材料力学梁弯曲时的位移
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分的,因为这样可在运用连续条件 w1 '|x=a=w2'|x=a 及 w1|x=a=w2|x=a 确定积分常数时含有(x-a)2和(x-a)3的项为零而 使工作量减少。又,在对左段梁进行积分运算时仍以x 为 自变量进行,故仍有C1=EIq0,D1=EIw0。
28
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直 于x轴方向的线位移w称为挠度(deflection),横截面对其原
来位置的角位移q 称为横截面的转角(angle of rotation)。
19
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
思考: 试求图示等截面悬臂梁在所示坐标系中的挠曲线
方程和转角方程。积分常数C1和C2等于零吗?
20
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
例题5-2 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
EIw M x F l x
以x为自变量进行积分得 x2 EIw F lx C1 2
lx 2 x 3 EIw F 2 6 C1 x C2
该梁的边界条件为:在 x=0 处 w 0,w =0
8
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
再注意到在图示坐标系中,负弯矩对应于正值w" ,正弯矩对 应于负值的w" ,故从上列两式应有 w M x 2 3/ 2 EI 1 w 由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略 M x 去,于是得挠曲线近似微分方程 w EI
7
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
从几何方面来看,平面曲线的曲率可写作
1 w x 1 w 2
3/ 2
式中,等号右边有正负号是因为曲率1/为度量平面曲线 (挠曲线)弯曲变形程度的非负值的量,而w"是q = w' 沿x方 向的变化率,是有正负的。
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
由此题可见,当以x为自变量对挠曲线近似微分方程
进行积分时,所得转角方程和挠曲线方程中的积分常数
是有其几何意义的:
C1 EIw | x 0 EIq 0 C2 EIw | x 0 EIw0
此例题所示的悬臂梁,q0=0,w0=0, 因而也有C1=0 ,C2=0。
4
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
在图示坐标系中,挠度w向下为正,向上为负;
顺时针转向的转角q为正,逆时针转向的转角q为负。
5
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-2 梁的挠曲线近似微分方程及其积分
Ⅰ. 挠曲线近似微分方程的导出 在§4-4中曾得到等直梁在线弹性范围内纯弯曲情况
最大挠度在跨中,其值为
2 3 4 3 ql 2 l l 5ql wm ax w | x l 2 l 2l 24 EI 2 2 384 EI
24
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
的10倍,此时剪力FS对梁的变形的影响可略去不计,而有
1 M x x x EI
注意:对于有些l/h>10的梁,例如工字形截面等直梁,如同
在核电站中会遇到的那样,梁的翼缘由不锈钢制作,而主 要承受剪力的腹板则由价廉但切变模量较小的复合材料制 作,此时剪切变形对梁的变形的影响是不可忽略的。
第五章 梁弯曲时的位移
当全梁各横截面上的弯矩
可用一个弯矩方程表示时(例如
图中所示情况)有
EIw M x d x C1
EIw M x d x d x C1 x C2
以上两式中的积分常数C1, C2由边界条件确定后即可得出梁
的转角方程和挠曲线方程。
第五章 梁弯曲时的位移
该梁的两类边界条件为 连续条件:
在x=a处 w1 w2,w1=w2
支座约束条件:在x=0处 w1=0,在 x=l 处 w2=0 由两个连续条件得:
C1 C2, D1 D2
由支座约束条件 w1|x=0=0 得
D1 0
29
从而也有
D2 0
材 料 力 学 Ⅰ 电 子 教 案
16
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
可见该梁的qmax和wmax均在x=l的自由端处。于是有
q max
wmax
17
Fl 2 Fl 2 Fl 2 q | x l EI 2 EI 2 EI Fl 3 Fl 3 Fl 3 w | x l 2 EI 6 EI 3EI
2
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
弯曲后梁的轴线——挠曲线(deflection curve)为一平 坦而光滑的曲线,它可以表达为w=f(x),此式称为挠曲线 方程。由于梁变形后的横截面仍与挠曲线保持垂直,故 横截面的转角q 也就是挠曲线在该相应点的切线与x轴之
间的夹角,从而有转角方程:
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角 §5-2 梁的挠曲线近似微分方程及其积分 §5-3 按叠加原理计算梁的挠度和转角
*§5-4
梁挠曲线的初参数方程
§5-5 梁的刚度校核· 提高梁的刚度的措施
§5-6 梁内的弯曲应变能
1
材 料 力 学 Ⅰ 电 子 教 案
于是得
15
C1 0,C2 0
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
从而有
转角方程
Fxl Fx 2 q w EI 2 EI
Fx 2l Fx3 挠曲线方程 w 2 EI 6 EI
根据该梁边界条件和全梁横截面上弯矩均为负值,
以及挠曲线应光滑连续描出了挠曲线的示意图。
