高考数学一轮复习第八章立体几何..体积对点训练理
2023年高考数学一轮复习点点练26空间几何体的三视图与直观图表面积与体积含解析理
第八单元立体几何考情分析多以两小一大的形式出现,每年必考,分值为17~22分.重点考查几何体的三视图问题、几何体的表面积与体积、空间线面位置关系,用向量法计算空间角,其中与球有关的接(切)问题是考查的难点.对于空间向量的应用,空间直角坐标系的建立是否合理是解决有关问题的关键,有时所给空间图形不规则——没有三条互相垂直的直线,不利于空间直角坐标系的建立,另外,探索性问题中动点坐标的设法及有关计算是难点.点点练26空间几何体的三视图与直观图、表面积与体积一基础小题练透篇1.[2022·山东济宁检测]已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC的面积是( )A.3B.22C.32D.342.[2021·江西吉安联考]某几何体的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体中,最长的棱的长度为( )A.3B.32C.33D.63.[2022·四川成都七中高三期中]已知一个几何体的三视图如图,则它的表面积为( )A .3πB .4πC.5πD.6π4.[2021·衡水模拟]已知正三棱锥S ABC 的三条侧棱两两垂直,且侧棱长为2,则此三棱锥的外接球的表面积为( )A .πB.3πC.6πD.9π5.[2022·云南大理模拟预测]一个几何体的三视图如图所示,则这个几何体的体积为( )A .43πB.2πC.πD.83π 6.[2021·江苏海安高级月考]三棱锥A BCD 中,∠ABC =∠CBD =∠DBA =60°,BC =BD =1,△ACD 的面积为114,则此三棱锥外接球的表面积为( ) A .4πB.16πC.163πD.323π7.[2022·四川省南充市白塔模拟]如图所示,网格纸上小正方形的边长为1,粗线画出的是某个多面体的三视图,若该多面体的所有顶点都在球C 的表面上,则球C 的表面积是( )A .8πB.12πC.16πD.32π 8.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.9.[2022·湘豫名校联考]在四面体ABCD 中,AB =CD =5,AD =BC =13,AC =BD =10,则此四面体的体积为________.二能力小题提升篇1.[2022·深圳市高三调研]已知圆柱的底面半径为2,侧面展开图为面积为8π的矩形,则该圆柱的体积为( )A .8πB.4πC.83πD.2π2.[2022·浙江省高三测试]如图是用斜二测画法画出的∠AOB 的直观图∠A ′O ′B ′,则∠AOB 是( )A .锐角B .直角C .钝角D .无法判断3.[2022·河南省洛阳市高三调研]大约于东汉初年成书的我国古代数学名著《九章算术》中,“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”实际是知道了球的体积V ,利用球的体积,求其直径d 的一个近似值的公式:d =3169V ,而我们知道,若球的半径为r ,则球的体积V =43πr 3,则在上述公式d =3169V 中,相当于π的取值为( )A.3B .227C .278D .1694.[2021·云南省曲靖市高三二模]如图,在水平地面上的圆锥形物体的母线长为12,底面圆的半径等于4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥侧面爬行一周后回到点P 处,则小虫爬行的最短路程为( )A .123B .16C .24D .24 35.[2022·江西省兴国县高三月考]已知三棱锥P ABC 中,PA ⊥平面ABC ,AB ⊥AC ,AB =AC =2,且三棱锥P ABC 外接球的表面积为36π.则PA =________.6.[2022·广东七校第二次联考]在四棱锥P ABCD 中,四边形ABCD 是边长为2a 的正方形,PD ⊥底面ABCD ,且PD =2a ,若在这个四棱锥内放一个球,则该球半径的最大值为________.三高考小题重现篇1.[2021·山东卷]已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B.2 2 C .4D.4 22.[2021·全国甲卷]在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )3.[2021·全国甲卷]已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.4.[2021·全国甲卷]已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥OABC的体积为( )A.212B.312C.24D.345.[2020·山东卷]已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.6.[2019·全国卷Ⅱ]中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.四经典大题强化篇1.在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O 为AC的中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1ABC的体积.2.已知点P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,求三棱锥P-ABD体积的最大值.点点练26 空间几何体的三视图与直观图、表面积与体积一 基础小题练透篇1.答案:A解析:由题图可知原△ABC 的高AO =3,BC =B ′C ′=2,∴S △ABC =12·BC ·OA =12×2×3= 3.2.