《展开与折叠》示范公开课教学设计【北师大版七年级数学上册】(第2课时)
北师大版七年级数学1.2 展开与折叠(2)教案
![北师大版七年级数学1.2 展开与折叠(2)教案](https://img.taocdn.com/s3/m/1ec62e1602d8ce2f0066f5335a8102d276a26132.png)
北师大版七年级数学上第一章《丰富的图形世界》1.2《展开与折叠》第二课时教案【教学目标】1.知识与技能〔1〕.通过展开与折叠活动,了解圆柱、圆锥、棱柱的侧面展开图;能认识棱柱的某些特性;能根据展开图判断或设计制作简单的立体模型。
. 〔2〕通过展开与折叠的实践操作,进一步认识立体图形与平面图形的对应关系。
〔3〕在经历和体验图形的展开与折叠过程中,初步建立空间观念,开展几何直觉,积累数学活动经验2.过程与方法通过数学活动体验图形的变化过程,培养学生动手解决问题的能力及语言归纳表达的能力,开展空间观念。
3.情感态度和价值观让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
【教学重点】通过操作活动,体会立体图形与平面图形的展开与折叠过程,开展空间观念.【教学难点】通过展开与折叠的实践操作,进一步认识立体图形与平面图形的对应关系.外表展开图的识别【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、回忆思考正方体的11种不同的展开图141,132,33,222,二、探究新知1.圆柱的展开图圆A、B两点沿着侧面的最短线路是什么?锥的展开图3.棱柱的展开图将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?以五棱柱为例三、归纳总结:长方体的展开图五棱柱的展开图四、闯关练习:1.如图,上面的图形分别是下面哪个立体图形展开的形状?把它们用线连起来。
2.以下图形是什么多面体的展开图?3以下哪些图形经过折叠可以围成一个棱柱?如果能,请说知名称。
4.判断以下哪些图可以是三棱柱的展开图?三棱柱的展开图可以是①②③有些立体图形展开平面图形;有些平面图形折叠立体图形。
总结:一个平面图形能折叠成棱柱的关键:1.侧面的个数要与底面的边数相同;2.两个底面要位于侧面的两侧。
五、稳固练习:1.下面几个图形是一些常见几何体的展开图,你能正确说出这些几何体的名字么?2、以下图形哪个不是长方体的外表展开图?〔B 〕3.如图的展开图能折叠成的长方体是( D )4.如图,添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( B )A.7种B.4种C.3种D.2种由四棱柱四个侧面和上下两个底面的特征可知,不同的添法共有4种,即在没有小正方形的一侧,每一个长方形的宽的左边添加都可以.应选B.六、中考链接2.如图是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?假设能,请画出它的几何图形,并计算它的体积;假设不能,请说明理由.〔3〕折叠之后与A重合的是哪个字母?长方体的体积为3×2×1=6〔立方米〕.七、谈谈收获八、开放作业请你来当小小设计师:用一张美术用纸,通过画一画、折一折、剪一剪为某公司设计制作一个棱柱或棱锥形包装盒子,并说说你的创意。
新北师大版七年级上册初中数学 课时2 柱体、锥体的展开与折叠 教案
![新北师大版七年级上册初中数学 课时2 柱体、锥体的展开与折叠 教案](https://img.taocdn.com/s3/m/9a8b39d2b9f67c1cfad6195f312b3169a451eacb.png)
第一章丰富的图形世界课时2 柱体、锥体的展开与折叠【知识与技能】通过展开与折叠活动,了解三棱柱、四棱柱、五棱柱、圆柱、圆锥的侧面展开图;能根据展开图判断和制作简单的立体模型。
【过程与方法】经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践制作的过程中学会与人合作,学会交流自己的思维与方法。
【情感态度与价值观】初步获得动手制作的乐趣及制作成功后的成就感;在制作实验的过程中感受生活中立体图形的美。
能根据柱体、锥体的展开图判断和制作简单地立体图形。
能根据柱体、锥体的展开图判断和制作简单地立体图形。
多媒体课件.将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?目的:通过动手操作展开棱柱自然地引入本课课题,让学生动手感受其中的数学知识,体验棱柱展开变化过程,激发学生学习兴趣。
效果:动手操作的设计激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。
一、合作交流、探索新知探究1:探索什么样的图形能围成棱柱以下哪些图形经过折叠可以围成一个棱柱?(1) (2)(3) (4)你能将图形(1)、(3)修改后使其能折叠成棱柱吗?目的:在学生经历了棱柱的展开过程后,给出几个图形让学生想一想是否能折成棱柱,使学生经历平面图到立体图的变化过程,培养空间概念,是对学生空间想像能力的更高要求。
