函数的极值与导数PPT优秀课件
合集下载
《导数和极值》课件
![《导数和极值》课件](https://img.taocdn.com/s3/m/89e1d35f876fb84ae45c3b3567ec102de2bddf8c.png)
反函数的导数
若$f'(x) neq 0$,则反 函数在相应点的导数为
$frac{1}{f'(x)}$。
高阶导数
二阶导数
二阶导数表示函数图像的弯曲程度, 即函数在某点的切线斜率的斜率。
三阶导数
高阶导数的计算方法
通过连续求导,直到得到所需的高阶 导数。高阶导数的计算在研究函数的 极值、拐点、曲率等方面具有重要意 义。
导数的几何意义
总结词
导数的几何意义是切线的斜率,即函数图像上某一点处切线 的斜率。
详细描述
导数的几何意义是切线的斜率。在函数图像上,任意一点的 切线斜率即为该点的导数值。导数越大,表示函数在该点附 近上升或下降得越快;导数越小,表示函数在该点附近变化 得越慢。
导数的物理意义
总结词
导数的物理意义是速度和加速度,可以用于描述物理量随时间的变化率。
05 导数和极值的应用
导数在几何中的应用
切线斜率
导数在几何中常用于求曲 线的切线斜率,从而研究 曲线的形状和变化趋势。
函数单调性
通过导数可以判断函数的 单调性,对于研究函数的 极值和最值问题具有重要 意义。
极值判定
导数在几何中还可以用于 判定函数的极值点,从而 确定函数的最值。
导数在物理中的应用
详细描述
导数在物理中有重要的应用,它可以描述物理量随时间的变化率。例如,速度是 位移对时间的导数,加速度是速度对时间的导数。通过导数,可以分析物理现象 的变化规律和动态特性。
02 导数的计算
导数的基本公式
01
02
03
04
ቤተ መጻሕፍቲ ባይዱ
一次函数导数
对于函数$f(x) = ax + b$, 其导数为$f'(x) = a$。
《函数的极值和导数》课件
![《函数的极值和导数》课件](https://img.taocdn.com/s3/m/7f987ea6afaad1f34693daef5ef7ba0d4a736dc2.png)
Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率
函数的极值与导数 课件
![函数的极值与导数 课件](https://img.taocdn.com/s3/m/1f6a25c150e79b89680203d8ce2f0066f5336425.png)
4.极值点的分布规律 (1)函数f(x)在某区间内有极值,它的极值点的分布是有规律的, 相邻两个极大值点之间必有一个极小值点,同样相邻两个极小 值点之间必有一个极大值点. (2)当函数f(x)在某区间上连续且有有限个极值点时,函数f(x) 在该区间内的极大值点与极小值点是交替出现的.
5.函数在极值点附近切线斜率的变化规律 从曲线的切线角度看,曲线在极值点处切线的斜率为0,并且,曲 线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点 左侧切线的斜率为负,右侧为正.
【知识点拨】 1.对极值概念的两点说明 (1)函数的极值是一个局部性的概念,是仅对某一点的左右两侧 区域而言的.极值点是区间内部的点而不会是端点. (2)若f(x)在某区间内有极值,那么f(x)在某区间内一定不是单 调函数,即在区间上单调的函数没有极值.
2.函数极大值与极小值的关系 函数的极大值与极小值没有必然的大小关系,即极大值不一 定比极小值大,极小值不一定比极大值小.
3.极值点与导数为零的关系 (1)可导函数的极值点是导数为Байду номын сангаас的点,但是导数为零的点不 一定是极值点,即“点x0是可导函数f(x)的极值点”是 “f′(x0)=0”的充分不必要条件. (2)可导函数f(x)在点x0处取得极值的充要条件是f′(x0)=0, 且在x0左侧和右侧f′(x)的符号不同. (3)如果在x0的两侧f′(x)的符号相同,则x0不是f(x)的极值点.
函数的极值与导数
一、函数极值的有关概念 1.极小值点与极小值: (1)函数特征:函数y=f(x)在点x=a的函数值f(a)比它在点x=a 附近其他点的函数值_都__小__,且f′(a)=0.