答案:C解析:由三视图还原几何体,可得该几何体可看作如图所示的棱长为3的正方体中,以A ,B ,C ,D 为顶点的三棱锥,其最长的棱为BD ,且BD =32+32+32=3 3.3.答案:B解析:由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,底面圆的半径r =1,圆锥的母线长l =(3)2+1=2,记该几何体的表面积为S ,故S =12(2πr )l +12×4πr 2=4π.4.答案:C解析:正三棱锥的外接球即是棱长为2的正方体的外接球,所以外接球的直径2R =(2)2+(2)2+(2)2=6,所以4R 2=6,外接球的表面积4πR 2=6π.5.答案:A解析:根据三视图可知几何体是由有公共的底面的圆锥和圆柱体的组合体,由三视图可知,圆锥的底面半径为1,高为1,圆柱的底面半径为1,高为1,所以组合体的体积为13π×12×1+π×12×1=4π3.6.答案:A解析:∵BC =BD =1,∠CBD =60°,∴CD =1,又AB =AB ,∠ABC =∠DBA =60°,BC =BD ,∴△ABC ≌△ABD ,则AC =AD ,取CD 中点E ,连接AE ,又由△ACD 的面积为114,可得△ACD 的高AE =112,则可得AC =AD =3,在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos60°,∴3=AB 2+1-2×AB ×1×12,解得AB =2,则AC 2+BC 2=AB 2,可得∠ACB =90°,∴∠ADB=90°,∴AC ⊥BC ,AD ⊥BD ,根据球的性质可得AB 为三棱锥外接球的直径,则半径为1, 故外接球的表面积为4π×12=4π.7.答案:A解析:由三视图可还原几何体为从长、宽均为2,高为2的长方体中截得的四棱锥S ABCD ,则四棱锥S ABCD 的外接球即为长方体的外接球, ∴球C 的半径R =122+2+4=2,∴球C 的表面积S =4πR 2=8π. 8.答案:2+22解析:如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt△ABE 中,AB =1,∠ABE =45°,∴BE =22.又四边形AECD 为矩形,AD =EC =1,∴BC =BE +EC =22+1,由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′.在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.9.答案:2解析:设四面体ABCD 所在的长方体的长、宽、高分别为a ,b ,c ,则⎩⎪⎨⎪⎧a 2+b 2=5,a 2+c 2=13,b 2+c 2=10,得⎩⎪⎨⎪⎧a =2,b =1,c =3,所以四面体ABCD 的体积V =abc -13×12abc ×4=13abc =2.二 能力小题提升篇1.答案:A解析:设圆柱的高为h ,则2π×2×h =8π⇒h =2,所以圆柱的体积为π×22×2=8π.2.答案:C解析:根据斜二测画法规则知,把直观图∠A ′O ′B ′还原为平面图,如图所示:所以∠AOB 是钝角. 3.答案:C解析:由d =3169V 得V =916·(2r )3=43·278r 3,比较V =43πr 3,相当于π的取值为278. 4.答案:A解析:如图,设圆锥侧面展开扇形的圆心角为θ,则由题可得2π×4=12θ,则θ=2π3,在Rt△POP ′中,OP =OP ′=12,则小虫爬行的最短路程为PP ′=122+122-2×12×12×⎝ ⎛⎭⎪⎫-12=12 3.5.答案:27解析:由PA ⊥平面ABC ,AB ⊥AC ,将三棱锥补成长方体,它的对角线是其外接球的直径,∵三棱锥外接球的表面积为36π,设外接球的半径为R ,则4πR 2=36π,解得R =3∴三棱锥外接球的半径为3,直径为6,∵AB =AC =2,∴22+22+PA 2=62,∴PA =27.6.答案:(2-2)a解析:方法一 由题意知,球内切于四棱锥P ABCD 时半径最大.设该四棱锥的内切球的球心为O ,半径为r ,连接OA ,OB ,OC ,OD ,OP ,则V P -ABCD =V O -ABCD +V O -PAD +V O -PAB +V O -PBC +V O -PCD ,即13×2a ×2a ×2a =13×⎝ ⎛⎭⎪⎫4a 2+2×12×2a ×2a +2×12×2a ×22a ×r ,解得r =(2-2)a .方法二 易知当球内切于四棱锥P -ABCD ,即与四棱锥P -ABCD 各个面均相切时,球的半径最大.作出相切时的侧视图如图所示,设四棱锥P -ABCD 内切球的半径为r ,则12×2a ×2a=12×(2a +2a +22a )×r ,解得r =(2-2)a . 三 高考小题重现篇1.答案:B解析:设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则πl =2π×2,解得l =2 2.2.答案:D解析:根据题目条件以及正视图可以得到该几何体的直观图,如图,结合选项可知该几何体的侧视图为D.3.答案:39π解析:设该圆锥的高为h ,则由已知条件可得13×π×62×h =30π,解得h =52,则圆锥的母线长为h 2+62=254+36=132,故该圆锥的侧面积为π×6×132=39π. 4.答案:A解析:如图所示,因为AC ⊥BC ,且AC =BC =1,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥面ABC ,OO 1=1-⎝ ⎛⎭⎪⎫AB 22=1-⎝ ⎛⎭⎪⎫222=22,所以三棱锥O ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212. 5.答案:2π2解析:如图,连接B 1D 1,易知△B 1C 1D 1为正三角形,所以B 1D 1=C 1D 1=2.