小波变换基础以及haar小波共47页PPT资料

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换入门.ppt

小波变换入门.ppt

f f
(2 j , x, (2 j , x,
y)
y)
2
j
x
y
f f
(x, (x,
y) y)
a a
(x, (x,
y)
y)
2
j
grad
f
(x,
y)
a
(x,
y)
37/103
整个图像的二进小波变换即矢量:
W (1) f (2 j , x, y)
T
W
(
T
2)
f
(2
j,
x,
y)
WT
f
(2
j,
x,
尺度空间的递归嵌套关系: 0 V1 V0 V1 L2 R
小波空间 W是j 和V j 之V间j1 的差,即 时丢V 失j 的信息V j。1 推出:
V0 W0 W1 Wj V j1
V0
Vj,它Wj 捕 V捉j1 由 逼近
V j1
L2 R
V j1
Vj
多分辨率的空间关系图
19/103
两尺度方程
1 ( x, y)
(x) (y)
2 ( x, y)
(x)(y)
3 ( x, y)
(x) (y)
与 (x, y)一起就建立了二维小波变换的基础。
26/103
图像的小波变换实现
1. 正变换 图像小波分解的正变换可以依据二维小波变换按如 下方式扩展,在变换的每一层次,图像都被分解 为4个四分之一大小的图像。
线性
设: xt g t ht
WTx a,b WTg a,b WTh a,b 平移不变性
若 xt WTx a,b,则 xt WTx a,b
伸缩共变性

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波变换原理与应用PPT课件

小波变换原理与应用PPT课件

用傅立叶变换提取信号的频谱需要利用信号的全 部时域信息。
傅立叶变换没有反映出随着时间的变化信号频率 成分的变化情况。
傅立叶变换的积分作用平滑了非平稳信号的突变 成分。
由于上述原因,必须进一步改进,克服上述不足
,这就导致了小波分析。精选ppt
7
2.小波变换与傅里叶变换的比较
(1)克服第一个不足:小波系数不仅像傅立叶系 数那样,是随频率不同而变化的,而且对于同一个频 率指标j, 在不同时刻 k,小波系数也是不同的。
(0) (x)dx0
精选ppt
10
3.小波变换的基本原理与性质
信号的信息表示
➢ 时域表示:信号随时间变化的规律,信息包括均值、 方差、峰度以及峭陡等,更精细的表示就是概率密度 分布(工程上常常采用其分布参数)
➢ 频域表示:信号在各个频率上的能量分布,信息为频 率和谱值(频谱或功率谱),为了精确恢复原信号, 需要加上相位信息(相位谱),典型的工具为FT
与信号的初始段进行比较 ; ➢ 通过CWT的计算公式计算小波系数(反映了当前尺度
下的小波与所对应的信号段的相似程度); ➢ 改变平移因子,使小波沿时间轴位移,重复上述两个
步骤完成一次分析; ➢ 增加尺度因子,重复上述三个步骤进行第二次分析; ➢ 循环执行上述四个步骤,直到满足分析要求为止。
精选ppt
A x ( t)2 x ( t), m ,n ( t) 2 B x ( t)2 A ,B R
m ,n
x(t) Cm,n m,n(t) nZ
精选ppt
29
3.小波变换的基本原理与性质
正交小波变换与多分辨分析
多分辨分析也称为多尺度分析,是建立在函数空间概念上的理论 。它构造了一组正交基,使得尺度空间与小波空间相互正交。随 着尺度由大到小的变化,可在各尺度上由粗及精地观察目标。这 就是多分辨率分析的思想。在离散小波框架下,小波系数在时间尺度空间域上仍然具有冗余性,在数值计算或数据压缩等方面仍 然希望这种冗余度尽可能的小。在小波变换发展过程中, Stromberg、Meyer、Lemarie、Battle和Daubechies等先后成功的构 造了不同形式的小波基函数的基础上,是Meyer和Mallat将小波基 函数的构造纳入到了一个统一的框架中,形成了多分辨分析理论 。多分辨率分析理论不但将在那时之前的所有正交小波基的构造 统一了起来,而且为此后的小波基的构造设定了框架。

