化工热力学第1章.
化工热力学第一章课件资料
经典热力学局限性之二:
只能解决极限问题,不能解决速率问题
•经典热力学可以给出的是必要条件而不是充
分条件。
•但由热力学分析可以排除不能发生反响的条
件,因此节省了大量的时间和精力。
四、为何学和如何学好化工热力学
•
•
•
1、为何要学化工热力学?
例如:合成氨厂有“一段转化〞、“脱碳〞、“甲烷化〞、“蒸汽、合成气的压缩〞等过程,如何实现全厂的能
量平衡和有效能的合理使用问题。
有用的热量称为有效能,也称为“火用〞
化工热力学的重要性
原料
预处理
粗产品
反响
产品
精制
三废
化学反响工程
2. 传质
化工别离过程
3. 能量传递
4. 提供热力学数据
热力学第一、第二定律
①热力学数据与物性数据的研究---P、V、T、H、S、G、f、φ、α、γ (第2、3、4章)
②解决化工过程所需的热、功及其传递方向,解决能量合理利用问题(第5、6章)
③解决相平衡、化学平衡的状态,确定质量传递方向(第7、8章)
各章之间的联络
第2章热力学根底数据
( PVT,Cp,Cv,EOS)
化工热力学的任务
❖
“可燃冰〞的主要成分是甲烷与水分子(CH4∙H2O)。
❖
勘探需要知道:在海底下,何种温度、压力下会形成“可燃冰〞?
❖
热力学能解决!
学习指导内容
一、化工热力学的定义和用处
二、化工热力学研究内容和特点
三、热力学的研究方法
四、为何学和如何学好化工热力学
五、化工热力学和其它化学工程分支学科间的关系
《化工热力学》复习题
《化工热力学》复习题第1章 绪论一、单项选择题1、下列各式中不受理想气体条件限制的是( A )A .H U P V ∆=∆+∆ B.P V C C R -= C.21ln()V W nRT V = D.PV γ=常数 2、对封闭体系而言,当过程的始态和终态确定后,不能确定的值是( A )A .Q B.∆U C.∆H D.∆S3、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1可逆地变化至p 2,过程的12ln P W RT P =-,则该过程为( B )A .等容过程 B.等温过程 C.绝热过程 D.等压过程4、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的W 为( B )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 5、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的Q 为( A )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 6、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的∆U 为( C )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 7、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等温可逆地变化至p 2,过程的∆H 为( C )A .12ln P RT P B.─12ln P RT P C.0 D.21ln V RT V 8、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1等容可逆地变化至p 2,过程的W 为( C )A .12ln P RT P B.─12ln P RT P C.0 D .21ln V RT V 9、封闭体系中,1mol 理想气体由T 1 ,p 1和V 1绝热可逆地变化至p 2,过程的Q 为( C )A .12ln P RT P B.─12ln P RT P C.0 D .21ln V RT V 二、填空题1、孤立系统的自由能 (是 ∕ 不是)一定值。
第1章化工热力学 陈新志
化工过程
开发、设计、 操作、优化
三传 一反 + 热 力 学
化工热力学的作用
冰箱、空调的工作原理如何? 无水乙醇价格是95%酒精的两倍,哪一部分的成本提高了?( 共沸点) 植物有效成分提取,超临界流体萃取效率高?萃取剂为何常 选CO2?(超临界液体的溶解度、临界点条件) 石墨金刚石?需要什么条件? 使导弹的落点更准确,也需要应用热力学(苛刻条件下的性质) 用过Aspen-Plus吗?您知道其热力学性质计算原理和模型吗? 热力学模块的计算占时达到50%!
