必修4 平面向量知识点总结

合集下载

高一数学必修4知识点梳理:平面向量

高一数学必修4知识点梳理:平面向量

2、零向量:长度为0第二章平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:e =±a a ||4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作//ab ;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。

6、向量加法运算:⑴三角形法则的特点:首尾相接⑵平行四边形法则的特点:起点相同baCBA -=A -AB =B a bC Cc高一数学必修4知识点梳理:平面向量⑶运算性质:①交换律:+=+a b b a ;②结合律:++=++a b c a b c ()();③+=+=a a a 00.⑷坐标运算:设=a x y ,11(),=b x y ,22(),则+=++a b x x y y ,1212)(. 7、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设=a x y ,11(),=b x y ,22(),则-=--a b x x y y ,1212)(.设A 、B 两点的坐标分别为x y ,11(),x y ,22(),则AB =--x x y y ,2121)(.8、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作λa . ①=λλa a ;②当>λ0时,λa 的方向与a 的方向相同;当<λ0时,λa 的方向与a 的方向相反; 当=λ0时,=λa 0.⑵运算律:①=λμλμa a ()();②+=+λμλμa a a ();③+=+λλλa b a b (). ⑶坐标运算:设=a x y ,(),则==λλλλa x y x y ,,()().9、向量共线定理:向量≠a a 0()与b 共线,当且仅当有唯一一个实数λ,使=λb a . 设=a x y ,11(),=b x y ,22(),其中≠b 0,则当且仅当-=x y x y 01221时,向量a 、≠b b 0()共线.10、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使=+λλa e e 1122.(不共线的向量e 1、e 2作为这一平面内所有向量的一组基底)11、分点坐标公式:设点P 是线段P P 12上的一点,P 1、P 2的坐标分别是x y ,11(),x y ,22(),当P P =PP λ12时,点P 的坐标是⎝⎭++ ⎪⎛⎫++λλλλx x y y 11,1212. 12、平面向量的数量积:⑴定义:≠≠≤≤⋅=θθa b a b a b cos 0,0,0180)(.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①⊥⇔⋅=a b a b 0.②当a 与b 同向时,⋅=a b a b ;当a 与b 反向时,⋅=-a b a b ;⋅==a a a a 22或=⋅a a a .③⋅≤a b a b .⑶运算律:①⋅=⋅a b b a ;②⋅=⋅=⋅λλλa b a b a b ()()();③+⋅=⋅+⋅a b c a c b c ().⑷坐标运算:设两个非零向量=a x y ,11(),=b x y ,22(),则⋅=+a b x x y y 1212. 若=a x y ,(),则=+a x y 222,或=+a x y 22.设=a x y ,11(),=b x y ,22(),则⊥⇔+=a b x x y y 01212.设a 、b 都是非零向量,=a x y ,11(),=b x y ,22(),θ是a 与b 的夹角,则++==⋅+θx yx ya ba b x x y y cos 112222221212.第三章 三角恒等变形1、同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα(3)倒数关系:αα=1cot tan=+sin tan tan 1222ααα ; =+co s 1t an 122αα注意: tan ,cos ,sin ααα 按照以上公式可以“知一求二”2、两角和与差的正弦、余弦、正切S +βα)(:=++sin cos cos sin )sin(βαβαβα S -βα)(:=--sin cos cos sin )sin(βαβαβα C +βα)(:a =+-sin sin cos cos )cos(βαβαβ C -βα)(:a =-+sin sin cos cos )cos(βαβαβ T +βα)(: =++-)tan(tan tan tan tan 1βαβαβαT -βα)(: =--+)tan(tan tan tan tan 