(2)导数符号:在点x=a附近的左侧f′(x)_<__0, 右侧f′(x)_>__0. (3)结论:_点__a_叫做函数y=f(x)的极小值点,_f_(_a_)_叫做函数 y=f(x)的极小值.
《函数的极值与导数》课件
![《函数的极值与导数》课件](https://img.taocdn.com/s3/m/780990aff9c75fbfc77da26925c52cc58bd69006.png)
极大值和极小值是极值的 两种分类,取决于导数的 变化情况。
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
《导数和极值》课件
![《导数和极值》课件](https://img.taocdn.com/s3/m/57ae42b3f80f76c66137ee06eff9aef8941e48ed.png)
导数与曲线的凹凸性
导数还能帮助我们判断函数曲线的凹凸性。
1
凸函数
2
导数递减表示函数曲线凸向上。
3
凹函数
导数递增表示函数曲线凹向上。
拐点
曲线在拐点处的导数从递增变为递减。
导数图像的应用
导数的图像也具有重要的应用价值。
波形分析
导数图像可用于分析周期性信号 中的极值点。
变化率
导数图像反映了函数的变化率, 对于分析趋势至关重要。
供需关系
导数图像揭示了供需曲线中的价 格和数量变化。
总结和要点
在本次课件中,我们探讨了导数的定义和概念、计算方法、极值求解、凹凸性分析以及导数图像应用。
基本概念
导数描述函数的变化率和斜率。
极值求解
通过求导数找到函数的极值点和拐点。
凹凸性分析
导数可以判断函数曲线的凹凸性。
导数图像应用
导数图像在实际问题中具有重要的应用价值。
导数的计算方法
有多种方法可以计算导数,包括使用极限定义、微分法和求导公式。
1
极限定义
基于函数变化率的极限定义计算导数。
2
微分法
利用微小的变化来估计导数。
3
求导公式
一些常见函数的导数可以通过求导公式直接计算得出。
利用导数求函数的极值
通过求函数的导数,我们可以判断函数的极值点和极值类型。
局部极大值
导数为0的点可能是函数的局部 极大值点。
局部极小值
导数为0的点可能是函数的局部 极小值点。
拐点
函数在拐点处的导数为0,但不 是极值点。
极值问题的应用举例
极值问题与实际生活息息相关,以下是一些应用举例:
1 最大利润
通过求导数,我们可以求解最大利润的生产量。
第3讲导数与函数的极值最值课件共83张PPT
![第3讲导数与函数的极值最值课件共83张PPT](https://img.taocdn.com/s3/m/4c049a152f3f5727a5e9856a561252d380eb20dd.png)
2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.
解
(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),
令
x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②
函数的极值与导数 课件
![函数的极值与导数 课件](https://img.taocdn.com/s3/m/d0dd051db207e87101f69e3143323968001cf404.png)
又x=-1时,f(x)取得极大值7, ∴f(-1)=-1-3+9+c=7. ∴c=2. y极小值=f(3)=33-3×32-9×3+2=-25. 故所求的极小值为-25,a=-3,b=-9,c=2.
题型三 综合应用 例 3 已知函数 f(x)=3ax4-2(3a+1)x2+4x. (1)当 a=16时,求 f(x)的极值; (2)若 f(x)在(-1,1)上是增函数,求 a 的取值范围. 分析 本题考查求导法则及导数的应用,考查应用分类 讨论的数学思想解决数学问题的能力.
3.极值:极小值点、极大值点统称为________,极大 值、极小值统称为________.
1.函数的极小值点 答
2.函数的极大值点 案
3.极值点 极值
函数的极小值 函数的极大值
1.理解极值概念时需注意的几点 (1)函数的极值是一个局部性的概念,是仅对某一点的左 右两侧附近的点而言的. (2)极值点是函数定义域内的点,而函数定义域的端点绝 不是函数的极值点.