探究:2:探索圆柱、圆锥的侧面展开图把圆柱的侧面展开,会得到什么图形?把圆锥的侧面展开,会得到什么图形?二、典例精析,掌握新知【例1】有一种牛奶软包装盒如图所示,为了生产这种包装盒,需要先画出展开图纸样.(1)如图,给出三种纸样,它们都正确吗?(2)从已知正确的纸样中选出一种,标注上尺寸;(3)利用你所选的一种纸样,求出包装盒的侧面积和表面积(侧面积与两个底面积的和).解:(1)图中,因为表示底面的两个长方形不可能在同一侧,所以图乙不正确.图甲和图丙都正确;(2)根据上图,若选图甲,可得表面展开图及尺寸标注如图所示;(3)由右图得包装盒的侧面积为S侧=(b+a+b+a)h=2ah+2bh;S表=S侧+2S底=2ah+2bh+2ab.1.知识回顾.2.谈谈这节课你有哪些收获?1.布置作业:从教材“习题1.4”中选取.2.完成《少年班》P 61.注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.2.教师创设情境,给出实例,学生积极主动探索,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.3.增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.。
《展开与折叠》第2课时示范课教学设计【数学七年级上册北师大】
![《展开与折叠》第2课时示范课教学设计【数学七年级上册北师大】](https://img.taocdn.com/s3/m/fb16943a0622192e453610661ed9ad51f01d544f.png)
《展开与折叠》教学设计第2课时一、教学目标1.通过展开与折叠活动,了解棱柱、圆柱和圆锥的展开图.2.能根据展开图判断和制作简单的立体模型.3.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动的经验.4.在动手实践制作的过程中学会与人合作,学会交流自己的思维和方法.二、教学重难点重点:通过展开与折叠活动,了解棱柱、圆柱和圆锥的展开图.难点:能根据展开图判断和制作简单的立体模型.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计预设答案:追问:这些棱柱的展开图有什么特征呢?预设答案:(1)棱柱有上下两个底面,它们的形状相同,且不在同侧.(2)棱柱侧面的形状都是长方形.(3)棱柱侧面的个数和底面图形的边数相等.(4)棱柱所有侧棱长度都相等.【想一想】问题:按照如图所示的方法将圆柱,圆锥的侧面展开,会得到什么图形呢?预设答案:圆柱的侧面展开是一个长方形.圆锥的侧面展开是一个长方形.归纳总结:圆柱展开后,得到一个长方形和两个圆.圆锥展开后,得到一个扇形和一个圆.【典型例题】例1 如图是立体图形的展开图,你能说出这些立体图形的名称吗?分析:两个底面大小相等,且不在同侧,底面边数=侧面个数,围成的立体图形是棱柱.答案:(1)四棱柱;(2)五棱柱例2 下面图形经过折叠能否围成棱柱?分析:(1) 侧面数不等于底面边数,不能围成棱柱.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.下列图形中可以作为三棱柱的展开图的是()解析:三棱柱展开图的两个底面是大小相等的三角形;两个底面不在同侧,侧面有3个长方形. 答案:A2.图中的两个图形经过折叠能否围成棱柱?解析:(1)有两个大小相等的三角形底面,侧面是3个长方形,可以折叠成三棱柱.(2)两个底面在侧面展开图的同侧,不可以折叠成棱柱.答案:图(1)可以折叠成棱柱;图(2) 不可以折叠成棱柱.3.如图是立体图形的展开图,你能说出它们的名称吗?解析:一个扇形和一个圆,是圆锥的展开图.两个底面是五边形,侧面有5个长方形,是五棱柱的展开图.一个长方形和两个圆,是圆柱的展开图.答案:圆锥;五棱柱;圆柱.。
北师大版七年级上《展开与折叠》二课时教学设计
![北师大版七年级上《展开与折叠》二课时教学设计](https://img.taocdn.com/s3/m/0c58acb51ed9ad51f11df247.png)
展开与折叠(一)海宁实验初中裴海平2004年6月教学目标:1、经历展开与折叠,模型制作等活动,发展空间观念,积累数学活动经验。
2、在实践与操作活动中认识棱柱的某些特性。
3、了解棱柱的侧面展开图,能根据展开图判断和制作简单的立体模型。
4、通过展开与折叠的教与学的活动,培养学生的动手操作能力,解决问题能力,渗透数学中的归纳思想。
5、让学生在学习活动中体验探索,交流,成功的喜悦,从而激发学生学习数学的兴趣。
教学重点:在棱柱的展开与折叠过程中,发现棱柱的某些特性,并能感受到研究空间问题的思维方法。
教学难点:1、由棱柱想像其表面展开后的图形,或由展开后的图形想像棱柱的过程需要一定的空间想像能力,2、正确判断哪些平面图形可折叠成棱柱。
教学方法:实验——归纳法教具准备剪刀、硬纸板、胶带纸、牙膏盒、墨水盒、长方体模型、六棱柱模型教学过程一•■创设情境,引出新课教师演示①:1、将圆柱的侧面沿着一虚线剪开得到一个长方形。
b5E2RGbCAP2、将长方形纸折叠数次围成棱柱的侧面。
学生观察教师的演示活动,主动说出“展开”和“折叠”。
这节课我们一起探讨这方面的内容.(写出课题:展开与折叠)•讲授新课1.做一做师:教师节就要到了,同学小王有一份礼物要送给语文老师,他想把这份礼物放在一个棱柱形状的包装盒里,图纸已经设计出来了,就画在纸板上,下面就让同学们按照设计的图纸,用你手中的纸板、剪刀、胶带纸帮小王将这包装做好,你还可以在包装盒上设计精美的图案、花边或写上祝福的语言.p1EanqFDPw (完成课本第八页的做一做)操作提示:⑴•老师将复制好的课本第八页图1—2左图的纸板发给同桌的每一位同学; ⑵.将图从纸板上沿实线剪下来;⑶.将虚线折叠,用胶带纸将接缝处连接起来•教师多媒体演示②折叠。
教师分别以实物和多媒体介绍棱柱的名称。
学生标出模型各部分名称,并依据自己的模型向同学展示。