1βαβαβα正切和公式:-⋅+=+βαβαβα)tan tan 1()tan(tan tan3、辅助角公式:222222cos sin sin cos b a x b x a a b a x b b a x +=++++⎛⎝⎫⎭⎪⎪ x b a x x b a +⋅+=⋅+⋅+=ϕϕϕ2222)sin cos cos (sin )sin((其中ϕ称为辅助角,ϕ的终边过点b a ),(,tan ϕ=b a)4、二倍角的正弦、余弦和正切公式: S 2α: =cos sin 22sin αααC 2α: -=sin cos 2cos 22ααααα-=-=221cos 2sin 21 T 2α: =-2tan tan 2tan 12ααα*二倍角公式的常用变形:①、=-αα|sin |22cos 1,=+αα|cos |22cos 1;②、=-αα1212|sin |2cos , =+αα1212|cos |2cos③-=+-=ααααα442221cos sin 21cos sin 2sin 2;=-442cos sin cos ααα;*降次公式:=cos sin 122sin ααα ααα=-+-=2sin 2cos 12122cos 12 ααα=++=2cos 2cos 12122cos 125、*半角的正弦、余弦和正切公式:±=-ααsin2cos 12 ; ±=+ααcos 2cos 12, ±=-+tan2cos 1cos 1ααα=-=+cos 1sin sin cos 1αααα6、同角三角函数的常见变形:(活用“1”)① -=cos 1sin 22αα; -±=cos 1sin 2αα;-=sin 1cos 22αα; -±=sin 1cos 2αα; ②=++=22cot tan sin cos cos sin 22sin θθθθθθθ,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±; |cos sin |2sin 1ααα±=± 7、补充公式:*①万能公式2tan12tan2sin 2ααα+=; 2t a n12t a n1c o s 22ααα+-=; 2t a n12t a n2t a n 2ααα-=*②积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=*③和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin2cos 2sin sin βαβαβα-+=- 2co s 2co s 2co s co s βαβαβα-+=+;2sin2sin 2cos cos βαβαβα-+-=- 注:带*号的公式表示了解,没带*公式为必记公式。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结第二章平面向量16、向量:既有大小,又有方向得量、数量:只有大小,没有方向得量、有向线段得三要素:起点、方向、长度、零向量:长度为得向量、单位向量:长度等于个单位得向量、平行向量(共线向量):方向相同或相反得非零向量、零向量与任一向量平行、相等向量:长度相等且方向相同得向量、17、向量加法运算:⑴三角形法则得特点:首尾相连、⑵平行四边形法则得特点:共起点、⑶三角形不等式:、⑷运算性质:①交换律:;②结合律:;③、⑸坐标运算:设,,则、18、向量减法运算:⑴三角形法则得特点:共起点,连终点,方向指向被减向量、⑵坐标运算:设,,则、设、两点得坐标分别为,,则、19、向量数乘运算:⑴实数与向量得积就就是一个向量得运算叫做向量得数乘,记作、①;②当时,得方向与得方向相同;当时,得方向与得方向相反;当时,、⑵运算律:①;②;③、⑶坐标运算:设,则、20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使、设,,其中,则当且仅当时,向量、共线、21、平面向量基本定理:如果、就就是同一平面内得两个不共线向量,那么对于这一平面内得任意向量,有且只有一对实数、,使、(不共线得向量、作为这一平面内所有向量得一组基底)22、分点坐标公式:设点就就是线段上得一点,、得坐标分别就就是,,当时,点得坐标就就是、(当23、平面向量得数量积:⑴、零向量与任一向量得数量积为、⑵性质:设与都就就是非零向量,则①、②当与同向时,;当与反向时,;或、③、⑶运算律:①;②;③、⑷坐标运算:设两个非零向量,,则、若,则,或、设,,则、设、都就就是非零向量,,,就就是与得夹角,则、第三章三角恒等变换24、两角与与差得正弦、余弦与正切公式:⑴;⑵;⑶;⑷;⑸();⑹()、25、二倍角得正弦、余弦与正切公式:⑴、222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵ 升幂公式降幂公式,、⑶、26、(后两个不用判断符号,更加好用)2,一次方”得 形式。