题型二 已知函数的极值求参数的值 例2 已知f(x)=x3+ax2+bx+c,当x=-1时取得极大值 7,x=3时取得极小值.求极小值及对应的a,b,c的值. 分析 根据已知条件寻找等量关系,列出方程,求a, b,c,确定f(x)后再求极小值.
解 依题意有:f′(-1)=0,f′(3)=0, 又f′(x)=3x2+2ax+b, ∴32-7+2a6+a+b=b=0,0, 解得ab==--39,. ∴f(x)=x3-3x2-9x+c.
(5)若函数f(x)在[a,b]上有极值,它的极值点的分布是有 规律的(如图所示),相邻两个极大值点之间必有一个极小值 点,同样相邻两个极小值点之间必有一个极大值点.
2. 求极值点的一般步骤 (1)求出导数f′(x); (2)解方程f′(x)=0; (3)对于方程f′(x)=0的每一个解x0,分析f′(x)在x0左、 右两侧的符号(即f(x)的单调性),确定极值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在点 x 0 处取得极大值5,其导函数 y f '(x) 的图像
(如图)过点(1,0),(2,0), 求:
(1) x 0 的值;(2)a,b,c的值;
略解:
(1)由图像可知: x0 1
(2) f(1)abc5 f/(x)3a= 2x 2b xc (a 0)
-
2
3 c
利用导数讨论函数单调的步骤:
已知:y =f(x) 的定义域 D
(1)求导数 f (x)
(2)解不等式 f('x)0且 xD
得f(x)的单调递增区间;
解不等式 f('x)0且 xD
得f(x)的单调递减区间.
(3)下结论
注、单调区间不能以“并集”出现。
3.3.2 函数的极值与导数
探究、 如图,①函数y=f(x)在A,B 等点的函数值与这些点附近的函数值 有什么关系?
案例分析
函数 f(x)x3a2xb xa2
在 x 1 时有极值10,则a,b的值为(C )
A、a3,b3或 a4,b11
B、a4,b1或 a4,b11
C、a4,b11
案例分析
函数 f(x)x3a2xb xa2
在 x 1 时有极值10,则a,b的值为( )
②y=f(x)在这些点的导数值是多少?
y=f(x)
a b
A
Hale Waihona Puke 函数极值的定义极大值点,极小值点统称为极值点.
注:①函数的极大值、极小值未必是 函数的最大值、最小值.
② 极大值不一定小于极小值
B f(b)
aa
bb f(a)
A
• 探索: x =0是否为函数 f(x)=x3的极值点?
f(x)=3x2 当f(x)=0时,x =0,
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
解:
f (1) 10
由题设条件得: f / (1) 0
1aba2 10
32ab0
解之得 ba33或ab141
注意代
通过验证,a=3,b=-3不合要求 入检验
练习
可导函数y=f(x)的导数y/与函数值和极值 之间的关系为( D ) A、导数y/由负变正,则函数y由减变为增, 且有极大值 B、导数y/由负变正,则函数y由增变为减, 且有极大值 C、导数y/由正变负,则函数y由增变为减, 且有极小值 D、导数y/由正变负,则函数y由增变为减, 且有极大值
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
而x =0不是该函数的极值点.
y f (x)x3
Ox
f(x0) =0 x0 是可导函数f(x)的极值点
x0左右侧导数异号
f(x0) =0
x0 是函数f(x)
的极值点
注意:f /(x0)=0是可导函数取得极值的必要不充分条件
请思考求可导函数的极值的步骤:
①求导数 f (x)
② 求方程 f (x) =0的根,
本节课主要学习了哪些内容?
1、极值的判定方法 2、极值的求法
1、要想知道 x0是极大值点还是极小
注 值点就必须判断 f(x0)=0左右侧导
意 数的正负.
点:
2、f /(x0)=0是可导函数取得极值的必要
不充分条件
3、数形结合以及函数与方程思想的应用
2.(2006年北京卷)已知函数 f(x)ax3bx2cx
这些根也称为可能极值点;
③列表检查 f (x)在方程f (x)=0的
根的左右两侧的符号,确定极值点
强调:要想知道 x0是极大值点还是极小值
点就必须判断 f(x0)=0左右侧导数的符号.