DXDiTa9E3d2.议一议师:同学们,包装盒已经设计好,我们来回忆一下折叠这个棱柱的过程,讨论以下问题。
北师大版七年级数学上册第一章第二节《展开与折叠》教学设计
![北师大版七年级数学上册第一章第二节《展开与折叠》教学设计](https://img.taocdn.com/s3/m/94f14ed16429647d27284b73f242336c1fb93007.png)
(二)讲授新知
1.教学内容:介绍展开与折叠的基本概念,让学生理解立体图形可以通过展开变成平面图形,反之,平面图形也可以通过折叠变成立体图形。
-展开图:将立体图形展开成平面图形的过程。
2.教学活动:邀请学生分享自己在课堂上的收获和感悟,引导他们从空间想象力、逻辑思维能力等方面进行自我评价。
3.设计意图:通过总结归纳,帮助学生巩固所知识,培养他们的反思能力和自主学习能力,为后续的学习奠定基础。
在整个教学内容与过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,使学生在掌握知识的同时,提高各方面的能力。
2.分层次教学,注重个体差异:针对学生在空间想象力、抽象思维能力和动手操作能力上的差异,设计不同难度的教学任务,使每个学生都能在课堂上得到有效的提升。
3.合作探究,培养学生的团队协作能力:采用小组合作、讨论交流等形式,让学生在合作探究中掌握展开与折叠的知识,提高学生的团队协作能力和表达能力。
4.理论与实践相结合,提高学生的动手操作能力:设置丰富的实践活动,如制作立体图形、展开图的绘制等,让学生在实际操作中加深对知识的理解。
2.教学指导:引导学生观察、思考、实践,鼓励他们发表自己的观点,培养团队协作能力和表达能力。
3.设计意图:通过小组讨论,让学生在合作探究中深入理解展开与折叠的原理,提高学生的空间想象力和动手操作能力。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成,巩固所学知识。
-简单题:识别常见立体图形的展开图,并能正确折叠成立体图形。
北师大版七年级数学上册第一章第二节《展开与折叠》教学设计
北师大版七年级数学上册1.2《展开与折叠》教学设计(第2课时)
![北师大版七年级数学上册1.2《展开与折叠》教学设计(第2课时)](https://img.taocdn.com/s3/m/a95d0b41c381e53a580216fc700abb68a982ad38.png)
a.平面图形与立体图形之间的转换方法有哪些?
b.在实际生活中,展开与折叠知识有哪些应用?
c.如何运用展开与折叠知识解决实际问题?
要求:论文结构清晰,观点明确,论据充分,字数不限。
4.鼓励学生进行课后拓展学习,通过网络、书籍等途径了解以下内容:
a.其他有趣的几何变换方法;
(三)教学设想
1.创设情境,激发兴趣:以生活中的实际例子引入展开与折叠的概念,让学生感受到数学与生活的紧密联系,激发学习兴趣。
2.自主探究,合作交流:设计具有启发性的问题,引导学生通过观察、实践、讨论等方式,自主探究展开与折叠的规律。在此过程中,鼓励学生进行小组合作,分享彼此的想法,形成共同的认识。
(二)过程与方法
1.采用探究式教学方法,引导学生通过观察、实践、讨论等环节,自主发现展开图与折叠的规律。
2.利用信息技术手段,如多媒体课件、网络资源等,辅助教学,提高学生的学习兴趣和效果。
3.设计丰富的课堂活动,如小组合作、竞赛等,激发学生的学习积极性,培养合作意识和竞争意识。
4.通过对典型例题的分析与讲解,使学生掌握解题方法,形成解决问题的策略。
2.学生独立思考,尝试解决练习题,教师巡回辅导,关注学生的解题过程和方法。
3.邀请部分学生上台展示自己的解题过程,其他学生进行评价,教师给予点评和指导。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结展开与折叠的基本概念、几何变换方法以及解决实际问题的策略。
2.学生分享自己在学习过程中的收获和感悟,教师给予肯定和鼓励。
2.学生分享观察到的展开图特点,教师适时给出展开图和折叠的定义,并强调它们之间的相互关系。
3.讲解几何变换方法,如平移、旋转等,并举例说明如何运用这些方法将平面图形转换为立体图形,反之亦然。
北师大版数学七年级上册1.2《展开与折叠》教案2
![北师大版数学七年级上册1.2《展开与折叠》教案2](https://img.taocdn.com/s3/m/7d34d840a31614791711cc7931b765ce05087a0d.png)
北师大版数学七年级上册1.2《展开与折叠》教案2一. 教材分析《展开与折叠》这一节的内容,主要让学生初步了解和掌握展开与折叠的概念,学会如何将立体图形展开成平面图形,并能够通过展开图还原出原来的立体图形。
这一节内容是学生学习立体几何的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的空间想象能力,对于简单的立体图形有一定的认识。
但是,对于如何将立体图形展开成平面图形,以及如何通过展开图还原出原来的立体图形,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作,逐步掌握展开与折叠的方法。
三. 教学目标1.了解展开与折叠的概念,掌握将立体图形展开成平面图形的方法。
2.能够通过展开图还原出原来的立体图形。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.重点:展开与折叠的概念,如何将立体图形展开成平面图形。