p
ig ig ig H T H T C 2 1 p (T )dT T1
T2
引入反映体系特性的模型
p V b RT ap 2 T
C ig p cd T
普遍化关系式的推导
dH TdS Vdp H S V T V V T T p p T p T V dH V T dp T p
制冷循环的原理
重要指标
制冷效率
放热Q 4
冷环境
Q H H 4s COP 0 1s Ws H 2 H 1s
4s
冷却冷凝器
3
2 (节流阀) (压缩机)
输入功 Ws
H 0
5S 01 1s汽化器吸热Q0(制冷量)
冷库
超临界CO2萃取技术
超临界流体物性
• 扩散系数大、粘度低 • 密度接近于液体,对固体的 溶解度大
化工热力学
真实体系(真实气体、非理想溶液)
– 状态方程模型、活度系数模型 – van der Waals, SRK, PR, Martin-Hou EOS p=p(V,T) – – – – – – – – 如
化工热力学讲义-1-第二章-流体的p-V-T关系36页PPT文档
二、研究方法 热力学研究方法:分为宏观、微观两种。本书就工程应用而言, 主要介绍的是宏观研究方法。
宏观研究方法特点: ①研究对象:将大量分子组成的体系视为一个整体,研究大量 分子中发生的平均变化,用宏观物理量来描述体系的状态;
②研究方法:采取对大量宏观现象的直接观察与实验,总结出 具有普遍性的规律。
2a
VC3
而:V2p2 T
2RT
Vb3
6a V4
V 2p2TTC V2CRbC T3 V 6C a4 0
2RTC VC b
3
6a
VC4
上两式相除,得:
VC b VC 23
1
b 3 VC
则: a
VC3 2
②图3中高于临界温度Tc的等温线T1、T2,曲线平滑且不与相界线相交, 近似于双曲线,即:PV=常数; 小于临界温度Tc的等温线T3、T4,由三个部分组成,中间水平线表示 汽液平衡共存,压力为常数,等于饱和蒸汽压。
③从图3还可知道:临界等温线(蓝线所示)在临界点处的斜率和 曲率等于零,即:
p 0 V TTC
第二章 流体的P-V-T关系
①P、V、T的可测量性:流体压力P、摩尔体积V和温度T是可以 直接测量的,这是一切研究的前提;
②研究的目的与意义:利用P、V、T数据和热力学基本关系式可 计算不能直接测量的其他性质,如焓H、内能U、熵S和自由能G。
一、p-V-T图
2.1纯物质的P-V-T关系
说明:①曲面以上或以下的空间为不平衡区; ②三维曲面上“固”、“液”和“气(汽)”表示单相区 ; ③“固-液”、“固-汽”和“液-汽”表示两相区;
③超临界流体的特殊性:它的密度接近于液体,但同时具有气体的 “体积可变性”和“传递性质”。所以和气体、液体之间的关系是: 既同又不同,
2020年化工热力学课后答案
作者:旧在几作品编号:2254487796631145587263GF24000022 时间:2020.12.13化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
化工热力学
数有关,还与物质的蒸气压及外界条件温度相关联,建立 了SRK方程。 ▪ 形式
p RT a V b V (V b)
式中的方程常数b与RK方程的相同,常数a的表达式为
关。虽然有的状态方程可以用于气、液两相,但
较多用于气相,而且准确也高,而活度系数模型 主要用于液体溶液。
(2)意义: 化工热力学解决的三大问题中,以平衡状态下 热力学性质的计算最为重要,它是解决其它问题的基础, 所以在本书中受到特别的重视,所占的篇幅较多,其理由 如下:
▪ 物性及热力学性质是化工工艺设计中不可缺少的基础数据。 化工生产要涉及大量的物质,在过程开发和化工生产中, 若对处理物料的性质不了解,则无法分析流体间物质和能 量的传递,也无法设计分离过程,更无法认识其反应过程。
▪ 超临界流体区:高于临界温度和压力的区域叫超临界流体 区。从液体到流体或从气体到流体都不存在相变化。超临 界流体既不同于液体,也不同于气体,它的密度可以接近 液体,但具有类似气体的体积可变性和传递性质,可以作 为特殊的萃取溶剂和反应介质,与此相应的开发技术有超 临界萃取和超临界反应等。
▪ P-V图上的等温线: 主要有三种, 一是高于临界温度的等 温线T1,曲线平滑,近于双曲线,即PV = 常数,符合理 想气体的状态方程;二是小于临界温度的等温线T3,被 AC和BC线截断为三部分,其中水平段表示气液两相平衡
▪ 模型:经典热力学原理必须与反映系统特征的模 型相结合,才能解决实际问题。因为它只表示了
上述两类热力学性质之间的普遍依赖关系,并不
因具体系统而异。具体系统的这种关系还要由此
化工热力学重点难点考点剖析
第一章绪论(1) 明确化工热力学的主要任务是应用经典热力学原理,推算物质的平衡性质,从而解决实际问题,所以物性计算是化工热力学的主要任务。
(2) 掌握热力学性质计算的一般方法(3) 热力学性质计算与系统有关。
大家必须明确不同系统的热力学性质计算与其热力学原理的对应关系,这一点对于理解本课程的框架结构十分重要。
第二章流体的P-V-T关系(4) 应该理解状态方程不仅可以计算流体的p-V-T性质,而且在推算热力学性质中状态方程是系统特征的重要模型。