小波分析整理 第三章 小波变换ppt课件

小波分析整理 第三章  小波变换ppt课件
这样,a 和b 联合越来确定了对x(t) 分析的 中心位置及分析的时间宽度。
.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

小波变换课件第1章Haar小波

小波变换课件第1章Haar小波

第1章Haar小波分析1.1简介镜惟方4(近距离---小尺度) (高分辨率)平移方向匸 1.2平均与细节 以较低験---------1率作分析 (远距离---大尺度)(低分辨率)设{x 1, x 2,x 3, X 4}是一个信号序列。

定义它的平均和细节: do =(人 +X 2)/2' d” 爲找出了 X1、X2 和 91,°、 d^o 的关系。

这里,a i,o 是原信号前两个值 X i 、x >的平均。

又叫低频成分,反映前两个值X 、X 2的基本特征或粗糙趋势;d i,o 反映了 X i 、X 2的差别,即细节信息,又叫高频成分。

弘=(X 3 X 4)/2'找出了 X 3、X 4和a-i 1、d 11的关系。

d i,i =以-沧)/2 同样,a -,-是原信号后两个值 X 3、X 4的平均,d i,-反映了 X 3、X 4的细节。

我们把{a i,o ,a i,i ,d i,o ,d i,i }看作是对{%, %压,X 4}实施了一次变换的结果。

变换还可以往下进行: a o,o - (a i,o a i,i ) /2= ((X i X 2)/2(X 3 X 4)/2)/2 =(X - X 2 X 3 X 4)/4a oo 是对4个信号元素最终的平均,它是原信号最基本的信息;do,o二(a i,o - 4,1)/ 2。

经过二次变换,我们得到了原信号的另一种表示:{a o,o > d o,o a,。

,d i,i }该序列叫做原序列的小波变换, a 0,0,d 0,0,d 1,0,d 1,1叫做小波系数。

还可以反过来表示:'这是用{ a i , d i0}来恢复原信号X i 、X ?; J也就是反变换。

小波变换过程的塔式算法: 3 1最终的小波变换为{a 。

,。

,d 0,0,d i,0,d i,i }={-,-,1^3}1.3尺度函数与小波函数 (1) Haar 尺度函数1F(t)= <%,0(t)牝-1):=%,i(t)ir (t -“=%,()ttt11kk+1不压缩:不位移 位移一个单位 位移k 个单位X i 7 a 。

《小波变换简介》课件

《小波变换简介》课件

小波变换与小波包变换的异同
小波包变换是一种基于小波的变换方法,与 小波变换类似,不同的是小波包变换可以将 信号分解成更灵活的基函数库。
总结
1 小波变换是一种重要的信号处理方法
它可以将信号分解成不同频率的组件,支持非周期信号处理,具有时频局部化特性和压 缩性能。
2 在数字媒体技术中具有广泛的应用前景
小波变换简介
小波变换是一种处理非周期信号的重要方法。它不仅可以将信号分解成不同 的频率组件,而且具有时频局部化特性和良好的压缩性能。
什么是小波变换?
1
将信号分解成不同的频率组件
2
小波变换可以将信号分解成一组小波 基函数,每个小波基函数代表一种不
同的频率成分。
离散小波变换和连续小波变换
小波变换分为离散小波变换和连续小 波变换两种形式,分别适用于离散信 号和连续信号的处理。
小波变换在图像压缩、信号去噪和滤波、模式识别和分类等领域中具有广泛的应用前景。 Nhomakorabea1
快速算法
2
快速离散小波变换是提高离散小波变 换运算速度的重要算法,主要包括
Mallat算法、Lifting Scheme算法等。
基本算法
离散小波变换可以通过卷积操作和下 采样操作实现,包括一维和二维离散 小波变换。
小波变换与其他变换方法的比较
傅里叶变换和小波变换的区别
傅里叶变换是将信号分解成基频率的正弦或 余弦函数,而小波变换可以将信号分解成一 组不同尺度的小波基函数。
小波变换的特点
支持非周期信号处理
与傅里叶变换只能处理周 期信号不同,小波变换可 以处理非周期信号。
具有时频局部化特性
小波基函数具有时域和频 域的局部性,这意味着小 波变换可以更好地描述信 号的局部特征。