2.难点:如何通过展开图还原出原来的立体图形。
五. 教学方法采用讲授法、演示法、实践法相结合的方法。
通过讲解展开与折叠的概念,让学生理解展开与折叠的意义;通过演示,让学生直观地看到如何将立体图形展开成平面图形;通过实践操作,让学生亲手尝试展开和折叠,从而掌握展开与折叠的方法。
六. 教学准备1.准备一些简单的立体图形,如正方体、长方体等。
2.准备展开图的示例,让学生能够直观地看到如何将立体图形展开。
七. 教学过程1.导入(5分钟)讲解展开与折叠的概念,让学生理解展开与折叠的意义。
2.呈现(10分钟)展示一些简单的立体图形,让学生观察和认识。
3.操练(10分钟)让学生亲自尝试将立体图形展开成平面图形,教师进行指导。
4.巩固(5分钟)通过一些练习题,让学生巩固所学的展开与折叠的方法。
5.拓展(5分钟)让学生尝试通过展开图还原出原来的立体图形,教师进行指导。
6.小结(5分钟)对本节课的内容进行总结,强调展开与折叠的方法和意义。
7.家庭作业(5分钟)布置一些有关的作业,让学生进一步巩固所学的内容。
《展开与折叠 2课时》教案 北师大版数学七上
![《展开与折叠 2课时》教案 北师大版数学七上](https://img.taocdn.com/s3/m/76da1c354028915f814dc2dd.png)
第二课时 展开与折叠〔二〕教学目的1、进一步熟习棱柱外表的展开图,初步尝试圆柱、圆锥外表的异型图,能够做出一个棱柱、圆柱、圆锥形的模型,了解几何体与它展开的平面图形的对应关系。
2、逐步提高由几何体想出展开图,由展开图可想出几何体的识图能力及空间想象能力,培养动手制作能力。
3、通过识图想物、看物想图、画图制作等活动,培养学生学数学、做数学、爱数学的情感,体会生活中的数学美。
教学重点与难点重点:〔1〕进一步稳固、提高对棱柱外表展开图的识图能力。
〔2〕认清圆柱、圆锥的侧面展开图的形状以及展开图中的各个部位与立体图形各部位的对应关系。
难点:〔1〕由几何体想象出它的外表展开图。
〔2〕圆锥各部位与它的侧面展开图的各部位的对应关系也是学生较难想象的,另外棱锥以及一个正方体的多种展开图。
教学过程一、新课的引入上节课我们介绍了棱柱的展开与折叠,大家通过相互研究、交流、练习已经有了初步的了解,谁能将正三棱柱〔底面是等边三角形〕的外表展开图画出来供大家鉴赏?学生先思后画,教师展开学生的作品进行交流。
其他图形可由这些图形翻转得到。
下面我们思考一下,圆柱、圆锥的侧面展开图是什么形状的呢?为了简单起见,先只考虑侧面展开图〔不含底面〕。
二、新课的进行1、圆柱侧面展开图是什么形状的呢?先由学生猜测,教师再将准备好的圆柱形纸桶〔不含底面〕沿母线剪开,验证猜测的结果。
要介绍剪的方法〔母线与底面垂直〕。
让学生观察思考:〔1〕圆柱的侧面展开图中,长方形的长、宽分别与圆柱中的哪一局部相同?长方形的长是圆柱底面圆的周长,宽是圆柱的高。
〔2〕圆柱外表展开图中的两个圆的﹉﹉位置是固定不变的吗?两个圆只要与长方形的上、下两边连着即可。
可以在长方形边的任一位置上。
〔剪开两个圆柱,示范一下它们的外表展开图的形状〕2、圆锥的侧面展开图是什么形状呢?先由学生猜测,教师再将准备好的圆锥形纸筒〔不含底面〕沿母线剪开,验证猜测的结果。
简单介绍扇形中的有关名称:半径、弧。
北师大版数学七年级上册1.2《展开与折叠》(第2课时)教学设计
![北师大版数学七年级上册1.2《展开与折叠》(第2课时)教学设计](https://img.taocdn.com/s3/m/9bb6d76b0812a21614791711cc7931b764ce7b76.png)
北师大版数学七年级上册1.2《展开与折叠》(第2课时)教学设计一. 教材分析《展开与折叠》是北师大版数学七年级上册1.2的教学内容,本节课主要让学生通过实际操作,探索平面图形的折叠问题,培养学生的空间想象能力和动手操作能力。
教材中提供了丰富的图片和实例,便于学生理解和掌握展开与折叠的原理和方法。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和动手操作能力,但对于一些复杂图形的折叠问题,可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生给予适当的引导和帮助。
三. 教学目标1.理解展开与折叠的概念,掌握平面图形折叠的基本方法。
2.培养学生的空间想象能力和动手操作能力。
3.能够运用展开与折叠的知识解决实际问题。
四. 教学重难点1.重难点:平面图形的折叠方法,以及如何解决实际问题。
2.难点:对于一些复杂图形的折叠问题,如何引导学生正确操作和解决。
五. 教学方法1.讲授法:教师讲解展开与折叠的基本概念和方法。
2.演示法:教师展示实物图形的折叠过程。
3.实践操作法:学生动手操作,探索图形的折叠方法。
4.问题驱动法:教师提出问题,引导学生思考和探讨。
六. 教学准备1.准备一些实物图形,如纸片、几何模型等。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实物图形的展开与折叠过程,引发学生的兴趣,提问学生:“你们知道这些图形是如何展开和折叠的吗?”引导学生思考和回答,从而引出本节课的主题。
2.呈现(10分钟)教师讲解展开与折叠的基本概念和方法,引导学生理解平面图形的折叠过程。
通过展示实物图形和动画演示,让学生直观地感受折叠过程,并讲解如何解决折叠问题。
3.操练(10分钟)学生分组进行实践操作,尝试折叠一些简单的平面图形,如正方形、长方形等。
教师巡回指导,解答学生的问题,并纠正一些常见的错误。