(5) 熟悉纯物质的P-V-T相图及其相图上的重要概念,如三相点、临界点、汽化线、熔化线、升华线、等温线、等压线等容线、单相区、两相共存区、超临界流体区等。
能在p-v图和p-T图中定性表达出有关热力学过程和热力学循环。
(6) 掌握由纯物质的临界点的数学特征约束状态方程常数的方法。
(7) 理解以p为显函数和以V为显函数的状态方程的形式,以及它们在性质计算中的区别。
(8) 能借助于软件用PR和SRK方程进行p-V-T性质计算,清楚计算时所需要输入的物性常数及其来源。
对于均相混合物性质的计算,需要应用混合法则,了解相互作用参数的含义和取值。
(9) 理解对应态原理的概念,掌握用图表和三参数对应态原理计算物性的方法,了解偏心因子对应态原理。
(10) 能够通过查寻有关手册,估算蒸汽压、饱和气液相摩尔体积、汽化焓等物性,清楚它们之间的关系。
第三章纯流体热力学性质的计算(11) 均相封闭系统的热力学原理给出了热力学性质之间的普遍化依赖关系,结合表达系统特征的模型就能获得不同热力学性质之间的具体表达式。
在物性推算中应该明确需要给定的独立变量,需要计算的从属变量,以及从属变量与独立变量之间的关系式。
另外,还必须输入有关模型参数,结合一定的数学方法,才能完成物性推算。
(12) 清楚剩余性质的含义,能用剩余性质和理性气体热容表达状态函数的变化。
能够用给定的状态方程推导出剩余性质表达式。
第1章 绪论
体积,V----volume, m3 (或l, ml) 压力,p----absolute pressure, MPa (atm,) 能量,E----energy, Joule, J(Nm)
化学工业出版社
化学工业出版社
推算这些性质,需要输入物质的基 础数据,如分子量、正常沸点、临界参 数、蒸汽压甚至混合物的共沸点等性质。 教材的附录中列出了部分物质的基础数 据。
化学工业出版社
●热力学基本概念回顾 热力学基本概念回顾
▲系统与环境→物质与能量的交换 封闭系统 敞开系统 孤立系统 ▲ 强度性质与容量性质 与系统的物质量无关的性质称为强度性质, 如系统的温度T、压力P等。反之,与系统中 物质量的多少有关的性质称为容量性质,如 系统的总体积Vt、总内能Ut等。单位质量的容 量性质即为强度性质。
面向21世纪课程教材 面向 世纪课程教材
化工热力学
陈新志、蔡振云、胡望明等编
化学工业出版社
绪论 Introduction
●化工热力学的目的、意义和范围
▲Thermo-dynamics,是讨论热与功的转化规律。经 典热力学建立在热力学三个基本定律之上。运用数 学方法,可以得到热力学性质之间的关系。 ▲本课程的主要目的是运用经典热力学原理来解决如 下实际问题: (1)过程进行的可行性分析和能量有效利用; (2)平衡状态下的热力学性质计算。即流体的性质随 着温度、压力、相态、组成等的变化。 计算机的广泛应用为化工过程设计所需热力学 数据的获取,以及模型化提供了强有力的基础。
化学工业出版社 ห้องสมุดไป่ตู้
●热力学基本量纲
关于热力学SI(International System of Units) Time , t----second, s Length, l----meter, m Mass, m----kilogram, Kg Force, F----newton,N (F=ma) Temperature,T----Kelvin tem., K (temperature,t---- Celsius tem., ℃ Fahrenheit tem., ℉) T(K)=t(℃)+273.15 t(℉)=1.8t(℃)+32
化工热力学教案
化工热力学教案一、教学目标:1.了解热力学的基本概念和基本定律;2.掌握热力学的基本计算方法;3.能够运用热力学知识解决工程问题;4.培养学生的热力学分析和解决问题的能力。
二、教学重点:1.热力学基本概念的理解;2.热力学基本定律的掌握;3.热力学计算方法的熟练运用。
三、教学难点:1.热力学的基本定律的理解和掌握;2.热力学计算方法的运用能力培养。
四、教学内容:第一章热力学基本概念1.1热力学的发展与应用1.2热力学的基本概念1.3系统与界面1.4热平衡与热力学状态1.5热力学性质和过程第二章热力学基本定律2.1能量守恒定律2.2熵增大定律2.3焓守恒定律2.4物质守恒定律第三章理想气体3.1理想气体的基本特性3.2理想气体状态方程3.3理想气体定容热容和定压热容3.4理想气体的热力学过程第四章热力学循环4.1热力学循环的基本概念4.2卡诺循环4.3蒸汽动力循环第五章绝热过程与绝热流体5.1绝热过程的特点5.2绝热过程的计算方法5.3绝热流体的特性五、教学方法:1.讲授:通过教师的讲解,向学生传达热力学的基本概念、基本定律和计算方法;2.讨论:引导学生积极参与课堂讨论,进一步加深对热力学的理解;3.实验:组织学生参与相关实验,提高实践能力和动手能力;4.作业:布置课后作业,巩固和扩展学生的知识。
六、教学评价:1.平时表现:包括参与讨论、实验操作和作业情况;2.期中考试:对学生对热力学基本概念、基本定律和计算方法的掌握情况进行考核;3.期末考试:对学生全面的热力学知识进行考核。
七、教学资源:1.教材:《化工热力学教程》陈新志版;2.多媒体设备:投影仪、电脑等;3.实验仪器:热力学实验设备。