分别取B 1C 1,BB 1,CC 1的中点M ,G ,H ,连接D 1M ,D 1G ,D 1H ,则易得D 1G =D 1H =22+12=5,D 1M ⊥B 1C 1,且D 1M = 3.由题意知G ,H 分别是BB 1,CC 1与球面的交点.在侧面BCC 1B 1内任取一点P ,使MP =2,连接D 1P ,则D 1P =D 1M 2+MP 2=(3)2+(2)2=5,连接MG ,MH ,易得MG =MH =2,故可知以M 为圆心,2为半径的圆弧GH 为球面与侧面BCC 1B 1的交线.由∠B 1MG =∠C 1MH =45°知∠GMH =90°,所以GH 的长为14×2π×2=2π2. 6.答案:26 2-1 解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x ,则22x +x +22x =1,解得x =2-1,故题中的半正多面体的棱长为2-1. 四 经典大题强化篇1.解析:(1)证明:因为AA 1=A 1C ,且O 为AC 的中点,所以A 1O ⊥AC ,又平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,且A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABC .(2)∵A 1C 1∥AC ,A 1C 1⊄平面ABC ,AC ⊂平面ABC ,∴A 1C 1∥平面ABC ,即C 1到平面ABC 的距离等于A 1到平面ABC 的距离.由(1)知A 1O ⊥平面ABC ,且A 1O =AA 21 -AO 2=3,∴VC 1-ABC =VA 1-ABC =13S △ABC ·A 1O =13×12×2×3×3=1. 2.解析:设点P 在平面ABC 上的射影为G ,如图,由PA =PB =PC =2,∠ABC =90°,知点P 在平面ABC 上的射影G 为△ABC 的外心,即AC 的中点.设球的球心为O ,连接PG ,则O 在PG 的延长线上.连接OB ,BG ,设PG =h ,则OG =2-h ,所以OB 2-OG 2=PB 2-PG 2,即4-(2-h )2=4-h 2,解得h =1,则AG =CG = 3.设AD =x ,则GD =x -AG =x -3,BG =3,所以BD =BG 2-GD 2=-x 2+23x ,所以S △ABD =12AD ·BD =12-x 4+23x 3. 令f (x )=-x 4+23x 3,则f ′(x )=-4x 3+63x 2.由f ′(x )=0,得x =0或x =332,易知当x =332时,函数f (x )取得最大值24316,所以(S △ABD )max =12×934=938.又PG =1,所以三棱锥P -ABD 体积的最大值为13×938×1=338.。
新人教A版版高考数学一轮复习第八章立体几何空间几何体的表面积和体积教案理解析版
基础知识整合1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是错误!侧面展开图的面积,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台和球的表面积和体积1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,1若球为正方体的外接球,则2R=错误!a;2若球为正方体的内切球,则2R=a;3若球与正方体的各棱相切,则2R=错误!A.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!.(3)正四面体的外接球与内切球的半径之比为3∶1.1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9C.12D.18答案B解析由三视图可推知,几何体的直观图如图所示,可知AB=6,CD=3,PC=3,CD垂直平分AB,且PC⊥平面ACB,故所求几何体的体积为错误!×错误!×3=9.故选B.2.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6 D.8答案C解析由三视图知该几何体是底面为直角梯形的直四棱柱,即如图所示四棱柱A1B1C1D1—ABC D.由三视图中数据可知底面梯形的两底分别为1和2,高为2,所以S底面=错误!×(1+2)×2=3.直四棱柱的高为2,所以体积V=3×2=6.故选C.3.(2019·北京模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+错误!B.4+错误!C.2+2错误!D.5答案C解析该三棱锥的直观图如图所示:过D作DE⊥BC,交BC于E,连接AE,则BC=2,EC=1,AD=1,ED=2,S表=S△BCD+S△ACD+S△ABD+S△ABC=错误!×2×2+错误!×错误!×1+错误!×错误!×1+错误!×2×错误!=2+2错误!.故选C.4.如图,半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为错误!,则球的表面积和体积分别为________,________.答案36π36π解析底面中心与C′连线即为半径,设球的半径为R,则R2=(错误!)2+(错误!)2=9.所以R=3,所以S球=4πR2=36π,V球=错误!πR3=36π.5.如图所示,已知球O的球面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=错误!,则球O的体积等于________.答案错误!解析由题意知,DC边的中点就是球心O,因为它到D,A,C,B四点的距离相等,∴球的半径R=错误!CD,又AB=BC=错误!,∴AC=错误!,∴CD=错误!=3,∴R=错误!,∴V球O=错误!错误!3=错误!.核心考向突破考向一几何体的表面积例1(1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12错误!