高中数学必修4知识点总结:第二章平面向量

高中数学必修4知识点总结:第二章平面向量

‎修4 ‎总结第二章 平面向量16 向量 向 ‎量. 量 向 ‎量. 向 ‎三要素 起 向 长度. 向量 长度 向‎0量.向量 长度 ‎1 向量‎.平 向量 向量 向 ‎ ‎向量. 向量 ‎ 向量平 ‎. 向量 长度 ‎ 向 ‎向量.17 向量 ‎算 ⑴三 ‎ 特 首尾 连. ⑵平 ‎ 特 ‎ 起 . ⑶三 ‎式a b a b a b-≤+≤+.⑷ 算性质 ①交换律 a b b a +=+;②结合律 ()()a b c a b c ++=++;③00a a a +=+=.⑸坐标 算 设()11,a x y = ()22,b x y = ()1212,a b x x y y +=++. 18 向量 ‎算 ⑴三 ‎ 特 起 连 向 向 ‎ 向量.⑵坐标 算 设()11,a x y = ()22,b x y = ()1212,a b x x y y -=--. 设A B 坐标‎分别 ()11,x y ()22,x y ()1212,x x y y A B=--.19 向量 ‎算⑴ 向量‎λa ‎向量 算‎ 向量 ‎ 记作a λ. ①a a λλ=;②当0λ>时 a λ 向 ‎a 向 ;当0λ<时 a λ 向 ‎a 向 ;当0λ=时 0a λ=. ⑵ 算律 ①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标 算 设(),a x y = ()(),,a x y x y λλλλ==.20 向量 ‎ 向量 ‎()0a a ≠b 当 当 ‎ ‎λ 使b a λ=. 设()11,a x y = ()22,b x y = 其 0b ≠ 当 当‎12210x y x y -=时 向量a ()0b b ≠ . 21 平面向量 ‎本 如果1e 2e 平面‎ ‎ 向量 ‎ 平面 ‎ 意向量a ‎ 1λ 2λ 使1122a e e λλ=+. 向‎量1e 2e 作 平‎面 向‎量 baCB Aa b C C -=A -AB =B‎底22 分 坐标 ‎式 设 ‎P 12P P 上 1P 2P 坐标分别‎ ()11,x y ()22,x y 当12λP P =PP 时 坐标 ‎P 1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.当时 就 式。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

必修四_平面向量知识点梳理_图文

必修四_平面向量知识点梳理_图文
(2) 因为 =(1,3)-(-2,1) =(3,2)
例10.设A(2, 3),B(5, 4),C(7, 10) 满足
(1) λ为何值时,点P在直线y=x上? (2)设点P在第三象限, 求λ的范围.
解: (1) 设P(x, y),则 (x-2, y-3)=(3, 1)+λ(5, 7), 所以x=5λ+5,y=7λ+4. 解得λ =
(其中 + = 1)
(2) 当t = 时, 为△OAB的中线公式(向量式).
常称
例5. 设AB=2(a+5b),BC= 2a + 8b,CD=3(a b), 求证:A、B、D 三点共线。
分析 要证A、B、D三点共线,可证 AB=λBD关键是找到λ
解: ∵BD=BC+CD= 2a + 8b+ 3(a b)=a+5b
例14.已知a=(2,3),b=(-4,7),则a在b上的投影为( C )
A.
B.
C.
D.
解析 设a和b的夹角为θ, |a|cosθ=
解 :
解:∵ ∴
同理可得
∴θ=120°
[解] [答案] C
C
A
B
A
B
P
C
[解析]
【例23】已知向量a=(cos x,sin x),
b=(cos ,-sin ),且x∈[
解:c = m a+n b (7,-4)=m(3,-2)+n(-2,1) 3m-2n=7 m=1 -2m+n=-4 n=-2 c = a-2b
另解:可以试着将
P
B A
O
说明:(1) 本题是个重要题型:设O为 平面上任一点,则:

必修4-平面向量知识点总结

必修4-平面向量知识点总结

必修4-平面向量知识点总结平面向量知识点小结一、向量的基本概念1.向量是既有大小又有方向的量,用有向线段来表示。

需要注意的是,向量可以平移,因此不能简单地将向量等同于有向线段。

举例1:已知A(1,2),B(4,2),将向量AB按照向量a=(-1,3)平移后得到的向量是(3,0)。

2.零向量是长度为0的向量,记作0.零向量的方向是任意的。

3.单位向量是长度为1的向量。

与AB共线的单位向量是±AB/|AB|。

4.相等向量是长度相等且方向相同的两个向量。

相等向量具有传递性。

5.平行向量(也叫共线向量)是方向相同或相反的非零向量a、b。

记作a∥b。

需要注意的是,零向量和任何向量都是平行的。

注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与两条直线平行是不同的概念。

两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性(因为有例外);④三点A、B、C共线⇔ AB、AC共线。