八、教学进度:第一章热力学基本概念:2周第二章热力学基本定律:2周第三章理想气体:2周第四章热力学循环:2周第五章绝热过程与绝热流体:2周复习与总结:1周期中考试:1周总复习与期末考试:1周九、教学反馈:根据学生的学习情况和反馈意见,及时调整教学方法和内容,提高教学质量。
第1章 化工热力学基础
a = 0.42748 R 2Tc2.5 pc
m = 0.48508 + 1.55171 ω − 0.15613 ω 2 A = ap R 2T 2 B = bp RT
《高等化工热力学》第1章
(4) Peng-Robinson(PR)方程 方程
Peng-Robinson (PR,1976)方程和 方程和SRK方程具有相似的 , 方程和 方程具有相似的 特征,在计算饱和蒸气压、液体密度等更为准确一些。 特征,在计算饱和蒸气压、液体密度等更为准确一些。
《高等化工热力学》第1章
1.1.1 理想气体状态方程
EOS for Ideal Gas 理想气体的(1)分子没有体积, 分子之间没有作用力 分子之间没有作用力, 理想气体的 分子没有体积,(2)分子之间没有作用力, 分子没有体积 为概念上的气体。真实气体只有在压力很低(常压以下 、或 为概念上的气体。真实气体只有在压力很低 常压以下)、 常压以下 温度很高(高于 ℃)的条件下才接近理想气体。实验数据证 高于200℃ 的条件下才接近理想气体 实验数据证 的条件下才接近理想气体。 温度很高 高于 积仅仅是温度的函数: 这种气体的pV积仅仅是温度的函数 明,这种气体的 积仅仅是温度的函数:
R = 8 .314413 ( J .mol
−1
⋅ K −1 )
《高等化工热力学》第1章
1.1.2 立方型状态方程 (Cubic EOS)
理想气体中假设: 理想气体中假设:分子没有体积和分子之间没有相互 作用力,故真实气体的状态方程主要从分子体积(斥力项 斥力项, 作用力,故真实气体的状态方程主要从分子体积 斥力项,b) 和分子相互作用能(引力项 引力项, 两个方面对理想气体方程进行 和分子相互作用能 引力项,a)两个方面对理想气体方程进行 修正。立方型方程是对理想气体方程最直接的修正, 修正。立方型方程是对理想气体方程最直接的修正,因为这 些方程可以展开为摩尔体积V的三次方多项式 的三次方多项式, 些方程可以展开为摩尔体积 的三次方多项式,故称立方型 方程(Cubic Equations of State)。 方程 。 立方型方程有许多,这里重点介绍: 立方型方程有许多,这里重点介绍 (1) van der Waals (vdW)方程 方程 (2) Ridlich-Kwang (RK)方程 方程 (3) Soave-Ridlich-Kwang (SRK)方程 方程 (4) Peng-Robinson (PR)方程。 方程。 方程
化工热力学复习题自编
化工热力学复习题 第一章 绪论 一 是否题1、封闭系统中有两个相α、β。
在尚未达到平衡时,α、β两个相都是均相敞开系统;达到平衡时,则 α、β两个相都等价于均相封闭系统。
2、理想气体的熵和吉氏函数仅是温度的函数。
3、封闭系统中1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2 ,则该过程的⎰=∆21T T VdT CU ;同样,对于初、终态压力相等的过程有dT C H P T T ⎰=∆21。
二、填空题1、状态函数的特点是------------------------------------------------------------2、封闭系统中,温度是T 的1mol 理想气体从(p i ,V i )等温可逆的膨胀到(p f ,V f ),则所做的功为---------------------------------(以V 表示)或-----------------------------------(以p 表示)。
3、单相区的纯物质和定组成混合物的自由度数目分别是( )和( )。
第二章 一 是否题1、纯物质由蒸气变成液体,必须经过冷凝的相变化过程。
2、当压力大于临界压力时,纯物质就以液态存在。
3、由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积。
所以,理想气体的压缩因子Z=1,实际气体的压缩因子<1。
4、纯物质的三相点随着所处的压力或温度的不同而改变。
5、在同一温度下,纯物质的饱和液体与饱和蒸气的吉氏函数相等。
6、纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。
7、气体混合物的virial 系数,如B ,C ,......,是温度和组成的函数。
8、三参数的对应态原理较两参数优秀,因为前者适用于任何流体。
9、若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。
马沛生 主编 化工热力学 第一章习题解答
第一章习题解答一、问答题:1-1化工热力学与哪些学科相邻?化工热力学与物理化学中的化学热力学有哪些异同点?【参考答案】:高等数学、物理化学是化工热力学的基础,而化工热力学又是《化工原理》、《化工设计》、《反应工程》、《化工分离过程》等课程的基础和指导。