北师大版七年级数学上册1.2.1展开与折叠正方体的展开与折叠教学设计
![北师大版七年级数学上册1.2.1展开与折叠正方体的展开与折叠教学设计](https://img.taocdn.com/s3/m/c1201712842458fb770bf78a6529647d26283400.png)
(五)总结归纳
1.教学内容:对本节课的知识点进行总结,强调正方体展开图的特点、表面积和体积的计算方法。
2.教学过程:教师引导学生回顾本节课所学内容,总结正方体展开与折叠的规律;鼓励学生提出疑问,解答学生问题;强调本节课的重点和难点,为课后复习和巩固打下基础。
学生在之前的学习中,可能已经接触过一些简单的展开与折叠问题,但对于正方体这类较为复杂的立体图形,可能还存在一定的困难。此外,学生在解决实际问题时,可能还缺乏将理论知识与生活实际相结合的能力。
因此,在教学过程中,我们需要关注以下几点:
1.针对学生空间想象力的发展水平,设计适当的教学活动,引导学生通过观察、实践,逐步提高空间想象能力。
作业要求:
-认真完成作业,书写工整,保持卷面整洁。
-解题过程中,注意步骤的完整性和逻辑性,尽可能采用不同的方法解题,拓展思维。
-探究题需注重团队合作,每位小组成员都要参与讨论和探究过程,共同完成报告。
作业评价:
-教师将对学生的作业进行细致批改,关注学生的解题思路、方法和结果。
-对于有创意的解题方法、深入的探究报告,教师将给予表扬和鼓励。
五、作业布置
为了巩固学生对正方体的展开与折叠、表面积和体积计算的理解,以及提高学生的空间想象能力和解决问题的实践能力,特布置以下作业:
1.必做题:
-完成课本习题1.2.1中的第1、2、3题,要求学生独立完成,并能够清晰展示解题思路。
-利用家中的正方体物品(如魔方、纸盒等),进行实际操作,观察并记录正方体的展开图,尝试不同的折叠方法,并思考如何计算其表面积和体积。
(三)学生小组讨论
北师大版七年级数学上册1.2《展开与折叠》优秀教学案例
![北师大版七年级数学上册1.2《展开与折叠》优秀教学案例](https://img.taocdn.com/s3/m/4796a370443610661ed9ad51f01dc281e43a5643.png)
(四)反思与评价
1.学生自我反思:学生在课后对自己的学习过程进行反思,总结自己在课堂上的收获和不足,明确今后的学习方向。
2.同伴评价:学生之间进行相互评价,给出建设性的意见和建议,促进共同进步。
5.教学内容的拓展与延伸:在本节课的教学过程中,教师不仅讲解了展开与折叠的基本知识和方法,还通过设置一些具有挑战性的实际问题,引导学生进行思考和解决。这种教学内容的拓展与延伸,有助于提高学生的空间想象能力和动手操作能力,培养学生解决实际问题的能力。
3.小组合作的学习方式:教师在教学过程中,组织学生进行小组合作学习,让学生在小组内就问题进行讨论,分享自己的观点和思路,互相启发,共同解决问题。这种小组合作的学习方式,不仅能够提高学生的团队协作能力,还能够促进学生的思维碰撞和创意发挥,从而提高学生的学习效果。
4.多元化的评价方式:教师对学生的学习过程和结果进行评价,关注学生的个体差异,给予鼓励和指导。同时,教师还引导学生进行自我反思和同伴评价,让学生在评价中认识到自己的势和不足,明确今后的学习方向。这种多元化的评价方式,有助于提高学生的自我认知能力和反思能力。
3.教师评价:教师对学生的学习过程和结果进行评价,关注学生的个体差异,给予鼓励和指导,助力学生全面发展。
四、教学内容与过程
(一)导入新课
1.生活实例导入:教师展示一些日常生活中的展开与折叠实例,如纸盒的制作、衣服的折叠等,引发学生对展开与折叠的兴趣。
2.问题导入:教师提出问题:“你们在日常生活中有没有遇到过需要将平面图形折叠成立体图形的情况?又是如何解决的呢?”引导学生思考和讨论。
2.问题导向的教学策略:教师在教学过程中,针对教学内容设计了具有启发性的问题,如“如何将一个正方形纸片折叠成立方体?”“展开图和立体图形之间有什么关系?”等问题,引导学生进行思考和回答。同时,教师还鼓励学生主动提出问题,培养学生的提问意识和解决问题的能力。这种问题导向的教学策略,有助于培养学生的思维能力和探究精神。
北师大版初中数学七年级上册《1.2展开与折叠》教学设计(2)
![北师大版初中数学七年级上册《1.2展开与折叠》教学设计(2)](https://img.taocdn.com/s3/m/82288d44bf23482fb4daa58da0116c175e0e1e5f.png)
北师大版初中数学七年级上册《1.2展开与折叠》教学设计(2)第一章丰富的图形世界 2 展开与折叠第2课时教学重点与难点教学重点:能将长方体、棱柱、圆柱、圆锥展开成平面图形;并由它们的平面图形折叠成立体图形.教学难点:将平面图形折叠成棱柱.学情分析认知基础:学生对于长方体、棱柱、圆柱、圆锥的相关概念已经有了初步的认识,通过上一节课对正方体的展开与折叠的学习,空间观念得到进一步的提升,初步体会到了几何体与平面展开图之间的转化关系.活动经验基础:作为展开与折叠的第2课时,学生积累了一定的操作、想象、归纳的经验.教学目标1.经历展开与折叠、模型制作等活动,发展学生的空间观念,使学生积累数学活动经验.2.在平面图形与几何体相互转换等活动过程中,发展空间观念.3.培养学生动手操作的能力,引导学生自己发现棱柱的特征.教学方法采用了比较开放的教学方式,尽量调动学生的主观能动性,教师设置合理的教学平台,学生在平台上自主地进行探索和研究.教学过程一、引入新课设计说明让学生自己动手收集材料,倡导他们热爱社会、热爱自然、热爱生活,并激起他们探究的兴趣.