6.相反向量是长度相等方向相反的向量。

a的相反向量记作-a。

举例2:以下命题中,正确的是(4)和(5)。

1) 若|a|=|b|,则a=b。

2) 两个向量相等的充要条件是它们的起点相同,终点相同。

3) 若AB=DC,则ABCD是平行四边形。

4) 若ABCD是平行四边形,则AB=DC。

5) 若a=b,b=c,则a=c。

6) 若a//b,b//c,则a//c。

二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB。

需要注意的是,起点在前,终点在后。

2.符号表示:用一个小写的英文字母来表示,如a、b、c 等。

3.坐标表示:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i、j为基底,那么平面内的任一向量a都可以表示为a=x*i+y*j=(x,y)。

(x,y)称为向量a的坐标,a=(x,y)叫做向量a的坐标表示。

需要注意的是,如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

高中数学必修(4)第二章平面向量(知识点汇总)

高中数学必修(4)第二章平面向量(知识点汇总)

必修4第二章 平面向量1、向量的有关概念:(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模)。

(2)零向量:长度为0的向量叫做零向量,其方向是任意的。

(3)单位向量:长度等于1个单位长度的向量。

与a 同向且长度为1的向量,叫做a 的单位向量,记作0a ,||0a a a =。

(4)平行向量:方向相同或相反的两非零向量叫做平行向量。

任一组平行向量经过平移都可以移到同一条直线上,平行向量又叫做共线向量。

规定:0 与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2、向量的表示法:(1)字母表示法:如a ,AB 等;(2)几何表示法:用一条有向线段表示向量;(3)代数表示法:在平面直角坐标系中,设向量OA 的起点O 在坐标原点,终点坐标为(x ,y ),则(x ,y )称为OA 的坐标,记为OA =(x ,y );3、向量的线性运算法则:(1)平行四边形法则(2)三角形法则4、向量的线性运算性质: a b b a +=+(交换律))()(c b a c b a ++=++(结合律)a a a =+=+0000 =a 00=⋅a 00 =λ||||||a a λλ=a a)()(λμμλ=a a a μλμλ+=+)(b a b a λλλ+=+)(⇔+=)(21OB OA OM M 是线段AB 的中点非零向量a 的单位向量为||a a ± 5、共线向量定理:如果b a λ=,则b a //;反之,如果b a //,且0 ≠b ,则一定存在唯一一个实数λ使b a λ=。

6、两个向量平行的充要条件:若a 与b 不共线且b a μλ=,则0==μλ;若a 与b 是两个非零向量,则它们共线的充要条件是存在两个均不是零的实数μλ、,使0 =+b a μλ。

7、平面向量基本定理:如果21,e e 是同一平面的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21a a 、,使得2211e a e a a += ,我们把不共线的向量21,e e 叫做表示这个平面内所有向量的一组基底。

平面向量知识点梳理

平面向量知识点梳理

平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。

2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。

二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。

2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。

3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。

三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。

2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。

3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。

4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。

5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。

四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。

2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。

五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。

2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。

六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。

2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。

以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。

通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

(完整版)高中数学必修4平面向量知识点总结

(完整版)高中数学必修4平面向量知识点总结

高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。

平面向量知识点归纳总结图

平面向量知识点归纳总结图

平面向量知识点归纳总结图一、平面向量的定义1.1 平面向量的概念在平面上任意选定一个起点和一个终点之间的有序对称就称为平面向量,记作。

平面向量可以用有向线段来表示,有向线段的起点就是平面向量的起点,终点就是平面向量的终点。

1.2 平面向量的表示平面向量可以用坐标表示,设平面向量的起点为原点O,终点为点A(x, y),则平面向量记作。

1.3 平面向量的相等两个平面向量相等指的是它们的模相等,并且方向相同,即两个平面向量相等当且仅当。

二、平面向量的运算2.1 平面向量的加法设和,平面向量+的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。

2.2 平面向量的减法设,平面向量-的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。

2.3 数乘设,数的积是一个新的平面向量,其长度是向量的倍数,方向与向量相同。

三、平面向量的运算性质3.1 交换律3.2 结合律3.3 分配律四、平面向量的应用4.1 平面向量的线段设线段的两个端点分别为A(x1, y1)和B(x2, y2),则向量的终点减去起点的坐标差即为该线段的平面向量表示。