化工热力学是以化学热力学和工程热力学为基础。
化工热力学与化学热力学的共同点为:两者都是利用热力学第一、第二定律解决问题;区别在于:化学热力学的处理对象是理想气体、理想溶液、封闭体系;而化工热力学面对的是实际气体、实际溶液、流动体系,因此化工热力学要比化学热力学要复杂得多。
1-2化工热力学在化学工程与工艺专业知识构成中居于什么位置?【参考答案】:化工热力学与其它化学工程分支学科间的关系如下图所示,可以看出,化工热力学在化学工程中有极其重要的作用。
1-3化工热力学有些什么实际应用?请举例说明。
【参考答案】:①确定化学反应发生的可能性及其方向,确定反应平衡条件和平衡时体系的状态。
(可行性分析)②描述能量转换的规律,确定某种能量向目标能量转换的最大效率。
(能量有效利用)③描述物态变化的规律和状态性质。
④确定相变发生的可能性及其方向,确定相平衡条件和相平衡时体系的状态。
⑤通过模拟计算,得到最优操作条件,代替耗费巨大的中间试验。
化工热力学最直接的应用就是精馏塔的设计:1)汽液平衡线是确定精馏塔理论板数的依据,可以说没有化工热力学的汽液平衡数据就没有精馏塔的设计;2)精馏塔再沸器提供的热量离不开化工热力学的焓的数据。
由此可见,化工热力学在既涉及到相平衡问题又涉及到能量有效利用的分离过程中有着举足轻重的作用。
1-4化工热力学能为目前全世界提倡的“节能减排”做些什么?【参考答案】:化工热力学是化学工程的一个重要分支,它的最根本任务就是利用热力学第一、第二定律给出物质和能量的最大利用极限,有效地降低生产能耗,减少污染。
因此毫不夸张地说:化工热力学就是为节能减排而生的!1-5化工热力学的研究特点是什么?【参考答案】:化工热力学的研究特点:(1)从局部的实验数据加半经验模型来推算系统完整的信息;(2)从常温常压的物性数据来推算苛刻条件下的性质;(3)从容易获得的物性数据(p、V、T、x)来推算较难测定或不可测试的数据(y,H,S,G);(4)从纯物质的性质利用混合规则求取混合物的性质;(5)以理想态为标准态加上校正,求取真实物质的性质。
化工热力学考点
第一章绪论考核知识点1.1 化工热力学的地位和作用1.2 化工热力学的主要内容、方法与局限性1.2.1化工热力学研究的主要内容1.2.2化工热力学研究的主要方法1.2.3化工热力学的局限性1.3化工热力学在化工研究与开发中的重要应用1.4 如何学好化工热力学1.5 热力学基本概念回顾考核要求领会:(1)热力学是研究能量、能量转化以及与能量转化有关的热力学性质间相互关系的科学;(2)化工热力学是研究热力学原理在化工过程中的应用了解:热力学的状态函数法、热力学演绎方法与理想化方法等基本研究方法以及以Gibbs函数作为学习化工热力学课程的学习方法第二章流体的p-V-T关系考核知识点2.1纯物质的p-V-T性质2.2 流体的状态方程2.2.1 立方型状态方程2.2.2 多参数状态方程2.3 对应态原理及其应用2.3.1对应态原理2.3.2 三参数对应态原理2.3.3 普遍化状态方程2.4流体的蒸气压、蒸发焓和蒸发熵2.4.1 蒸气压2.4.2蒸发焓和蒸发熵2.5 混合规则与混合物的p-V-T关系2.5.1混合规则2.5.2混合物的状态方程2.6液体的pVT关系2.6.1液体状态方程2.6.2普遍化关联式考核重点:Virial 方程;立方型状态方程要求了解与掌握:(1)纯流体p、V、T行为:纯物质p-V图、p-T图及图中点、线和区域意义;临界点意义、超临界区(流相区)特性(2)状态方程分类和价值:①理想气体状态方程、气体通用常数R的意义和单位;②Virial方程:压力多项式、体积多项式、截项Virial方程Virial系数BC意义;③立方型状态方程:立方型状态方程中参数ab意义;立方型状态方程迭代计算法;立方型状态方程三个根的意义(3)对比态原理和普遍化关系①对比态原理②偏心因子ω定义、物理意义和计算;③以偏心因子ω为第三参数计算压缩因子的方法:普遍化第二Virial系数法和普遍化压缩因子法(4)真实气体混合物与液体的p-V-T关系①真实气体混合物p-V-T关系简便计算方法:虚拟临界参数法;②常用混合规则意义混合物的第二Virial系数与混合物立方型方程;③液体的p-V-T关系第三章纯物质(流体)的热力学性质与计算考核知识点3.1 热力学性质间的关系3.1.1 热力学基本方程3.1.2 点函数间的数学关系3.1.3 Maxwell关系式3.1.4 Maxwell关系式的应用3.2 单相系统的热力学性质3.3 用剩余性质计算系统的热力学性质3.4 用状态方程计算热力学性质3.5 气体热力学性质的普遍化关系3.5.1 普遍化Virial系数法3.5.2 普遍化压缩因子法3.6 纯组分的逸度与逸度系数3.6.1 逸度和逸度系数的定义3.6.2 纯气体逸度(系数)的计算3.6.3 温度和压力对逸度的影响3.6.4 纯液体的逸度3.7 纯物质的饱和热力学性质计算3.7.1 纯组分的气液平衡原理3.7.2 饱和热力学性质计算3.8 纯组分两相系统的热力学性质及热力学图表3.8.1 纯组分两相系统热力学性质3.8.2 热力学性质图表3.8.3 