πB.12πC.8错误!π D.10π答案B解析根据题意,可得截面是边长为2错误!的正方形,结合圆柱的特征,可知该圆柱的底面为半径是错误!的圆,且高为2错误!,所以其表面积为S=2π(错误!)2+2π×错误!×2错误!=12π.故选B.(2)(2019·河北承德模拟)某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为()A.8+4错误!+2错误!B.6+4错误!+4错误!C.6+2错误!+2错误!D.8+2错误!+2错误!答案C解析由三视图可知,该几何体为放在正方体内的四棱锥E—ABCD,如图,正方体的棱长为2,该四棱锥底面为正方形,面积为4,前后两个侧面为等腰三角形,面积分别为2错误!,2,左右两个侧面为直角三角形,面积都为错误!,可得这个几何体的表面积为6+2错误!+2错误!,故选C.触类旁通空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.错误!错误!即时训练1.(2019·山东潍坊模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.20π B.24πC.28π D.32π答案C解析由三视图可知该几何体为组合体,上半部分为圆柱,下半部分为圆锥,圆柱的底面半径为1,高为2,圆锥的底面半径为3,高为4,则该几何体的表面积S=π×32+π×3×5+2π×1×2=28π.故选C.2.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+错误!B.1+2错误!C.2+错误!D.2错误!答案C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD为全等的等腰直角三角形,AB=AD=BC=CD=错误!.取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=错误!,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD =错误!,S△ABD=S△BCD=1,所以四面体的表面积为2+错误!.故选C.考向二几何体的体积角度错误!补形法求体积例2(1)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π答案B解析(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的错误!,所以该几何体的体积V=π×32×4+π×32×6×错误!=63π.故选B.(2)(2019·河北质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是()A.50 B.75C.25.5D.37.5答案D解析如图,由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥C1—MNB 1A1所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为5.图中几何体ABCC1MN为剩余部分,因为AM=2,B1C1⊥平面MNB1A1,所以剩余部分的体积V=V三棱柱—V四棱锥=错误!×5×5×5—错误!×3×5×5=37.5,故选D.角度错误!分割法求体积例3(1)(2019·山西五校联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊柱的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为()A.5000立方尺B.5500立方尺C.6000立方尺D.6500立方尺答案A解析该楔体的直观图如图中的几何体ABCDEF.取AB的中点G,CD的中点H,连接FG,GH,HF,则该几何体的体积为四棱锥F—GBCH与三棱柱ADE—GHF的体积之和.又可以将三棱柱ADE—GHF割补成高为EF,底面积为S=错误!×3×1=错误!平方丈的一个直棱柱,故该楔体的体积V=错误!×2+错误!×2×3×1=5立方丈=5000立方尺.故选A.(2)(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案错误!解析多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为错误!,高为1,∴其体积为错误!×(错误!)2×1=错误!,∴多面体的体积为错误!.角度错误!转化法求体积例4(1)如图所示,在正三棱柱ABC—A1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥A—A1EF的体积是________.答案8错误!解析由正三棱柱的底面边长为4,得点F到平面A1AE的距离(等于点C到平面A1ABB1的距离)为错误!×4=2错误!,则V三棱锥A—A1EF=V三棱锥F—A1AE=错误!S三角形A1AE×2错误!=错误!×错误!×6×4×2错误!=8错误!.(2)三棱锥P—ABC中,D,E分别为PB,PC的中点,记三棱锥D—ABE的体积为V1,P—ABC的体积为V2,则错误!=________.答案错误!解析如图所示,由于D,E分别是边PB与PC的中点,所以S△BDE=错误!S△PBC.又因为三棱锥A—BDE 与三棱锥A—PBC的高相等,所以错误!=错误!.触类旁通空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.2若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.3若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.即时训练3.(2019·安徽蚌埠质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积可能为()A.