4.2 平面向量的位置关系(1) 共线若向量平行,则它们共线。

(2) 垂直若,则它们垂直。

4.3 平面向量的运动学应用若一个物体在平面内的任意两点A、B之间作平移运动,其位矢向量表示。

五、平面向量的数量积5.1 定义设,,则积。

5.2 计算(1)坐标法(2)数量积的几何意义5.3 性质(1)交换律(2)结合律(3)分配律5.4 应用(1)判断共线若,则共线。

(2)判断垂直若,则垂直。

(3)夹角公式若,则夹角α的余弦值是的数量积。

六、平面向量的叉乘6.1 定义设,把数视为数乘6.2 计算6.3 性质6.4 应用七、平面向量的混合积7.1 定义设、,则混合积7.2 计算7.3 性质7.4 应用八、几何向量8.1 平面向量的模8.2 单位向量8.3 平行四边形法则8.4 平面向量的夹角公式8.5 平面向量的坐标表示8.6 平面向量的位置关系总结平面向量是高中数学中的一个重要概念,它不仅有着丰富的几何意义,还具有广泛的物理意义。

平面向量知识点总结(精华)

平面向量知识点总结(精华)

平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。

例如,物理学中的力、位移等都是向量。

我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。

字母表示:用小写字母a、b、c等表示。

2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。

模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。

3. 零向量长度为\(0的向量称为零向量,记作0。

零向量的方向是任意的。

4. 单位向量模等于\(1的向量称为单位向量。

对于非零向量a,与它同方向的单位向量记作e=aa。

例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。

5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。

规定:零向量与任意向量平行。

若向量a与b平行,记作a。

例如,a=(1,2),b=(2,4),因为b = 2a,所以a。

6. 相等向量长度相等且方向相同的向量称为相等向量。

若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。

二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。

平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。

向量加法的运算律:交换律:a+b=b+a。

结合律:\((a+b)+c=a+(b+c)。

2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。

向量减法的定义:ab=a+(b)。

其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。

3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点第二章平面向量1. 平面向量的概念:平面上具有大小和方向的箭头。

2. 向量的表示:向量通常用小写字母加上一个箭头表示,如a→。

3. 平行向量:具有相同或相反的方向的向量。

4. 向量的加法:向量a→与向量b→相加得到向量c→,其坐标分别相加,即c→ = a→ + b→。

5. 向量的减法:向量a→与向量b→相减得到向量c→,其坐标分别相减,即c→ = a→ - b→。

6. 向量的数量积:向量a→与向量b→的数量积,用a·b表示,满足a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ为两个向量夹角的大小。