热力学性质图表制作原理考核重点:①热力学性质计算、剩余性质及其应用;②T-S图及水蒸气特性表意义和应用考核要求(1)热力学性质间关系①单相封闭系统的热力学基本方程;②状态函数间的数学关系式;③Maxwell关系式要求了解与掌握:(1)dS方程、dH方程和dU方程(2)热力学性质计算①剩余性质MR定义:HR、SR和GR基本计算式;②由HR和SR计算焓H和熵S的方法;③由普遍化第二Virial系数法和普遍化压缩因子法计算HR和SR以及H和S的方法(3)纯物质逸度和逸度系数①纯物质逸度、逸度系数完整定义和物理意义;②纯气体逸度计算方法;③纯液体逸度计算方法(4)两相系统热力学性质及热力学图表①单组分系统气液平衡两相混合物热力学性质计算方法;②干度x的意义;③T-S图意义及应用;常见化工过程物质状态变化在T-S图上的表示方法;用T-S图数据计算过程热和功以及热力学性质的变化值;④水蒸汽表中各栏目意义及关系水蒸汽表使用方法第四章溶液热力学基础考核知识点4.1 可变组成系统的热力学关系4.2 偏摩尔性质4.3 Gibbs.Duhem方程4.4 混合物组分的逸度和逸度系数4.4.1 混合物逸度与逸度系数的计算方法4.4.2 混合物逸度与组分逸度之间的关系4.4.3 组分逸度与温度、压力间的关系4.5 理想溶液4.5.1 理想溶液与标准态4.5.2理想溶液的特征4.5.3理想溶液标准态之间的关系4.6 混合过程性质变化、体积效应与热效应4.6.1 混合体积效应与混合热效应4.6.2 混合热效应4.7过量性质与活度系数4.8液体混合物中组分活度系数的测定方法4.8.1 汽液平衡法4.8.2 Gibbs-Duhem方程法4.8.3 溶剂与溶质的活度系数4.8.4 溶剂与溶质的活度系数测定法4.9 活度系数模型4.9.1 正规溶液与Scatchard-Hildebrand活度系数方程4.9.2 无热溶液与Flory-Huggins方程4.9.3 Wohl方程4.9.4 基于局部组成概念的活度系数方程考核重点: 偏摩尔性质;逸度和逸度系数;活度、活度系数和超额自由焓;理想溶液与非理想溶液考核要求(1)敞开系统的热力学基本方程①单相敞开系统的热力学基本方程:d(nU)d(nH)d(nG)d(nA)表达式及应用范围;②化学位μi定义式的各种形式(2)偏摩尔性质①偏摩尔性质定义和物理意义与计算法;②与M的关系;③与μi关系;④Gibbs - Duhem方程的常用形式及用途(3)混合物逸度和逸度系数①混合物的组分逸度和逸度系数定义;②混合物的组分逸度和逸度系数基本计算式;③混合物(整体)的逸度与组分逸度的关系温度和压力对逸度的影响(4)理想溶液①研究理想溶液的目的与理想溶液模型;②理想溶液中组分i的逸度与i组分在标准态下的逸度的关系;③两种理想溶液模型与相应的两种标准态、的表示方法;④理想溶液的特征(5)活度和活度系数活度和活度系数定义、物理意义和应用(6)混合性质变化ΔM①混合性质变化ΔM和混合偏摩尔性质变化定义、物理意义和两者关系;②ΔM和与标准关系;③ΔG与活度关系;④理想溶液混合性质变化ΔGid、ΔUid、ΔHid和ΔSid(7)过量性质ME①过量性质ME和偏摩尔过量性质定义和物理意义;②ME与混合过程过量性质变化ΔME以及混合性质变化ΔM的关系;③GE物理意义GE与活度系数γi关系式及应用(8)活度系数与组成关联式由实验数据确定活度系数①非理想溶液的GE模型:正规溶液模型和无热溶液模型;②常用活度系数与组成关联式:Redlich-Kister关系式;Wohl型方程及其常用形式;Margules方程、Van Laar 方程局部组成概念与Wilson方程、NRTL方程;③确定活度系数与组成关联式中参数的简便方法:由一组精确的气液平衡实验数据由恒沸点下气液平衡数据以及由无限稀释活度系数;以及由少量实验数据确定全浓度范围的活度系数了解与掌握(1)Wilson 方程优点和局限性;(2)UNIQUAC方程与UNIFAC方程第五章相平衡热力学考核知识点5.1 平衡性质与判据5.2 相律与Gibbs.Duhem方程5.3 二元气液平衡相图5.4 气液相平衡类型及计算类型5.4.1 气液相平衡类型5.4.2 气液相平衡计算的准则与方法5.4.3气液平衡过程5.5 由实验数据计算活度系数模型参数5.6 Gibbs-Duhem方程与实验数据的热力学一致性检验5.6.1等温二元汽液平衡数据热力学一致性校验5.6.2 等压二元汽液平衡数据热力学一致性校验5.7 共存方程与稳定性5.7.1 溶液相分裂的热力学条件5.7.2 液液平衡相图及类型5.8 液.液相平衡关系与计算类型5.8.1 液液相平衡准则5.8.2二元系液-液平衡的计算5.8.3 三元系液-液平衡的计算5.9 固.