π+错误!B.π+2C.2π+错误!D.2π+2答案A解析由三视图可知,该几何体由半个圆柱和一个三棱锥组合而成.故体积为错误!×π×12×2+错误!×错误!×2×2×2=π+错误!.4.如图所示,正方体ABCD—A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1—EDF的体积为________.答案错误!解析三棱锥D1—EDF的体积即为三棱锥F—DD1E的体积.因为E,F分别为AA1,B1C上的点,所以正方体ABCD—A1B1C1D1中△EDD1的面积为定值错误!,F到平面AA1D1D的距离为定值1,所以VF—DD1E=错误!×错误!×1=错误!.5.如图,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5.求此几何体的体积.解解法一:如图,取CM=AN=BD,连接DM,MN,DN,用“分割法”把原几何体分割成一个直三棱柱和一个四棱锥.则V几何体=V三棱柱+V四棱锥.由题知三棱柱ABC—NDM的体积为V1=错误!×8×6×3=72.四棱锥D—MNEF的体积为:V2=错误!×S梯形MNEF×DN=错误!×错误!×(1+2)×6×8=24,则几何体的体积为:V=V1+V2=72+24=96.解法二:用“补形法”把原几何体补成一个直三棱柱,使AA′=BB′=CC′=8,所以V几何体=错误!V三棱柱=错误!×S△ABC×AA′=错误!×24×8=96.考向三与球有关的切、接问题例5(1)(2018·全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9错误!,则三棱锥D—ABC体积的最大值为()A.12错误!B.18错误!C.24错误!D.54错误!答案B解析如图所示,点M为三角形ABC的重心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC 体积最大,此时,OD=OB=R=4.∵S△ABC=错误!AB2=9错误!,∴AB=6,∵点M为三角形ABC的重心,∴BM=错误!BE=2错误!,∴在Rt△OMB中,有OM=错误!=2.∴DM=OD+OM=4+2=6,∴(V三棱锥D—ABC)max=错误!×9错误!×6=18错误!.故选B.(2)(2017·全国卷Ⅰ)已知三棱锥S—ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S—ABC的体积为9,则球O的表面积为________.答案36π解析如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S—ABC的体积V=错误!×错误!·OA=错误!,即错误!=9,∴r=3,∴S球表=4πr2=36π.触类旁通空间几何体与球切、接问题的求解方法(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”“接点”作出截面图,把空间问题化归为平面问题.2若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.即时训练6.已知直三棱柱ABC—A1B1C1的各顶点都在以O为球心的球面上,且∠BAC=错误!,AA1=BC=2,则球O的体积为()A.4错误!π B.8πC.12π D.20π答案A解析在底面△ABC中,由正弦定理得底面△ABC所在的截面圆的半径为r=错误!=错误!=错误!,则直三棱柱ABC—A1B1C1的外接球的半径为R=错误!=错误!=错误!,则直三棱柱ABC—A1B1C1的外接球的体积为错误!πR3=4错误!π.故选A.7.(2018·漳州模拟)在直三棱柱A1B1C1—ABC中,A1B1=3,B1C1=4,A1C1=5,AA 1=2,则其外接球与内切球的表面积之比为()A.错误!B.错误!C.错误!D.29答案A解析由底面三角形的三边长可知,底面三角形为直角三角形,内切球半径r=错误!=1,取AC,A1C 1的中点D,E,则外接球球心在DE的中点O,由A1C1=5,AA1=2,得AC1=错误!,∴R=OA =错误!,错误!=错误!=错误!,故选A.。
2021版高考数学(理)人教A版(全国)一轮复习 第8章 立体几何与空间向量 8.2 文档
1.多面体的表(侧)面积由于多面体的各个面都是平面,所以多面体的侧面积就是全部侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面开放图及侧面积公式圆柱圆锥圆台侧面开放图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l3.柱、锥、台和球的表面积和体积名称 几何体表面积体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四周体的外接球与内切球的半径之比为3∶1. 【思考辨析】推断下面结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简洁组合体的体积等于组成它的简洁几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面开放图是一个正方形,那么这个圆柱的侧面积是2πS .( × )1.(教材改编)已知圆锥的表面积等于12πcm 2,其侧面开放图是一个半圆,则底面圆的半径为( ) A .1cmB .2cmC .3cm D.32cm 答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2(cm).2.(2022·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30答案 C解析 由俯视图可以推断该几何体的底面为直角三角形,由正视图和侧视图可以推断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,=S △ABC ·AA 1=12×4×3×5=30,=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.3.