为了后面确定积分常数的方便,右边那段梁的弯矩方 程M2(x)仍取x截面左边的梁为分离体,使方程M2(x)中的第 一项与方程M1(x)中的项相同。
26
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
两段梁的挠曲线近似微分方程亦需分段列出,并分别进行积分: 左段梁0 x a
右段梁 a x l
q tanq w f x
3
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲
变形程度(挠曲线曲率的大小)有关,也与支座约束的条件
有关。图a和图b所示两根梁,如果它们的材料和尺寸相同, 所受的外力偶之矩Me也相等,显然它们的变形程度(也就 是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和 转角则明显不同。
下中性层的曲率为
M EI 1
这也就是位于中性层内的挠曲线的曲率的表达式。
6
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还 有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产
生影响。但工程上常用的梁其跨长l 往往大于横截面高度h
11
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
边界条件(这里也就是支座处的约束条件)的示例如 下图所示。
12
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
若由于梁上的荷载不连续等原因使得梁的弯矩方程
需分段写出时,各段梁的挠曲线近似微分方程也就不同。
而对各段梁的近似微分方程积分时,都将出现两个积分 常数。要确定这些积分常数,除利用支座处的约束条件 (constraint condition)外,还需利用相邻两段梁在交界处 的连续条件(continuity condition)。这两类条件统称为边
挠曲线近似微分方程
b EIw1 M 1 x F x l 积分得
b x2 EIw1 F C1 l 2 b x EIw1 F C1 x D1 l 6
27
3
b EIw2 M 2 x F x F x a l
9
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
Ⅱ. 挠曲线近似微分方程的积分及边界条件
M x w EI
求等直梁的挠曲线方程时可将上式改写为
EIw M x
后进行积分,再利用边界条件(boundary condition)确定积分
常数。
10
材 料 力 学 Ⅰ 电 子 教 案
21
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x ql 1 q x qx2 lx x 2 2 2 2
挠曲线近似微分方程为
EIw M x q lx x 2 2
以x为自变量进行积分得:
q lx 2ຫໍສະໝຸດ Baidux 3 EIw 2 3 C1 2 q lx3 x 4 EIw 6 12 C1 x C2 2
b x 2 F x a EIw2 F C2 l 2 2
2
b x 3 F x a EIw2 F C2 x l 6 6 D2
3
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
值得注意的是,在对右段梁进行积分运算时,对于含
有(x-a)的项没有以x 为自变量而是以(x-a)作为自变量进行
18
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
事实上,当以x为自变量时
EIw M x d x C1 EIw [ [ M x d x] d x C1 x C2
两式中的积分在坐标原点处(即x=0处)总是等于零,从而有
C1 EIw | x 0 EIq 0 C2 EIw | x 0 EIw0
q w
q l 3 6lx2 4 x 3 24 EI
qx 3 l 2lx2 x 3 挠曲线方程 w 24 EI
23
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
根据对称性可知,两支座处的转角qA及qB的绝对值相
等,且均为最大值,故
q max
ql 3 q A qB 24 EI
22
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
该梁的边界条件为 在 x=0 处 w=0,
在 x=l 处 w=0
q l4 l4 C2 0 及 EIw | x l C1l 0 2 6 12
于是有
即
从而有 转角方程
ql 3 C1 ,C2 0 24
第五章 梁弯曲时的位移
由另一支座约束条件 w2|x=l=0 有
b l EIw2 | x l F l b
3
l a 3 C l 0 F
例题5-3 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
25
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:约束力为
b a FA F , FB F l l
两段梁的弯矩方程分别为
b M 1 x FA x F x 0 x a l b M 2 x FA x F x a F x F x a a x l l
界条件。
13
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
14
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x F l x
挠曲线近似微分方程为
28
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直 于x轴方向的线位移w称为挠度(deflection),横截面对其原
来位置的角位移q 称为横截面的转角(angle of rotation)。
19
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
思考: 试求图示等截面悬臂梁在所示坐标系中的挠曲线
方程和转角方程。积分常数C1和C2等于零吗?