上节课我们探究了正方体的展开与折叠,现在你能将棱柱(三棱柱、四棱柱、五棱柱…)、圆柱、圆锥展开或折叠吗?教学说明从学生收集的包装盒中选一些向学生们展示,指出我们生活中常见的包装盒—长方体,它是属于棱柱的,今天我们就从最常见的棱柱入手,来研究,既激发了学生的求知欲,又自然地引出了课题.二、讲授新课1.探索归纳棱柱的性质设计说明从学生的观察入手,利用提问的形式,引导学生去归纳总结棱柱的性质.我们在研究某个几何体的展开与折叠之前应该了解它们的性质.这时将棱柱的模型展示给学生,包括三棱柱、四棱柱、五棱柱等,并利用模型向学生介绍各部分的名称.然后提出以下问题:(1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱、五棱柱呢?(2)三棱柱有几个侧面?侧面是什么图形?四棱柱、五棱柱呢?(3)这三种棱柱侧面的个数与底面多边形的边数有什么关系?(4)三棱柱有几条侧棱?它们的长度之间有什么关系?四棱柱、五棱柱呢?再集体完成填表向全班展示,最后教师引导学生总结出棱柱的有关性质.教学说明这一部分的内容完全可以让学生独立完成,问题比较明确,引导性很强.在思考回答问题的同时对棱柱的性质进行了研究.设计填表的目的是为了培养学生归纳总结的能力,对于七年级的学生还欠缺将数据总结比较的能力.以表格形式给出,会有一定的示范作用,为学生养成良好的探究习惯打下基础.对n棱柱棱数等的表达,包含了找规律及字母表示数的知识,这在小学有过接触,会表示就可以,没必要深究.最后教师一定要进行总结,因为棱柱的性质是后面研究展开与折叠的依据.虽然学生能说出很多性质,但毕竟是杂乱的,还需教师进行整理.大体可以归纳为:棱柱的所有侧棱长都相等;棱柱的上、下底面的形状相同;底面边数、侧面数、侧棱数、底面多边形顶点数相同,而且都与n棱柱中的n有关.2.动手操作,感受从立体图形到平面图形教学说明可让学生分组展示棱柱、圆柱、圆锥的展开图,学生对圆柱和圆锥的展开图的理解有一定难度,教师可巡视指导.3.动手操作,感受从平面图形到立体图形设计说明学生先想象再动手操作、观察,想象从感官上得到验证,会更深刻地感受平面与立体之间的转化,为后面的空间想象打好基础.活动1:教师展示准备好的教具如下图,问:如果将它延虚线折叠,可以围成什么立体图形?请你想象这个变化过程,静思片刻.活动2:教师将教具发给每一个小组,要求每一位同学,亲自去折一下,看看是否与刚才自己的想象相同.然后可以请一个小组展示折叠过程,也可以由教师用多媒体演示.最后教师进行总结提问:大家都已经知道这是一个五棱柱的展开图,那么它的侧面展开图是什么形状?其他的棱柱呢?你能指出它的底面在哪里?它们能不能在同一侧?教学说明本节课的一个重要任务就是发展学生的空间想象力,因此在设计上让学生先对折叠的过程进行了想象,而且特意地为学生留出了想象的时间,然后再通过动手操作来验证自己的想象,有了前面想象的过程学生操作的欲望是很强的,在这个过程中他会将实际看到的与自己想象的进行比较分析,修正自己一开始想象的不足之处,这里教师不用讲什么,学生已经沉浸在想象的快乐中,激发了学生的想象热情,这对发展学生的空间想象力是十分有好处的.最后的总结希望学生能够理解,棱柱的展开图与它的性质是密切相关的.我们要正确地判断,首先要了解立体图形的性质.三、巩固提高练习1:以下哪些图形经过折叠可以围成一个棱柱?练习2:把图(1)所示的纸片折成一个三棱柱,放在桌面上如图(2)所示,则从左侧看到的面为( )A.Q B.R C.S D.T答案:1.(2)(4) 2.B教学说明两个练习的难度是依次递增的.虽说是练习,在教学过程中一定要始终渗透知识方法.练习1在处理的过程中教师应该引导学生表述自己的理由,其中(1)(3)是不行的,(2)(4)都可以,教师应该及时地向学生指出展开图的多样性.练习2是中考题,解题的关键在于折叠后哪些棱是重合的.四、总结反思本节课对发展学生空间想象力有着重要的意义,在知识方面主要落实两点:一是棱柱的表面特征;二是棱柱的展开图以及展开与折叠的过程.你认为通过本节课的学习,你在哪些方面有所提高,掌握了哪些新的知识.评价与反思1.教学过程中,利用学生亲手收集的包装盒,触发他们的情怀,激起求知欲望,让他们饶有兴趣的探索思考.通过动手操作、动脑思考、集体交流,不仅提高了学生的空间思维能力,而且在情感上,使每位学生都获得了成功的体验,建立自信心,真正体验数学活动中探索过程和创造过程带来的乐趣.2.让学生先猜想、再操作,不仅发挥了学生的个人想象力,培养了个人实践能力.采用有梯度的练习及游戏,更好地激发了学生的学习兴趣,更重要的是培养了学生的创造能力和创新意识.在实施开放式教学的过程中,注重引导学生感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、合作交流、善于发现的科学精神.将创新的教材、创新的教法与创新的课堂环境有机地结合在一起,将学生自主学习与创新意识的培养落到实处.。
北师大版七年级数学上册第一章第二节《展开与折叠》教案
![北师大版七年级数学上册第一章第二节《展开与折叠》教案](https://img.taocdn.com/s3/m/ccbed55aeef9aef8941ea76e58fafab069dc44b4.png)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“展开与折叠在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为展开与折叠在建筑或艺术设计中有哪些应用?”