注:导数等于零的点不一定是极值点.
求下列函数的极值
( 1) f(x)6x2x2
( 2) f(x)x327x ( 3) f(x)61x2x3 ( 4) f(x)3xx3
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
b a
2
3
或
f/(1)3a2bc0 a2,b9,c12
f /(2)12a4bc=0
. 3a
注意:数形结合以及函数与方程思想的应用
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
(如图)过点(1,0),(2,0), 求:
(1) x 0 的值;(2)a,b,c的值;
略解:
(1)由图像可知: x0 1
(2) f(1)abc5 f/(x)3a= 2x 2b xc (a 0)
-
2
3 c
利用导数讨论函数单调的步骤:
已知:y =f(x) 的定义域 D
(1)求导数 f (x)
(2)解不等式 f('x)0且 xD
得f(x)的单调递增区间;
解不等式 f('x)0且 xD
得f(x)的单调递减区间.
(3)下结论
注、单调区间不能以“并集”出现。
3.3.2 函数的极值与导数
探究、 如图,①函数y=f(x)在A,B 等点的函数值与这些点附近的函数值 有什么关系?
案例分析
函数 f(x)x3a2xb xa2
在 x 1 时有极值10,则a,b的值为(C )
A、a3,b3或 a4,b11
B、a4,b1或 a4,b11
C、a4,b11
案例分析
函数 f(x)x3a2xb xa2
在 x 1 时有极值10,则a,b的值为( )
②y=f(x)在这些点的导数值是多少?
y=f(x)
a b
A
Hale Waihona Puke 函数极值的定义极大值点,极小值点统称为极值点.
注:①函数的极大值、极小值未必是 函数的最大值、最小值.
② 极大值不一定小于极小值
B f(b)
aa
bb f(a)
A
• 探索: x =0是否为函数 f(x)=x3的极值点?
f(x)=3x2 当f(x)=0时,x =0,
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
解:
f (1) 10
由题设条件得: f / (1) 0
1aba2 10
32ab0
解之得 ba33或ab141
注意代
通过验证,a=3,b=-3不合要求 入检验
练习
可导函数y=f(x)的导数y/与函数值和极值 之间的关系为( D ) A、导数y/由负变正,则函数y由减变为增, 且有极大值 B、导数y/由负变正,则函数y由增变为减, 且有极大值 C、导数y/由正变负,则函数y由增变为减, 且有极小值 D、导数y/由正变负,则函数y由增变为减, 且有极大值
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
而x =0不是该函数的极值点.
y f (x)x3
Ox
f(x0) =0 x0 是可导函数f(x)的极值点
x0左右侧导数异号
f(x0) =0
x0 是函数f(x)
的极值点
注意:f /(x0)=0是可导函数取得极值的必要不充分条件
请思考求可导函数的极值的步骤:
①求导数 f (x)
② 求方程 f (x) =0的根,
本节课主要学习了哪些内容?
1、极值的判定方法 2、极值的求法
1、要想知道 x0是极大值点还是极小
注 值点就必须判断 f(x0)=0左右侧导
意 数的正负.
点:
2、f /(x0)=0是可导函数取得极值的必要
不充分条件
3、数形结合以及函数与方程思想的应用
2.(2006年北京卷)已知函数 f(x)ax3bx2cx
这些根也称为可能极值点;
③列表检查 f (x)在方程f (x)=0的
根的左右两侧的符号,确定极值点
强调:要想知道 x0是极大值点还是极小值
点就必须判断 f(x0)=0左右侧导数的符号.
注:导数等于零的点不一定是极值点.
求下列函数的极值
( 1) f(x)6x2x2
( 2) f(x)x327x ( 3) f(x)61x2x3 ( 4) f(x)3xx3
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
b a
2
3
或
f/(1)3a2bc0 a2,b9,c12
f /(2)12a4bc=0
. 3a
注意:数形结合以及函数与方程思想的应用
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]