液相平衡关系及计算类型5.10 含超临界组分的气液相平衡考核重点:汽液平衡基本问题及中低压下汽液平衡计算考核要求(1)平衡判据与相律①多相多元系统的相平衡判据及其最常用形式:②相律及其应用(2)汽液平衡基本问题①相变化过程需解决的两类问题:由平衡的温度压力计算平衡各相组成及由平衡各相组成确定平衡的温度压力;②完全互溶二元体系汽液平衡相图;③汽液平衡两种常用的热力学处理方法:活度系数法和状态方程法(3)汽液平衡的计算①工程上常见汽液平衡问题的五种类型:泡点温度、泡点压力、露点温度、露点压力、闪蒸计算②常压或低压下汽液平衡计算方法:完全理想系(气相为理想气体、液相为理想溶液)和部分理想系(气相为理想气体、液相为非理想溶液)汽液平衡计算法(4)汽液平衡数据的热力学一致性检验①热力学一致性检验的基本方程Gibbs - Duhem方程及其扩展形式;②面积法检验恒温VLE数据和恒压VLE数据第六章热力学第一定律及其工程应用考核知识点6.1敞开系统热力学第一定律6.1.1 封闭系统的能量平衡6.1.2 敞开系统的能量平衡6.2 稳定流动与可逆过程6.2.1 稳定流动过程6.2.2 可逆过程6.3 轴功的计算6.3.1 可逆轴功6.3.2 气体压缩及膨胀过程热力学分析6.3.3节流膨胀6.3.4等熵膨胀6.3.5膨胀过程中的温度效应6.4 喷管的热力学基础6.4.1 等熵流动的基本特征6.4.2 气体的流速与临界速度考核重点:能量平衡方程在稳流过程中的应用考核要求:热力学第一定律和能量平衡方程①能量守恒和转化原理;②敞开体系能量平衡方程;③能量平衡方程的不同形式稳流体系能量平衡方程的应用;④轴功的计算;⑤喷管的热力学基础第七章热力学第二定律及其工程应用考核知识点7.1热力学第二定律的表述方法7.1.1过程的不可逆性7.1.2熵7.1.3热源熵变与功源熵变7.2熵平衡方程7.2.1 封闭系统的熵平衡方程式7.2.2 敞开系统熵平衡方程式7.3 热机效率7.4 理想功、损失功与热力学效率7.4.1 理想功7.4.2 稳定流动过程理想功7.4.3 损耗功7.4.4 热力学效率7.5 熵分析法在化工过程中的应用7.5.1 传热过程7.5.2混合与分离过程7.6 有效能及其计算方法7.6.1 有效能的概念7.6.2 有效能组成7.6.3 有效能的计算7.6.4 无效能7.7 有效能衡算方程与有效能损失7.7.1有效能平衡方程7.7.2有效能损失7.8 化工过程能量分析及合理用能7.8.1能量平衡法7.8.2 有效能分析法7.8.3 合理用能准则5.2 考核重点5.2.1能量平衡方程在稳流过程中的应用5.2.2 热功的不等价、熵增原理5.2.3 理想功和损失功考核目标(1)热力学第二定律热功转换的不等价性和熵①热力学第二定律原理热功转化的不等价性:功全部能变化成热热只能够部分变为功热变功的最大效率;②热力学第二定律的三种不同说法;③了解系统的熵变、熵流和熵产等基本概念与描述(2)理想功和损失功①理想功定义和物理意义"完全可逆"的含义;②损耗功定义和物理意义损耗功与过程不可逆性关系;③热力学效率定义和用途④稳流过程的理想功和损耗功的计算(4)有效能①能量存在品质(级别)差异;②有效能的物理意义基态;③有效能和理想功的关系;④稳流物系物理有效能、热量有效能、化学有效能及动能有效能、位能有效能的计算方法;以及有效能效率;(5)熵衡算方程、有效能衡算方程及其应用;(6) 化工过程能量分析及合理用能准则第八章蒸汽动力循环与制冷循环考核知识点8.1 蒸汽动力循环-Rankine 循环过程分析8.1.1 Rankine循环8.1.2 Rankine循环的改进8.2 内燃机热力过程分析8.2.1 定容加热循环8.2.2 定压加热循环8.4 燃气轮机过程分析8.5 制冷循环原理与蒸汽压缩制冷过程分析8.4.1 逆向Carnot循环8.4.2 蒸汽压缩制冷循环8.6 其它制冷循环8.6.1 蒸汽喷射制冷8.6.2 吸收制冷8.7 热泵及其应用8.8 深冷循环与气体液化8.7.1 Linde-Hampson系统工作原理8.7.2 系统的液化率及压缩功耗考核要求(1)蒸汽动力循环①理想Rankine循环装置、工作原理和循环工质状态变化;②循环过程热和功、热变功的效率、等熵效率及汽耗率的意义和计算;③提高Rankine循环效率和降低汽耗率的途径:使用回热循环和热电循环④用T-S图表示循环工质各状态点用蒸汽表数据进行有关计算(2)气体绝热膨胀的制冷原理①节流膨胀降温(制冷)原理、Joule-Tompson系数和温度降;②对外做功绝热膨胀降温(制冷)原理、等熵系数和温度降;③两种降温(制冷)方法比较(深度冷冻循环不作要求)(2)制冷循环①蒸汽压缩制冷循环装置、工作原理和工作参数(蒸发温度、冷凝温度和过冷温度)的确定制冷系数的意义;②制冷剂选择要求(多级制冷和复迭式制冷不要求);③由制冷循环工作参数及制冷量确定制冷剂循环量、制冷系数和功耗在T-S图上表示循环工质各状态点④吸收制冷循环装置和工作原理和热能利用系数计算第九章化学反应平衡考核知识点9.1 反应进度与化学反应计量学9.2 化学反应平衡常数及其计算9.2.1化学反应平衡的判据9.2.2标准自由能变化与反应平衡常数9.2.3平衡常数的估算9.3 温度对平衡常数的影响9.4 平衡常数与组成的关系9.4.1 气相反应9.4.2 液相反应9.4.3非均相化学反应9.5 单一反应平衡转化率的计算9.6反应系统的相律和Duhem理论9.7复杂化学反应平衡的计算9.7.1 以反应进度为变量的计算方法9.7.2 Gibbs自由能最小原理计算方法考核要求(1)化学反应计量系数与反应进度①反应进度定义;②封闭系统物质摩尔数微分变化与反应进度微分变化的关系(2)化学反应平衡常数及有关计算①化学反应平衡判据:标准自由焓变化ΔGΘ与平衡常数K的关系用活度或逸度表示平衡常数K;ΔGΘ与ΔG意义和作用差异;②平衡常数估算方法(3)平衡常数与平衡组成关系①气相反应中K、Kf 、Kp、Ky的意义及相互关系;②由K计算平衡组成的方法(气相反应);液相反应中由K计算平衡组成的方法(4)温度对平衡常数的影响温度与平衡常数关系基本方程-Van't Hoff等压方程式微分形式和积分形式(5)工艺参数与平衡组成关系温度、压力及惰气量对平衡组成影响表达式及应用。