a.能够识别并绘制常见几何体的展开图。
b.能够根据展开图折叠出相应的立体图形。
2.培养学生的逻辑推理能力:在折叠纸盒的过程中,引导学生发现并掌握折叠过程中的对应关系,培养逻辑思维和推理能力。
3.提高学生的几何直观能力:通过观察和动手操作,使学生能够直观地感知几何体的特征,提高几何直观能力。
4.培养学生的数学应用意识:将展开与折叠知识应用于实际问题,如制作纸盒、纸箱等,提高学生解决实际问题的能力。
-突破方法:通过提供实物模型、动态演示或VR技术,帮助学生直观地理解立体图形与其展开图之间的关系。
b.折叠过程中的逻辑推理:学生可能难以理解展开图中的边和角如何准确地对应到立体图形的各个面上。
-突破方法:设计逐步引导的折叠活动,让学生在教师的指导下,通过实际操作来理解折叠过程中的逻辑推理,如使用不同颜色的笔标记对应边和角。
在课程总结时,我发现部分学生对展开与折叠在实际生活中的应用还不够了解。为了让学生更好地掌握这些知识点,我打算在课后布置一些实践作业,如让学生自己设计并制作一个纸盒,将所学知识应用到实际中。
5.培养学生的合作交流能力:在小组合作完成折叠任务的过程中,培养学生相互沟通、协作解决问题的能力。
三、教学难点与重点
1.教学重点
七年级数学上册第1章《展开与折叠(2课时)》名师教案(北师大版)
![七年级数学上册第1章《展开与折叠(2课时)》名师教案(北师大版)](https://img.taocdn.com/s3/m/71d1b347240c844768eaee4c.png)
北师大版数学七年级上册1.2折叠与展开教学设计课题 1.2折叠与展开单元第一单元学科数学年级七年级上教材分析折叠与展开是北师大版七年级上册第一单元第二课时重要内容,该课时主要围绕立体图形的展开、平面图形的折叠等知识展开深入的讲解和探讨,主要培养学生的平面图形与立体图形之间的转换能力。
学情分析折叠与展开这一课时的内容,不光需要学生对平面图形和立体图形有一定的感性认识,而且需要学生对平面图形与立体图形之间的联系有一个更加清晰的理性认识,通过实际操作,深入探讨折叠与展开之间的联系。
学习目标知识与技能目标:(1)认识到立体图形与平面图形的关系,了解一些立体图形可由平面图形围成,一些立体图形可展开成平面图形,发展空间观念;(2)由观察、折叠等数学活动认识棱柱的某些特征;(3)了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。
过程与方法:通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
情感态度与价值观:让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
重点重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。
难点正确判断哪些图形可以折叠成棱柱。
教学过程教学环节教师活动学生活动设计意图导入新课观察几个立体图形,都能展开成平面图形吗教师引导学生认真观察几个立体图形,思考这些立体图形都能展开成平面图形吗?并且让学生积极地和同学们展开交流与合作,一起发现数学乐趣。
教师引导学生认真观察几个立体图形,,通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
讲授新课1、下图中的那些图形可以沿虚线折叠成长方体包装盒,先想一想,再折一折。
2、(1)这个愣住的上下底面一样吗?(2)这个棱柱有几个侧面?侧面的形状是什么图形?(3)侧面的个数与底面图形的边数有什么关系?(4)这个棱柱有几条侧棱?它们的长度之间有什么关系?答:1.棱柱有上下两个底面,它们的形状相同.2.侧面的形状都是长方形.3.侧面的个数和底面图形的边数相等.4. 所有侧棱长都相等.3 、4、课堂练习部分1、(2018.桂平一模)下列图形是正方形的表面展开图的是( C )教师引导学生学习的同时回顾相关知识点,然后再进入新知识的学习,由观察、折叠等数学活动认识棱柱的某些特征,以及棱柱的展开图。
《展开与折叠》第2课时示范公开课教学设计【七年级数学上册北师大】
![《展开与折叠》第2课时示范公开课教学设计【七年级数学上册北师大】](https://img.taocdn.com/s3/m/ac667d0aa66e58fafab069dc5022aaea998f41e3.png)
第一章丰富的图形世界1. 2 展开与折叠第 2 课时◆教学目标1.经历展开与折叠、模型制作等活动过程,发展空间观念,积累数学学习的经验.2.在操作活动中认识棱柱的某些特征;了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作简单的立体模型.3.培养合作学习的能力.◆教学重难点◆【教学重点】利用实物模型,发现并认识棱柱的一些特征.【教学难点】对棱柱性质的理解和空间想像的验证.◆课前准备◆学生准备:预习本堂课内容;课纸板;本堂课所需的五棱柱、六棱柱、三棱柱、四棱柱的展开图;剪刀、粘胶.教师准备:标上号码、上面可以活动的五棱柱及展开图;一底面可以活动的六棱柱、三棱柱的展开图;正方体、长方体模型.◆教学过程一、创设情境,引入新知将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?引入课题:展开与折叠1.做一做.(1)让学生把准备好的五棱柱的平面展开图拿出来,沿折痕进行折叠,看看能否折成如图2的棱柱.【把各小组中制作最好的进行展示,以激发学生的兴趣及上进心.】(2)问题的出现:由于事先教师故意不告诉学生怎样制作图1的纸板,使一些同学只能用“描红”的方法,这样的棱柱过小,不易制作;也有些同学剪出的纸板折不成五棱柱.(教师给予鼓励,并引导发现为何不能的原因.)而一些爱动脑子的学生不仅制作成功,而且把图1放大了.(教师给予大力表扬.)(3)问题的解决:让制作成功的同学上台讲述如何制作图1.①先画正五边形,画一个长方形,使长方形的长等于五边形的周长,然后确定折痕,对应线段相等.②先画长方形,确定折痕,然后利用五条线段画出五边形.③把纸片对折,画出一个五边形和半个长方形,再剪开.(4)新问题的出现:教师拿出上底面活动的五棱柱模型,故意不小心把上底面掉在地上,捡回后错放对应边的位置,请求学生帮忙如何把上底面装回去,让学生分组讨论解决的方法.