高三艺术生模拟考试数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三艺术生模拟考试

数学试题

Revised on November 25, 2020

高三艺术生模拟考试数学试题

本试卷分选择题和非选择题两部分,满分为150分。考试用时120分钟。

第一部分 选择题(共50分)

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设2{0,2},{|320}A B x x x ==-+=,则A B =( )

A .{0,2,4}--

B .{0,2,4}-

C .{0,2,4}

D .{0,1,2} 2.已知a 是实数,()(1)a i i -+是纯虚数(i 是虚数单位),则a =( ) A .1 B .-1 C

D

3. 已知,1e 2e 是互相垂直的单位向量,a =λ1e +2e ,b =1e -22e ,并且a ,b

直,则( ).

A.λ=1

B.λ=2

C.λ=3

D.λ=4 4. 命题“若一个数是负数,则它的平方是正数”的逆命题是( )

A .“若一个数是负数,则它的平方不是正数”

B .“若一个数的平方是正数,则它是负数”

C .“若一个数不是负数,则它的平方不是正数”

D .“若一个数的平方不是正数,则它不是负数”

5. 设P 是椭圆19

42

2=+y x 上一点, F 1、F 2分别是椭圆的两个焦点,若3||1=PF ,则=||2PF ( )

A .1或5

B .6

C .3

D .9

6. 已知x 、y 满足约束条件203220x y x x y -+≥⎧⎪

≤⎨⎪++≥⎩

,则z x y =+的最小值为

( ).

A .0

B .2-

C .2

D .4

开始

输入是

是 输出

y

7.在等差数列{}n a 中,18153100a a a ++=,则9102a a -的值为

( )

A .24

B .22

C .20

D .-8

8.将函数x y 4sin =的图象向左平移12

π

个单位,得到)4sin(ϕ+=x y 的图象(2

πϕ<

),则ϕ等于( ). A .12π-

B .3

π-

C .

3

π D .

12

π 9. ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )

A.

B.14

π

-

C.8π

D.18

π-

10.如图,一个简单空间几何体的三视图其主视图

与侧视图都是边长为2的正三角形,俯视图 轮廓为正方形,则此几何体的表面积是( ) A .12 B .443+C .3 D .8

第二部分 非选择题(共100分)

二、填空题:本大题共5小题,每小题5分,满分20分.

(一)必做题(11~13题)

11. 曲线324y x x =-+在点(13),处的切线的倾斜角为 . 12.运行右边算法流程,若x 2时,输出y 的值为___________ . 13.已知函数23,0

() 1.0

x

x f x x x -⎧>⎪=⎨-≤⎪⎩,则[(2)]f f -= .

(二)选做题(14~15题,考生只能从中选做一题,) 14.(坐标系与参数方程选做题)在极坐标系中, 圆4sin ρθ=的圆心的极坐标是 .

俯视图

主视图

侧视图

15.(几何证明选讲选做题)如图,⊙O 中,

ABCD 是圆内接四边形,∠110BOC =, 则∠BDC 的度数是 .

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

已知函数21

cos sin 3sin )(2-+=x x x x f .

(1)求函数)(x f 的最小正周期; (2)求函数)(x f 的单调递增区间. 17. (本小题满分14分)

已知四棱锥P ABCD -中, 底面是边长为1的正方形, 侧棱PC ⊥底面

ABCD ,且2PC =,E 是侧棱PC 上的动点. (1) 求四棱锥P ABCD -的体积;

(2) 若E 是PC 的中点,求证:PA ∥平面BDE

(3) 是否不论点E 在何位置,都有AE BD ⊥证明你的结论.

18、(本题满分12分)

已知函数x x x x f 33

1)(23

--=

. (1)求函数的单调区间; (2)求函数)(x f 的极值. 19.(本题满分14分)

某单位为了解职工的睡眠情况,从中抽取40名职工作为样本进行调查.调查的数据整理分组如下表示:

睡眠时间频率/组距(单位:小时)

(1)将以上表格补充完整,

(2)在给定的坐标系内画出样本的频率分布直方图;

(3)若按下面的方法在样本中从睡眠不足6小时的职工中抽取一人:把睡眠不

足6小时的8人从2到9进行编号,先后两次抛掷一枚均匀的骰子,出现

的点数之和为被抽取人的序号.试求抽到5或8号的概率. 20.(本小题满分14分)

设等比数列{}n a 的前n 项和为n S , 公比1>q , 已知338,14a S ==. (1)求数列{}n a 的通项公式;

(2)记n n a n b ⋅-=)12(,求数列{}n b 的前n 项和。 21.(本小题共14分)

已知双曲线2

2

22:

1(0,0)x y C a b a b

-=>>3 2. (1)求双曲线C 的方程;。

(2)已知直线20x y m --=与双曲线C 交于不同的两点A ,B ,且线段

AB 的中点在圆22

(1)5x y +-=上,求m 的值

睡眠时间 (单位:小

时)

频 数 2 6

12

8

频 率

0.20

相关文档
最新文档