《化工热力学》详细课后习题答案解析(陈新志)
2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。
4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。
化工热力学基本概念和重点讲课稿
化工热力学基本概念和重点第一章热力学第一定律及其应用本章内容:*介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。
第一节热力学概论*热力学研究的目的、内容*热力学的方法及局限性*热力学基本概念一.热力学研究的目的和内容目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。
内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。
其中第一、第二定律是热力学的主要基础。
一.热力学研究的目的和内容把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。
化学热力学的主要内容是:*利用热力学第一定律解决化学变化的热效应问题;*利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建立相平衡、化学平衡理论;*利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题。
二、热力学的方法及局限性方法:以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。
而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。
二、热力学的方法及局限性优点:*研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。
*只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。
二、热力学的方法及局限性局限性:*只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的说明或给出宏观性质的数据。
例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。
*只讲可能性,不讲现实性,不知道反应的机理、速率。
三、热力学中的一些基本概念*系统与环境系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统(system)。
化工热力学习题答案 第一至五、第七章
第一章 绪论一、选择题(共3小题,3分)1、(1分)关于化工热力学用途的下列说法中不正确的是( ) A 。
可以判断新工艺、新方法的可行性. B.优化工艺过程。
C.预测反应的速率.D 。
通过热力学模型,用易测得数据推算难测数据;用少量实验数据推算大量有用数据。
E 。
相平衡数据是分离技术及分离设备开发、设计的理论基础。
2、(1分)关于化工热力学研究特点的下列说法中不正确的是( ) (A )研究体系为实际状态。
(B )解释微观本质及其产生某种现象的内部原因。
(C )处理方法为以理想态为标准态加上校正。
(D )获取数据的方法为少量实验数据加半经验模型。
(E )应用领域是解决工厂中的能量利用和平衡问题。
3、(1分)关于化工热力学研究内容,下列说法中不正确的是( )A 。
判断新工艺的可行性. B.化工过程能量分析。
C.反应速率预测. D 。
相平衡研究参考答案一、选择题(共3小题,3分) 1、(1分)C 2、(1分)B 3、(1分)C第二章 流体的PVT 关系一、选择题(共17小题,17分)1、(1分)纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为( )。
A .饱和蒸汽 B 。
饱和液体 C .过冷液体 D.过热蒸汽2、(1分)超临界流体是下列 条件下存在的物质.A 。
高于T c 和高于P c B.临界温度和临界压力下 C.低于T c 和高于P c D.高于T c 和低于P c3、(1分)对单原子气体和甲烷,其偏心因子ω,近似等于 。
A 。
0 B 。
1 C 。
2 D 。
34、(1分)0.1Mpa ,400K 的2N 1kmol 体积约为__________A 3326LB 332.6LC 3.326LD 33.263m5、(1分)下列气体通用常数R 的数值和单位,正确的是__________ A K kmol m Pa ⋅⋅⨯/10314.833B 1。
987cal/kmol KC 82.05 K atm cm /3⋅D 8.314K kmol J ⋅/ 6、(1分)超临界流体是下列 条件下存在的物质。