(5)引导学生概括:只要对应边相连,都能把上底面装回去.进一步引导学生考虑:图1的上底面可不可以移动位置?如何移下底面呢?图2棱柱还可以由哪些平面图折成?【通过层层设问,不断鼓励探求新的解决方法,可以培养学生探求新知的能力及语言表达能力.】2.知识的概括:在展开与折叠过程中的变化,激发学生思考图形并从中发现棱柱的一些特性,让学生将模型展开时测量棱长等,加深对棱柱性质的理解,并对棱柱的分类进行探讨.3.想一想.(1)先让学生想一想,以培养学生空间想像能力,然后再折一折,让学生发现能折好或不能折好的规律,要进行归纳整理,发现规律.(2)面是指侧面和底面,应加以强调.引导学生发现n棱柱有3n条棱,2n个顶点,(n+2)个面.4.侧面展开图.(1)探索圆柱的侧面展开图把圆柱的侧面展开,会得到什么图形?(2)探索圆锥的侧面展开图把圆锥的侧面展开,会得到什么图形?三、巩固新知1. 哪种几何体的表面能展开成下面的平面图形?2. 图中的两个图形经过折叠能否围成棱柱?3. 你能用一张纸片,通过剪一剪、折一折,制作一个棱柱形的盒子.四、归纳小结1.通过本堂课的教学,你了解立体图形和平面图形的关系了吗?2.一个立体图形的平面展开图是否惟一?略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章丰富的图形世界
1.2展开与折叠教案
第2课时教学设计
一、教学目标
1.通过展开与折叠活动,了解三棱柱、四棱柱、五棱柱、圆柱、圆锥的侧面展开图;能根据展开图判断和制作简单的立体模型.
2.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践制作的过程中学会与人合作,学会交流自己的思维与方法.
3.在实践操作活动中激发学生自主探究的热情和积极思考的习惯,体验探索与创造的乐趣.
二、教学重点及难点
重点:棱柱的面展开图及其特征,圆柱、圆锥的侧面展开图
难点:将平面图形折叠成棱柱
三、教学准备
三棱柱、四棱柱实物图
四、相关资源
相关图片
五、教学过程
【复习巩固】复习巩固,引入新知:
1.我们已经了解了棱柱,那么棱柱之间是否还有区别呢?
通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.
2.若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?
(1)棱柱的上、下底面是完全相同且互相平行的多边形.
(2)棱柱的侧面都是矩形.
(3)棱柱的侧棱长都相等.
(4)棱柱各元素间的数量关系如下:
名称底面形状顶点数棱数侧棱数侧面数侧面形状总面数
n棱柱n边形2n个3n个n条n个长方形(n+2)个
【新知讲解】
(一)探究一:圆柱、圆锥、棱柱的表面展开图
活动1.将三棱柱、圆柱、圆锥、圆台、棱锥沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?
(1)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).
(2)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).
(3)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).
(4)圆台:圆台的展开图是由大小两个圆(作底)和部分扇形(作侧面)组成的.
(5)棱锥:棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的.
(6)如图所示的平面图形是由哪几种几何体的表面展开的?
(1)(2)(3)
点拨:找几何体的表面展开图,关键是看侧面和底面的形状.底面是圆的几何体有圆柱、圆锥、圆台.侧面是扇形的几何体是圆锥.侧面是长方形的几何体是棱柱、圆柱.解答:(1)圆锥;(2)圆柱;(3)圆台.
(二)探究二:能折成棱柱的平面图形的特征
我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:
(1)棱柱的底面边数=侧面数.
(2)棱柱的两个底面要分别在侧面展开图的两端.
(3)四棱柱的平面展开图中只有5条相连的棱.
【典型例题】
1.下面图形经过折叠能否围成棱柱?
解答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.
(2)两底面在侧面展开图的同一端,不在两端,所以也不能围成棱柱.
(3)可以折成棱柱.
2.棱柱的侧面都是().
A.正方形B.长方形C.五边形D.菱形
3.下面几何体的表面不能展开成平面的是().
A.正方体B.圆柱C.圆锥D.球
4.下面几何体中,表面都是平的是().
A.圆柱B.圆锥C.棱柱D.球
答案:2.B.3.D.4.C.
【随堂练习】
1.矩形绕其一边旋转一周形成的几何体叫__________,直角三角形绕其中一个直角边旋转一周形成的几何体叫_________.
答案:圆柱;圆锥.
2.图(1)是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,请说明理由.
分析:能否做成一个长方体盒子,就看相对的面的形状是否相同,大小是否相等.答案:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(m2);
(2)能做成一个长方体盒子,如图(2)所示,它的体积为3×1×2=6(m3).
3.如图,沿长方形纸片上的边线剪下的阴影部分,恰好能围成一圆柱,设圆半径为r (1)用含r的代数式表示圆柱的体积;
(2)当r=3 cm,圆周率π取3.14时,求圆柱的体积(保留整数).
解:(1)V=2π2r3;
(2)当r=3 cm,圆周率π取3.14时:
V=2π2r3=2×3.142×33=532.4184≈532 cm3.
六、课堂小结
1.棱柱有哪些性质?
(1)n棱柱有n个侧面,(n+2)个面,2n个顶点,3n条棱.
(2)棱柱的上、下两个面形状、大小相同,棱柱的侧棱相等,侧面是长方形,侧面的个数和底面图形的边数相等.
2.常见几何体的展开图有什么特征?
正方体的展开图由6个正方形组成;棱柱的展开图由两个底面和一个长方形组成;圆锥的展开图由一个圆和一个扇形组成;圆柱的展开图由两个圆和一个长方形组成.
七、板书设计。