《全等三角形》PPT教学课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D
B
2、把两个三角形重合到一起. 对应边是 AB 和∠ DE 对应角是 ∠ A和 D, ,
C
E
F
重合的顶点叫做对应顶点, AC 和 DF , BC 和 EF; ∠ B和 ∠ E, ∠ C和 ∠ F 对应顶点是点 A和点D, 重合的边叫做对应边,
点 B和点E,点C和点F; 重合的角叫做对应角。
A
BD、AD
EC,
C
∠C、∠ABD ∠EBC
2、如果AB=3cm,BC=5cm, D 求BE、BD的长. 解:∵△ABD ≌ △EBC ∴AB=EB,BC=BD ∵AB=3cm,BC=5cm ∴BE=3cm,BD=5cm
E
B
A
如图, △EFG≌△NMH
E H M F G 1、请找出对应边和对应角。
N
A
∵△ABC≌△FDE
∴AB=FD,AC=FE,
E
BC=DE
B
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C 规律四:一对最长的边是对应边 一对最短的边是对应边
F
规律五:一对最大的角是对应角 一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。 3.有公共角的,公共角一定是对应角。 4.对应角所对的边是对应边,对应边 所对的角是对应角.
• 形状、大小相同的图形放在一起 能够完全重合。 • 能够完全重合的两个图形叫做全 等形 • 能够完全重合的两个三角形叫做 全等三角形
全等形包括规则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
大小相同
形状相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
人民教育出版社义务教育教科书八年级数学(上册)
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
每组的两个图 形有什么特点?
完全重合
把一块三角板按在纸上,画下图形, 照图形剪下纸板。剪下的纸板与三角板 大小、形状完全相同吗?他们能够完全 重合吗?
B
D
C
∴ AB=DF, BC=FE, AC=DE ∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
例题讲解,掌握新知
如图, △ABC≌△DCB,A
D
指出所有的对应边和
对应角。
B
O
C
解:∵△ABC≌△DCB ∴AB与DC,BC与CB,
AC与BD是对应边
∠A与∠ D,∠ABC与∠DCB, ∠ACB与∠DBC是对应角
A
C
∴∠A=∠B,∠C=∠D, ∠AOC= ∠BOD.
规律二:有对顶角的,对顶角是对应角
先写出全等式,再指出它 们的对应边和对应角
∵△ABC≌△ADE
∴AB=AD,AC=AE,
A
E
C
BC=DE
∴∠A=∠A,∠B=∠D,
B
D
∠ACB= ∠AED. 规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A P
C
B
M
N
B
E A C
D
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B A D
B
C
E
D
C
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
D
B
C
一个三角形经过平移、旋转、翻折 后所得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫全等三角形
5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角
A
△ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角 △AOD≌△COD
A O D
C B
找出下列全等三角形的对应边、对应角
A
△ABC≌△ADE
E B C D
找出下列全等三角形的对应边、对应角 △ADE≌△CBF
A E B
D
F
Βιβλιοθήκη Baidu
C
找出下列全等三角形的对应边、对应角
A △ ABN ≌△ ACM △ ABM ≌△ ACN
B
M
N
C
找出下列全等三角形的对应边、对应角 D △AOB≌△DOC A
△ABC≌△DCB
O
B
C
如图, △ABD ≌ △EBC
1、请找出对应边和对应角。
AB 与 EB、BC
∠A ∠BEC、∠D
∴∠AEC= ∠ADB=1000 , ∠C= ∠B=300, 又∵∠A+∠AEC+∠C=180° ∴∠A=1800- ∠AEC- ∠C =1800-1000-300=500
C
A
先写出全等式,再指 出它们的对应边和对应角 B
∵△ABC≌△ABD ∴AB=AB,BC=BD,AC=AD.
D
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D.
规律一:有公共边的,公共边是对应边
先写出全等式,再指出它们的 对应边和对应角 D B
∵△AOC≌△BOD ∴AO=BO,AC=BD,OC=OD. o
F
D
ABC ≌ DEF ABC ≌ Δ EFD
寻找各图中两个全等 三角形的对应元素。
两个全等三角形的位置变化了,对应边、 对应角的大小有没有变化?由此你能得到 什么结论? D A
A
B
C
C EM
O
S
F
B
O D N T
全等三角形的对应边相等, 全等三角形的对应角相等.
A
如图:∵△ABC≌ △DFE
D
B
C E
F
“全等”用符号“≌ ”表示 你能否直接从记作
图中的△ ABC 和△DEF 全等, ∆ABC≌ ∆DEF 中判断出 记作:△ABC≌ △DEF 所有的对应顶点、对应边 读作:△ABC全等于△DEF
和对应角?
记两个三角形全等时,通常 注意 把表示对应顶点的字母写在 对应的位置上。
A E
B
C
例题讲解,掌握新知
图中△ABO≌△DCO, 试写出这两个三角形中 相等的边和相等的角。
B
A D
O
C
解:∵△ABO≌△DCO ∴AB=DC,BO=CO,AO=DO
∠A=∠ D,∠ABO=∠DCO,
∠AOB=∠DOC
先写出全等式,再指出 它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF ∴AB=DF, CB=EF,AC=DE. ∴∠A=∠D,∠CBA=∠F,∠C= ∠DEF.
2、如果EF=2.1cm,EH=1.1cm, HN=3.3cm, 求NM、HG的长.
