%x=120,解得:x=150,故答案为:150元.【点评】此题考查的是一元一次方程的应用,关键是确定相等关系列方程求解.三.解答题(共4小题)7.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?【分析】可根据成本表示出相应的等量关系:定价×60%+20=定价×80%﹣15,把相关数值代入即可求解.【解答】解:设这种商品定价为x元,60%x+20=80%x﹣15,解得x=175.答:这种商品定价为175元.【点评】考查一元一次方程的应用,根据成本得到相应的等量关系是解决本题的关键.8.欧亚超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.(1)打折前甲乙两种商品单价各为多少元?(2)张先生在店庆期间,购买10件甲商品和10件乙商品仅需735元,问这比不打折前少花多少钱?【分析】(1)设打折前甲商品单价为x元/件,乙商品单价为y元/件,根据“购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出打折前需要的钱数,再减去735即可得出少花的钱数.【解答】解:(1)设打折前甲商品单价为x元/件,乙商品单价为y元/件,根据题意得:,解得:.答:打折前甲商品单价为50元/件,乙商品单价为40元/件.(2)10×50+10×40=900(元),900﹣735=165(元).答:这比不打折前少花165元钱.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,列式计算.9.某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元.(1)甲、乙两种商品单价各多少元?(2)店庆期间,购买甲、乙两种商品各10件,省了多少钱?【分析】(1)设甲商品的单价为x元/件,乙商品的单价为y元/件,根据“购买3件甲商品和1件乙商品需用190元,购买2件甲商品和3件乙商品需用220元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省金额=打折前购买费用﹣打折后购买费用列式计算,即可得出结论,【解答】解:(1)设甲商品的单价为x元/件,乙商品的单价为y元/件,根据题意得:,解得:.答:甲商品的单价为50元/件,乙商品的单价为40元/件.(2)(50+40)×10﹣735=165(元).答:店庆期间,购买甲、乙两种商品各10件,省了165元钱.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据节省金额=打折前购买费用﹣打折后购买费用列式计算.10.某超市出售A,B两种商品,买6件A商品和3件B商品共需要54元.买3样A商品和4件B商品共需要32元.(1)A,B两种商品的售价分别是多少元?(2)为了迎接春节,超市决定对A,B两种商品进行打折销售,打折后,买50件A商品和40件B商品共需要394元,这比打折前少花多少钱?【分析】(1)设A、B两种商品的售价分别是x元和y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值即可;(2)首先求出不打折时买50件A商品和40件B商品的价钱,再计算打折后少花多少钱.【解答】解:(1)设A、B两种商品的售价分别是x元和y元,根据题意得,解得.答:A、B两种商品的售价分别是8元和2元;(2)50×8+2×40﹣394=400+80﹣394=86(元).答:这比打折前少花86元.【点评】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。

相关文档
最新文档