小波变换ppt课件

小波变换ppt课件
2002年10月9日
An individual wavelet can be defined by
Then and Calderón's formula gives A common type of wavelet is defined using Haar functions.
2002年10月9日
作的年轻的地球物理学家Jean Morlet提出 了小波变换WT(wavelet transform)的概念。 20世纪80年代,从STFT开发了CWT:
2002年10月9日
Definition - Basis Functions: a set of linearly independent functions that can be used (e.g., as a weighted sum) to construct any given signal.
2002年10月9日
(2) 1910: Alfred Haar发现Haar小波
哈尔(Alfred Haar)对在函数空间中寻找一个与 傅立叶类似的基非常感兴趣。
1909年他发现了小波,1910年被命名为Haar wavelets
他最早发现和使用了小波。
2002年10月9日
(3) 1945: Gabor提出STFT
2002年10月9日
1. What is wavelet
一种函数 具有有限的持续时间、突变的频率和振幅 波形可以是不规则的,也可以是不对称的 在整个时间范围里的幅度平均值为零 比较正弦波
2002年10月9日
部分小波波形
2002年10月9日
小波的定义
Wavelets are a class of a functions used to localize a given function in both space and scaling. A family of wavelets can be constructed from a ( x ) function , sometimes known as a "mother wavelet," which is confined in a finite interval. "Daughter wavelets" (a,b) ( x ) are then formed by translation (b) and contraction (a). Wavelets are especially useful for compressing image data, since a wavelet transform has properties which are in some ways superior to a conventional Fourier transform.

小波变换基础以及haar小波.资料

小波变换基础以及haar小波.资料

傅里叶变换
这幅图可形象的表示傅里 叶变换的不足之处。
如上图,最上边的是频率始终不变的平稳信号。而下边两个则是 频率随着时间改变的非平稳信号,它们同样包含和最上信号相同 频率的四个成分。 做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅 值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上 无法区分它们,因为它们包含的四个频率的信号的成分确实是一 样的,只是出现的先后顺序不同。
f (t) k1e1(t) k2e2(t) ...... knen(t)
如果 n , 那么 f (t) kiei (t)
i 1
小波对于分析瞬时时变信号非常有用. 它有效地从信号中提取信 息,通过伸缩和平移等运算对信号进行多尺度细化分析.
为什么叫小波??? 小波分析所用的波称为小波,小波的能量有限,有限长且会衰减,集 中在某一点附近. 即小波是一种能量在时域非常集中的波.
CWT(连续小波变换)
设函数
(t) L1(R) L2(R) ,若其FT满足条件:
|ˆ() |2 d
R | |
则称φ(t)为一个小波母函数.
φ(t) ∈L1(R)意味着小波函数具有衰减性. φ(t) ∈L2(R)意味着小波函数的能量有限.
φ(t) 满足 R(t) dt 0 意味着小波函数具有波动性.
⑷等内积特性
Wf (a, b) f (t), a,b (t) F (), Φa,b ()
⑸能量守恒特性
R
R|Wf
(a,
b)
|2
a,b (t )
dadb a2
C
||
R
f (t) ||2dt
⑹具有可变的时间频率窗
连续小波的窗口面积是不随参数a,b而变化的,即时频 窗口的形状变化,而窗口面积固定不变.