(教材改编)一个棱长为2cm 的正方体的顶点都在球面上,则球的体积为________cm 3. 答案 43π解析 由题意知正方体的体对角线为其外接球的直径, 所以其外接球的半径r =12×23=3(cm),∴V 球=43π×r 3=43π×33=43π(cm 3).4.(2021·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为:S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.5.(2021·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 83π解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1m ,圆锥的高为1m ,圆柱的高为2m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83π (m 3).题型一 求空间几何体的表面积例1 (1)(2021·安徽)一个四周体的三视图如图所示,则该四周体的表面积是( )111ABC A B C V -棱柱111111113P A B C A B C V S PB -∆=⋅棱柱A.1+ 3 B.1+2 2C.2+ 3 D.2 2(2)(2021·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r等于()A.1 B.2C.4 D.8(3)(2022·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.答案(1)C(2)B(3)12解析(1)由几何体的三视图可知空间几何体的直观图如图所示.∴其表面积S表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由正视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.(3)设正六棱锥的高为h,侧面的斜高为h′.由题意,得13×6×12×2×3×h=23,∴h=1,∴斜高h′=12+(3)2=2,∴S侧=6×12×2×2=12.思维升华空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积留意连接部分的处理.(3)旋转体的表面积问题留意其侧面开放图的应用.(2022·安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ 3 B.18+ 3C.21 D.18答案 A解析 由几何体的三视图可知,该几何体的直观图如图所示.因此该几何体的表面积为6×(4-12)+2×34×(2)2=21+ 3.故选A.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2021·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15答案 D 解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为=13×12×12×113-13×12×12×1=15.选D.命题点2 求简洁几何体的体积例3 (2021·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3 B.32π3 C .36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )1111111111111111A AB D A A B D BCD ABCDA B C D ABCD A A B D V V V V V -----=-A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,其中AC =6,BC =8,∠ACB =90°,则AB =10.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大. 即r =6+8-102=2,故能得到的最大球的体积为43πr 3=4π3×8=32π3,故选B.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,简洁求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先依据三视图得到几何体的直观图,然后依据条件求解.题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.本例若将直三棱柱改为“正四周体”,则此正四周体的表面积S 1与其内切球的表面积S 2的比值为多少? 解 设正四周体棱长为a ,则正四周体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四周体高的14,即r=14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何学问查找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两相互垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A.22B .1 C. 2 D. 3答案 C解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R 为球的半径),∴(x 2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.14.