解:∵△EFG ≌ △NMH ∴NM=EF=2.1,EG=HN=3.3 ∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°,
说出△ACE中各角的大小? 解:∵ △ABD≌△ACE,
B
2、把两个三角形重合到一起. 对应边是 AB 和∠ DE 对应角是 ∠ A和 D, ,
C
E
F
重合的顶点叫做对应顶点, AC 和 DF , BC 和 EF; ∠ B和 ∠ E, ∠ C和 ∠ F 对应顶点是点 A和点D, 重合的边叫做对应边,
点 B和点E,点C和点F; 重合的角叫做对应角。
A
BD、AD
EC,
C
∠C、∠ABD ∠EBC
2、如果AB=3cm,BC=5cm, D 求BE、BD的长. 解:∵△ABD ≌ △EBC ∴AB=EB,BC=BD ∵AB=3cm,BC=5cm ∴BE=3cm,BD=5cm
E
B
A
如图, △EFG≌△NMH
E H M F G 1、请找出对应边和对应角。
N
A
∵△ABC≌△FDE
∴AB=FD,AC=FE,
E
BC=DE
B
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C 规律四:一对最长的边是对应边 一对最短的边是对应边
F
规律五:一对最大的角是对应角 一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。 3.有公共角的,公共角一定是对应角。 4.对应角所对的边是对应边,对应边 所对的角是对应角.
• 形状、大小相同的图形放在一起 能够完全重合。 • 能够完全重合的两个图形叫做全 等形 • 能够完全重合的两个三角形叫做 全等三角形
全等形包括规则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
大小相同
形状相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
人民教育出版社义务教育教科书八年级数学(上册)
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
每组的两个图 形有什么特点?
完全重合
把一块三角板按在纸上,画下图形, 照图形剪下纸板。剪下的纸板与三角板 大小、形状完全相同吗?他们能够完全 重合吗?
B
D
C
∴ AB=DF, BC=FE, AC=DE ∵△ABC≌ △DFE
F
E
∴∠A=∠D,∠B=∠F,∠C=∠E
例题讲解,掌握新知
如图, △ABC≌△DCB,A
D
指出所有的对应边和
对应角。
B
O
C
解:∵△ABC≌△DCB ∴AB与DC,BC与CB,
AC与BD是对应边
∠A与∠ D,∠ABC与∠DCB, ∠ACB与∠DBC是对应角
A
C
∴∠A=∠B,∠C=∠D, ∠AOC= ∠BOD.
规律二:有对顶角的,对顶角是对应角
先写出全等式,再指出它 们的对应边和对应角
∵△ABC≌△ADE
∴AB=AD,AC=AE,
A
E
C
BC=DE
∴∠A=∠A,∠B=∠D,
B
D
∠ACB= ∠AED. 规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A P
C
B
M
N
B
E A C
D
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B A D
B
C
E
D
C
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
D
B
C
一个三角形经过平移、旋转、翻折 后所得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫全等三角形
5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角
A
△ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角 △AOD≌△COD
A O D
C B
找出下列全等三角形的对应边、对应角
A
△ABC≌△ADE
E B C D
找出下列全等三角形的对应边、对应角 △ADE≌△CBF
A E B
D
F
Βιβλιοθήκη Baidu
C
找出下列全等三角形的对应边、对应角
A △ ABN ≌△ ACM △ ABM ≌△ ACN
B
M
N
C
找出下列全等三角形的对应边、对应角 D △AOB≌△DOC A
△ABC≌△DCB
O
B
C
如图, △ABD ≌ △EBC
1、请找出对应边和对应角。
AB 与 EB、BC
∠A ∠BEC、∠D
∴∠AEC= ∠ADB=1000 , ∠C= ∠B=300, 又∵∠A+∠AEC+∠C=180° ∴∠A=1800- ∠AEC- ∠C =1800-1000-300=500
C
A
先写出全等式,再指 出它们的对应边和对应角 B
∵△ABC≌△ABD ∴AB=AB,BC=BD,AC=AD.
D
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D.
规律一:有公共边的,公共边是对应边
先写出全等式,再指出它们的 对应边和对应角 D B
∵△AOC≌△BOD ∴AO=BO,AC=BD,OC=OD. o
F
D
ABC ≌ DEF ABC ≌ Δ EFD
寻找各图中两个全等 三角形的对应元素。
两个全等三角形的位置变化了,对应边、 对应角的大小有没有变化?由此你能得到 什么结论? D A
A
B
C
C EM
O
S
F
B
O D N T
全等三角形的对应边相等, 全等三角形的对应角相等.
A
如图:∵△ABC≌ △DFE
D
B
C E
F
“全等”用符号“≌ ”表示 你能否直接从记作
图中的△ ABC 和△DEF 全等, ∆ABC≌ ∆DEF 中判断出 记作:△ABC≌ △DEF 所有的对应顶点、对应边 读作:△ABC全等于△DEF
和对应角?
记两个三角形全等时,通常 注意 把表示对应顶点的字母写在 对应的位置上。
A E
B
C
例题讲解,掌握新知
图中△ABO≌△DCO, 试写出这两个三角形中 相等的边和相等的角。
B
A D
O
C
解:∵△ABO≌△DCO ∴AB=DC,BO=CO,AO=DO
∠A=∠ D,∠ABO=∠DCO,
∠AOB=∠DOC
先写出全等式,再指出 它们的对应边和对应角
A
D
C
E
B
F
∵△ACB≌△DEF ∴AB=DF, CB=EF,AC=DE. ∴∠A=∠D,∠CBA=∠F,∠C= ∠DEF.
2、如果EF=2.1cm,EH=1.1cm, HN=3.3cm, 求NM、HG的长.
解:∵△EFG ≌ △NMH ∴NM=EF=2.1,EG=HN=3.3 ∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°,
说出△ACE中各角的大小? 解:∵ △ABD≌△ACE,