20
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
例题5-2 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
EIw M x F l x
以x为自变量进行积分得 x2 EIw F lx C1 2
lx 2 x 3 EIw F 2 6 C1 x C2
该梁的边界条件为:在 x=0 处 w 0,w =0
8
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
再注意到在图示坐标系中,负弯矩对应于正值w" ,正弯矩对 应于负值的w" ,故从上列两式应有 w M x 2 3/ 2 EI 1 w 由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略 M x 去,于是得挠曲线近似微分方程 w EI
7
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
从几何方面来看,平面曲线的曲率可写作
1 w x 1 w 2
3/ 2
式中,等号右边有正负号是因为曲率1/为度量平面曲线 (挠曲线)弯曲变形程度的非负值的量,而w"是q = w' 沿x方 向的变化率,是有正负的。
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
由此题可见,当以x为自变量对挠曲线近似微分方程
进行积分时,所得转角方程和挠曲线方程中的积分常数
是有其几何意义的:
C1 EIw | x 0 EIq 0 C2 EIw | x 0 EIw0
此例题所示的悬臂梁,q0=0,w0=0, 因而也有C1=0 ,C2=0。
4
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
在图示坐标系中,挠度w向下为正,向上为负;
顺时针转向的转角q为正,逆时针转向的转角q为负。
5
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-2 梁的挠曲线近似微分方程及其积分
Ⅰ. 挠曲线近似微分方程的导出 在§4-4中曾得到等直梁在线弹性范围内纯弯曲情况
最大挠度在跨中,其值为
2 3 4 3 ql 2 l l 5ql wm ax w | x l 2 l 2l 24 EI 2 2 384 EI
24
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
的10倍,此时剪力FS对梁的变形的影响可略去不计,而有
1 M x x x EI
注意:对于有些l/h>10的梁,例如工字形截面等直梁,如同
在核电站中会遇到的那样,梁的翼缘由不锈钢制作,而主 要承受剪力的腹板则由价廉但切变模量较小的复合材料制 作,此时剪切变形对梁的变形的影响是不可忽略的。
第五章 梁弯曲时的位移
当全梁各横截面上的弯矩
可用一个弯矩方程表示时(例如
图中所示情况)有
EIw M x d x C1
EIw M x d x d x C1 x C2
以上两式中的积分常数C1, C2由边界条件确定后即可得出梁
的转角方程和挠曲线方程。
第五章 梁弯曲时的位移
该梁的两类边界条件为 连续条件:
在x=a处 w1 w2,w1=w2
支座约束条件:在x=0处 w1=0,在 x=l 处 w2=0 由两个连续条件得:
C1 C2, D1 D2
由支座约束条件 w1|x=0=0 得
D1 0
29
从而也有
D2 0
材 料 力 学 Ⅰ 电 子 教 案
16
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
可见该梁的qmax和wmax均在x=l的自由端处。于是有
q max
wmax
17
Fl 2 Fl 2 Fl 2 q | x l EI 2 EI 2 EI Fl 3 Fl 3 Fl 3 w | x l 2 EI 6 EI 3EI
2
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
弯曲后梁的轴线——挠曲线(deflection curve)为一平 坦而光滑的曲线,它可以表达为w=f(x),此式称为挠曲线 方程。由于梁变形后的横截面仍与挠曲线保持垂直,故 横截面的转角q 也就是挠曲线在该相应点的切线与x轴之
间的夹角,从而有转角方程:
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角 §5-2 梁的挠曲线近似微分方程及其积分 §5-3 按叠加原理计算梁的挠度和转角
*§5-4
梁挠曲线的初参数方程
§5-5 梁的刚度校核· 提高梁的刚度的措施
§5-6 梁内的弯曲应变能
1
材 料 力 学 Ⅰ 电 子 教 案
于是得
15
C1 0,C2 0
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
从而有
转角方程
Fxl Fx 2 q w EI 2 EI
Fx 2l Fx3 挠曲线方程 w 2 EI 6 EI
根据该梁边界条件和全梁横截面上弯矩均为负值,
以及挠曲线应光滑连续描出了挠曲线的示意图。
为了后面确定积分常数的方便,右边那段梁的弯矩方 程M2(x)仍取x截面左边的梁为分离体,使方程M2(x)中的第 一项与方程M1(x)中的项相同。
26
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