7. 向量的数量积的性质:具有交换律、结合律和分配律。

8. 向量的夹角:向量a→与向量b→的夹角可以通过向量的数量积来计算夹角的余弦值。

9. 向量的夹角的性质:两个向量夹角为0°,当且仅当它们是同一向量或其中一个向量是另一个向量的相反向量。

10. 向量的共线与垂直:两个向量共线,当且仅当它们的夹角为0°或180°;两个向量垂直,当且仅当它们的数量积为0。

11. 平面向量的坐标表示:平面上的向量可以用坐标表示,即向量a→可以表示为(a,b)。

12. 平面向量的数量积的坐标表示:向量a→(a1, a2)与向量b→(b1, b2)的数量积为a1b1 + a2b2。

13. 向量的数量积与坐标表示的关系:向量a→(a1, a2)与向量b→(b1, b2)的数量积等于它们的坐标相乘的和。

14. 平移向量:平面上的一点A沿着一条向量a→移动到另一点B,其位置关系可以用带箭头的线段→AB表示,这条线段就是向量a→。

15. 平面向量的模运算:给定向量a→(a1, a2),有|a→| = √(a1^2 + a2^2)。

这些是数学必修四第二章平面向量的核心知识点。

必修4 平面向量知识点归纳总结

必修4 平面向量知识点归纳总结

第二章 平面向量知识点归纳向量的概念向量的运算向量的运用向量的加、减法实数与向量的积向量的数量积平面向量的基本定理及坐标表示向量的坐标运算物理学中的运用几何中的运用两向量平行的充要条件两向量垂直的充要条件向量的夹角向量的模两点间的距离一、向量的相关概念:1.向量的概念:我们把既有大小又有方向的量叫向量注意:数量与向量的区别:1 数量只有大小,是一个代数量,可以进行代数运算、比较大小;2 向量有方向,大小,双重性,不能比较大小2、 向量的表示方法:几何表示法:①用有向线段表示;②用字母、等表示;③用有向线段的起点与终点字母:;坐标表示法:3、向量的模:向量的大小――长度称为向量的模,记作||.4、特殊的向量:①长度为0的向量叫零向量,记作的方向是任意的②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.5、相反向量:与长度相同、方向相反的向量记作6、相等的向量:长度相等且方向相同的向量叫相等向量.向量与相等,记作;7、平行向量(共线向量):方向相同或相反的向量,称为平行向量记作平行向量也称为共线向量规定零向量与任意向量平行。

8、两个非零向量夹角的概念:已知非零向量与,作=,=,则叫与的夹角说明:(1)当时,与同向;(2) 当时,与反向;(3) 当时,与垂直,记⊥;规定零向量和任意向量都垂直。

(4)注意在两向量的夹角定义,两向量必须是同起点的范围0≤≤1809、实数与向量的积:实数λ与向量的积是一个向量,记作,它的长度与方向规定如下:(Ⅰ);(Ⅱ)当时,的方向与的方向相同;当时,的方向与的方向相反;当时,,方向是任意的10、两个向量的数量积:已知两个非零向量与,它们的夹角为,则, 叫做与的数量积(或内积)规定11、向量的投影:定义:||cos叫做向量在方向上的投影,投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 ||;当 = 180时投影为 ||,称为向量在方向上的投影投影的绝对值称为射影二、重要定理、公式:1、平面向量基本定理:,是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数,使(1).平面向量的坐标表示如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得…………我们把叫做向量的(直角)坐标,记作…………其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做向量的坐标表示与相等的向量的坐标也为特别地,,,(2) 若,,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标2、两个向量平行的充要条件向量共线定理:向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使设,,则或3、两个向量垂直的充要条件设,,则4、平面内两点间的距离公式(1)设,则或(2)如果表示向量的有向线段的起点和终点的坐标分别为A、B,那么(平面内两点间的距离公式)5、两向量夹角的余弦()三、向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质,特别注意:(1)结合律不成立: ;(2)消去律不成立不能得到(3)不能得到=或=乘法公式成立:线段的定比分点公式: 设点P分有向线段所成的比为λ,即=λ,则(线段定比分点的坐标公式)当λ=1时,得中点公式:=(+)或平移公式: 设点P(x,y)按向量=(h,k)平移后得到点P′(x ′,y′),则=+a或曲线y=f(x)按向量=(h,k)平移后所得的曲线的函数解析式为:y-k=f(x-h)补充:一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:.(1)右边等号成立条件:同向或中有;(2)左边等号成立条件:反向或中有;(3)当不共线.3.三角形重心公式在中,若,,,则其重心的坐标为.举例 若的三边的中点分别为,则的重心的坐标为 .结果:4.三角形“三心”的向量表示(1)为△的重心,特别地为△的重心.(2)为△的垂心.(3)为△的内心;向量所在直线过△的内心.5. 向量中三终点共线存在实数,使得且.举例 平面直角坐标系中,为坐标原点,已知两点若点满足,其中且,则点的轨迹是 .结果:直线。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。