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5. 则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积. 解析用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96. 答案 96温馨提示 (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更生疏的几何体中,奇妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般接受转化的方法来进行,即将侧面开放化为平面图形,“化曲为直”来解决,因此要生疏常见旋转体的侧面开放图的外形及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规章几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特殊是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. [失误与防范]求空间几何体的表面积应留意的问题(1)求组合体的表面积时,要留意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,简洁和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练 (时间:35分钟)1.(2021·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8cm 3B .12cm 3 C.323cm 3 D.403cm 3 答案 C解析 由三视图可知该几何体是由棱长为2cm 的正方体与底面为边长为2cm 正方形、高为2cm 的四棱锥组成,V =V 正方体+V 四棱锥=8cm 3+83cm 3=323cm 3.故选C.2.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为( ) A.100π3B.500π3C .75πD .100π答案 D解析 依题意,设球半径为R ,满足R 2=32+42=25, ∴S 球=4πR 2=100π. 3.(2021·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛答案 B解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).4.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5答案 C解析 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB = 2. 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB , ∴PD =22+1=5,P A =2+12=3,从而有P A 2+DA 2=PD 2, ∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6.5.(2021·课标全国Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥OABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π答案 C 解析 如图,要使三棱锥OABC 即COAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥COAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V OABC 最大=V COAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R=6,得S 球O =4πR 2=4π×62=144π.选C.6.(2022·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.答案 14解析 设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC ,∴V 1V 2=V A -DBE V A -PBC =13S △BDE ·h13S △PBC ·h =14. 7.(2021·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.8.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________. 答案932解析 设等边三角形的边长为2a ,球O 的半径为R , 则V 圆锥=13·πa 2·3a =33πa 3.又R 2=a 2+(3a -R )2,所以R =233a ,故V 球=4π3·(233a )3=323π27a 3,则其体积比为932.9.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.解 由题意可知这三个几何体的高都相等,设长方体的底面正方形的边长为a ,高也等于a ,故其表面积为S 1=6a 2.直三棱柱的底面是腰长为a 的等腰直角三角形,高为a ,故其表面积为S 2=12×a ×a +12×a ×a +(a +a +2a )×a =(3+2)a 2.14圆柱的底面是半径为a 的圆的14,高为a ,故其表面积为S 3=14πa 2+14πa 2+a 2+a 2+14×2πa×a =(π+2)a 2.所以它们的表面积之比为S 1∶S 2∶S 3=6a 2∶(3+2)a 2∶(π+2)a 2=6∶(3+2)∶(π+2). 10.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高. 