专题讲座——小波变换PPT课件

专题讲座——小波变换PPT课件

第10页/共79页
部分小波波形
第11页/共79页
小波基函数
将小波母函数(t)进行伸缩和平移,
令伸缩因子(称尺度因子)为a,平移因子为,则:
a( , t)
a12(t
),a0,R
a
则称a( , t)是依赖参数a,的小波基函数。
将信号在这个函数系上分解,就得到连续小波变换
第12页/共79页
小波分析
• 小波变换通过平移母小波(mother wavelet) 可获得信号的时间信息,而通过缩放小波的 宽度(或者叫做尺度)可获得信号的频率特性。 对母小波的缩放和平移操作是为了计算小波 的系数,这些系数代表小波和局部信号之间 的相互关系。
第15页/共79页
CWT的变换过程图示
第16页/共79页
CWT小结
• 小波的缩放因子与信号频率之间的关系可以 这样来理解。缩放因子小,表示小波比较窄,
度量的是信号细节,表示频率w 比较高;相
反,缩放因子大,表示小波比较宽,度量的
是信号的粗糙程度,表示频率w 比较低。
第17页/共79页
离散小波变换
第18页/共79页
离散小波变换定义
任意L2(R)空间中的x(t)的DWT为:
__________
Wx ( j, k) R x(t) j,k (t) dt其中Biblioteka j( ,k t) 1 2j
(
t 2
j
k)
需要强调指出的是,这一离散化都是针对连续 的尺度参数和连续平移参数的,而不是针对时 间变量t的。
第4页/共79页
短时傅里叶变换STFT
确定信号局部频率特性的比较简单的方法是 在时刻ґ附近对信号加窗,然后计算傅里叶变 换。