2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。

(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。

(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。

二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。

2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。

3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。

4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。

(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。

2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。

高中数学必修4知识点总结:第二章-平面向量

高中数学必修4知识点总结:第二章-平面向量

高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基baCBAa b C C -=A -AB =B底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示. 注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB 按向量(1,3)a =-平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b , 规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ⇔、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.举例2 如下列命题:(1)若||||a b =,则a b =.(2)两个向量相等的充要条件是它们的起点相同,终点相同. (3)若AB DC =,则ABCD 是平行四边形. (4)若ABCD 是平行四边形,则AB DC =. (5)若a b =,b c =,则a c =.(6)若//a b ,//b c 则//a c .其中正确的是 . 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j 为基底,则平面内的任一向量a 可表示为(,)a xi yj x y =+=,称(,)x y 为向量a 的坐标,(,)a x y =叫做向量a 的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同. 三、平面向量的基本定理定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+. (1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成. (3)向量的正交分解:当12,e e 时,就说1122a λe λe =+为对向量a 的正交分解. 举例3 (1)若(1,1)a =,(1,1)b =-,(1,2)c =-,则c = . 结果:1322a b -. (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =,2(1,2)e =-B.1(1,2)e =-,2(5,7)e =C.1(3,5)e =,2(6,10)e =D.1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭(3)已知,AD BE 分别是ABC △的边BC ,AC 上的中线,且AD a =,BE b =,则BC 可用向量,a b 表示为 . 结果:2433a b +.(4)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0.四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下: (1)模:||||||a a λλ=⋅;(2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=,注意:0a λ≠.五、平面向量的数量积1.两个向量的夹角:对于非零向量a ,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角.当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2πθ=时,a ,b 垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则AB BC ⋅=_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=- ⎪⎝⎭,c a kb =+,d a b =-,c 与d 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =,||5b =,3a b ⋅=-,则||a b +=____. 结果:23.(4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30.3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.举例5 已知||3a =,||5b =,且12a b ⋅=,则向量a 在向量b 上的投影为______. 结果:125. 4.a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积. 5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: (1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅,特别地,222||||a a a a a a =⋅=⇔=;||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件; 当θ为锐角时,0a b ⋅>,且a 、b 不同向,0a b ⋅>是θ为锐角的必要不充分条件; 当θ为钝角时,0a b ⋅<,且a 、b 不反向;0a b ⋅<是θ为钝角的必要不充分条件. (3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a 与b 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=,若12S <,则OF ,FQ 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫ ⎪⎝⎭; (3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足||3||ka b a kb +=-(其中0k >). ①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小. 结果:①21(0)4k a b k k +⋅=>;②最小值为12,60θ=. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =,BC b =,则向量AC 叫做a 与b 的和,即a b AB BC AC +=+=; 作图:略.注:平行四边形法则只适用于不共线的向量.(2)向量的减法运算法则:三角形法则.运算形式:若AB a =,AC b =,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点. 作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --= ;③()()AB CD AC BD ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++= . 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC △的形状为. 结果:直角三角形; (4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为 . 结果:120.2.坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--.举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R ,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =-,3(3,1)F =,则合力123F F F F =++的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-.(4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x =,(sin ,sin )b x x =,(1,0)c =-. (1)若3x π=,求向量a 、c 的夹角;(2)若3[,]84x ππ∈-,函数()f x a b λ=⋅的最大值为12,求λ的值.结果:(1)150;(2)12或1. (5)向量的模:222222||||a a x y a x y ==+⇔=+.已知,a b 均为单位向量,它们的夹角为|3|a b +== . (6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB 举例12 如图,在平面斜坐标系xOy 中,60xOy ∠=,平面上任一点P 关于斜坐标系 的斜坐标是这样定义的:若12OP xe ye =+,其中12,e e 分别为与x 轴、y 轴同方向的单 位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ; (2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=.七、向量的运算律1.交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅;2.结合律:()a b c a b c ++=++,()a b c a b c --=-+,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+; ④ 若0a b ⋅=,则0a =或0b =;⑤若a b c b ⋅=⋅则a c =;⑥22||a a =;⑦2a b ba a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+. 其中正确的是 . 结果:①⑥⑨.说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么?八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=.举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b 共线且方向相同. 结果:2. (2)已知(1,1)a =,(4,)b x =,2u a b =+,2v a b =+,且//u v ,则x = . 结果:4. (3)设(,12)PA k =,(4,5)PB =,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||ABAC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若OA OB ⊥,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1)); (3)已知(,)n a b =向量n m ⊥,且||||n m =,则m =的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系 (1)P 内分线段12P P ,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P 时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.举例16 若点P 分AB 所成的比为34,则A 分BP 所成的比为 . 结果:73-.3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ. 举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-,则点P 的坐标为 . 结果:7(6,)3--;(2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =,则a = . 结果:2或4-.十一、平移公式如果点(,)P x y 按向量(,)a h k =平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊! 举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______. 结果:(8,3)-; (2)函数sin 2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-.十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0||||||a b a b ⇔-=+; (3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+. 3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G ++=⇔为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;向量(0)||||ABAC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭所在直线过△ABC 的内心.6.点P 分有向线段12P P 所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+,特别地P 为有向线段12P P 的中点122MP MP MP +⇔=. 7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 .结果:直线AB .。

相关文档
最新文档