两段梁的挠曲线近似微分方程亦需分段列出,并分别进行积分: 左段梁0 x a
右段梁 a x l
q tanq w f x
3
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲
变形程度(挠曲线曲率的大小)有关,也与支座约束的条件
有关。图a和图b所示两根梁,如果它们的材料和尺寸相同, 所受的外力偶之矩Me也相等,显然它们的变形程度(也就 是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和 转角则明显不同。
下中性层的曲率为
M EI 1
这也就是位于中性层内的挠曲线的曲率的表达式。
6
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还 有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产
生影响。但工程上常用的梁其跨长l 往往大于横截面高度h
11
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
边界条件(这里也就是支座处的约束条件)的示例如 下图所示。
12
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
若由于梁上的荷载不连续等原因使得梁的弯矩方程
需分段写出时,各段梁的挠曲线近似微分方程也就不同。
而对各段梁的近似微分方程积分时,都将出现两个积分 常数。要确定这些积分常数,除利用支座处的约束条件 (constraint condition)外,还需利用相邻两段梁在交界处 的连续条件(continuity condition)。这两类条件统称为边
挠曲线近似微分方程
b EIw1 M 1 x F x l 积分得
b x2 EIw1 F C1 l 2 b x EIw1 F C1 x D1 l 6
27
3
b EIw2 M 2 x F x F x a l
9
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
Ⅱ. 挠曲线近似微分方程的积分及边界条件
M x w EI
求等直梁的挠曲线方程时可将上式改写为
EIw M x
后进行积分,再利用边界条件(boundary condition)确定积分
常数。
10
材 料 力 学 Ⅰ 电 子 教 案
21
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x ql 1 q x qx2 lx x 2 2 2 2
挠曲线近似微分方程为
EIw M x q lx x 2 2
以x为自变量进行积分得:
q lx 2ຫໍສະໝຸດ Baidux 3 EIw 2 3 C1 2 q lx3 x 4 EIw 6 12 C1 x C2 2
b x 2 F x a EIw2 F C2 l 2 2
2
b x 3 F x a EIw2 F C2 x l 6 6 D2
3
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
值得注意的是,在对右段梁进行积分运算时,对于含
有(x-a)的项没有以x 为自变量而是以(x-a)作为自变量进行
18
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
事实上,当以x为自变量时
EIw M x d x C1 EIw [ [ M x d x] d x C1 x C2
两式中的积分在坐标原点处(即x=0处)总是等于零,从而有
C1 EIw | x 0 EIq 0 C2 EIw | x 0 EIw0
q w
q l 3 6lx2 4 x 3 24 EI
qx 3 l 2lx2 x 3 挠曲线方程 w 24 EI
23
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
根据对称性可知,两支座处的转角qA及qB的绝对值相
等,且均为最大值,故
q max
ql 3 q A qB 24 EI
22
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
该梁的边界条件为 在 x=0 处 w=0,
在 x=l 处 w=0
q l4 l4 C2 0 及 EIw | x l C1l 0 2 6 12
于是有
即
从而有 转角方程
ql 3 C1 ,C2 0 24
第五章 梁弯曲时的位移
由另一支座约束条件 w2|x=l=0 有
b l EIw2 | x l F l b
3
l a 3 C l 0 F
例题5-3 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
25
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:约束力为
b a FA F , FB F l l
两段梁的弯矩方程分别为
b M 1 x FA x F x 0 x a l b M 2 x FA x F x a F x F x a a x l l
界条件。
13
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
14
材 料 力 学 Ⅰ 电 子 教 案
第五章 梁弯曲时的位移
解:该梁的弯矩方程为
M x F l x
挠曲线近似微分方程为