小波基本理论及应用PPT课件

小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从公式可以看出,不同于傅里叶变换,变量只有频率 ω,小波变换有两个变量:尺度a和平移量 τ。尺度a 控制小波函数的伸缩,平移量 τ控制小波函数的平移。 尺度就对应于频率(反比),平移量 τ就对应于时间。
某一个尺度下乘出来的结果,就可以理解成信号所包 含的当前尺度对应频率成分有多少。其实这样相乘积 分也就是计算信号与基函数的相似程度。
连续小波变换:
W f(a ,b )f ,a ,b |1 a | f(t)(t a b )d, ta 0
连续小波反变换:
f(t)1
C
R RWf(a,b)a,b(t)daa 2 db
其中,a称|
连续小波变换的性质
⑴线性 f ( t ) A 1 ( t ) B f 2 ( t ) f W f ( a , b ) A f 1 ( a , b W ) B f 2 ( a , b W ) ⑵平移 g ( t ) f ( t t 0 ) W g ( a ,b ) W f( a ,b t 0 )
f(t) k 1 e 1 (t) k 2 e 2 (t) .. .k n .e n ( .t) .
如n果 ,那f么 (t) kiei(t)
i 1
小波对于分析瞬时时变信号非常有用. 它有效地从信号中提取信 息,通过伸缩和平移等运算对信号进行多尺度细化分析.
为什么叫小波??? 小波分析所用的波称为小波,小波的能量有限,有限长且会衰减,集 中在某一点附近. 即小波是一种能量在时域非常集中的波.
称φa,b(t)为连续小波. a,b(t)|a|12
(tb)
a
式中的变量a反映函数的尺度(或宽度),变量b检测沿t轴的平移位置.
a,b(t)|a|12
(tb)
a
为什么系数有个 |a |-1 / 2 ??? 为了保证在不同尺度a时,a.b (t) 的 (t) 能量相同 。
φ(t)是母小波,φa,b(t)是由φ(t)作伸缩和平移得到的连续小波,对任意 信号f(t)∈L2(R),有
可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段 信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无 所知。因此时域相差很大的两个信号,可能频谱图一样。
短时傅里叶变换(STFT)
如果我们还想知道各个成分出现的时间 ? 一个简单可行的方法就是——加窗。把整个时域过程
分解成无数个等长的小过程,每个小过程近似平稳, 再傅里叶变换,就知道在哪个时间点上出现了什么频 率了。
CWT(连续小波变换)
设函数
(t)L 1(R ) L 2(R ),若其FT满足条件:
R|ˆ|()| |2 d
则称φ(t)为一个小波母函数.
φ(t) ∈L1(R)意味着小波函数具有衰减性. φ(t) ∈L2(R)意味着小波函数的能量有限.
φ(t) 满足 R(t)dt0 意味着小波函数具有波动性.
将母函数φ(t)作伸缩(伸缩因子为a)和平移(平移因子为b)变换,a, b∈R,且a≠0,得到一个函数簇φa,b(t).
小波与傅里叶的区别
傅立叶分析中,以单个变量(时间或频率)的 函数表示信号,因此,不能同时作时域频域分 析.
小波分析中,利用联合时间—尺度函数分析信 号,通过平移和伸缩构造小波基,由于小波同 时具有时间平移和多尺度分辨率的特点,可以 同时进行时频域分析.
傅里叶变换
这幅图可形象的表示傅里 叶变换的不足之处。
小波发展 Haar小波 小波去噪 展望
小波发展
小波分析(Wavelets Analysis)是20世纪80 年代中后期逐渐发展起来的一种新的数学分析 方法,它既具有丰富的数学理论意义,又具有 广泛的工程应用价值。广泛应用在信号处理、 图像处理、语音分析以及其他非线性科学领域.
小波分析是对傅立叶分析(Fourier Analysis) 理论最辉煌的继承、总结和重大突破.
小波分析是时间和频率的 局域变换,采用多分辨率 分析的思想,非均匀地划 分时频空间.通过伸缩和平 移对信号进行多尺度细化, 可以在不同尺度上来观察 信号.
对低频部分采取较高的频率分辨率和较低的时间分辨率,在高频 部分采取较高的时间分辨率和较低的频率分辨率. 逐渐精细的时域步长,可以聚焦到被分析信号的任意细节,因而 它比傅立叶分析更适合处理非平稳信号,被誉为“数学显微镜”.
如上图,最上边的是频率始终不变的平稳信号。而下边两个则是 频率随着时间改变的非平稳信号,它们同样包含和最上信号相同 频率的四个成分。 做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅 值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上 无法区分它们,因为它们包含的四个频率的信号的成分确实是一 样的,只是出现的先后顺序不同。
那么问题又来了? 我们选择多大的窗口合适呢?
窗太窄,窗内的信号太短,会导致频率分析不够精准,频率 分辨率差。窗太宽,时域上又不够精细,时间分辨率低。这
也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频
率分量存在,我们知道的只能是在一个时间段内某个频带的 分量存在。
短时傅立叶变换(STFT)的核心就是加窗,然后滑动求得联合 时频分布.当窗口函数g(t)确定后,STFT的时—频窗口就固定 不变,与频率无关. STFT是一种单一分辨率的分析,若要改 变分辨率,则必须重新选定窗函数g(t) .我们不能同时获取信 号绝对精准的时刻和频率。对于非稳信号,信号变化剧烈时, 主频是高频,要求有较高的时间分辨率( 要小),信号变化平 缓时,主频是低频,要求有较高的频率分辨率(要小). STFT 不能同时兼顾两者.
三角函数sin(nωt)构成一组完备正交基,所以信号f(t) 可以用三角函数表示—傅里叶变换. Fourier_series_and_transform (1).gif
小波函数能够构成一组完备正交基,所以信号f(t) 也可以用小波函数表示—小波变换.
小波变换
如果e1(t), e2(t), e3(t), ……, en(t)构成一组完 备正交基, 则任何信号f(t)可以表示成:
相关文档
最新文档