解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高. 由题意知A 1B 1=20,AB =30, 则OD =53,O 1D 1=1033,由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为43cm. B 组 专项力量提升 (时间:30分钟)11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( )A .3 3B .2 3 C. 3 D .1答案 C解析 如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边,所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC . 由此得SC ⊥平面ABD . 所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC .由于在Rt △SAC 中,∠ASC =30°,SC =4, 所以AC =2,SA =23,由于AD =SA ·CA SC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC= 3. 又AB =3,所以△ABD 为正三角形, 所以V S —ABC =13S △ABD ·SC=13×12×(3)2·sin60°×4=3,所以选C. 12.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 5 B.30+6 5C.56+12 5 D.60+12 5答案 B解析由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE⊥平面BCD,CD⊥BD,且CD=4,BD=5,BE=2,ED=3,AE=4. ∵AE=4,ED=3,∴AD=5.又CD⊥BD,CD⊥AE,则CD⊥平面ABD,故CD⊥AD,所以AC=41且S△ACD=10.在Rt△ABE中,AE=4,BE=2,故AB=2 5.在Rt△BCD中,BD=5,CD=4,故S△BCD=10,且BC=41.在△ABD中,AE=4,BD=5,故S△ABD=10.在△ABC中,AB=25,BC=AC=41,则AB边上的高h=6,故S△ABC=12×25×6=6 5. 因此,该三棱锥的表面积为S=30+6 5.13.(2021·四川)在三棱柱ABCA1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥P A1MN的体积是________.答案124解析由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵=,又∵AA1∥平面PMN,∴=,∴V APMN=13×12×1×12×12=124,故=124.14.(2021·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.(1)证明由于四边形ABCD为菱形,所以AC⊥BD.由于BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.1P A MNV-1A PMNV-1A PMNV-A PMNV-1PA MNV又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.由于AE⊥EC,所以在Rt△AEC中,可得EG=32x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥E-ACD的体积V E-ACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.15.如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,EB = 3.(1)求证:DE⊥平面ACD;(2)设AC=x,V(x)表示三棱锥B-ACE的体积,求函数V(x)的解析式及最大值.(1)证明∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC. ∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,∴DE⊥平面ADC.(2)解∵DC⊥平面ABC,∴BE⊥平面ABC.在Rt△ABE中,AB=2,EB= 3.在Rt△ABC中,∵AC=x,BC=4-x2(0<x<2),∴S△ABC=12AC·BC=12x·4-x2,∴V(x)=V E-ABC=36x·4-x2(0<x<2).∵x2(4-x2)≤(x2+4-x22)2=4,当且仅当x2=4-x2,即x=2时,取等号,∴x=2时,体积有最大值33.。
高考数学一轮复习第八章立体几何8.1.3体积对点训练理
2017高考数学一轮复习 第八章 立体几何 8.1.3 体积对点训练 理1.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛答案 B解析 设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=3203π(立方尺),因此堆放的米约有3203×1.62π≈22(斛).故选B.2.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323cm 3D.403cm 3答案 C解析 该几何体是由棱长为2的正方体和底面边长为2,高为2的正四棱锥组合而成的几何体.故其体积为V =2×2×2+13×2×2×2=323cm 3.3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π答案 C解析 如图,过点D 作BC 的垂线,垂足为H .则由旋转体的定义可知,该梯形绕AD 所在的直线旋转一周而形成的曲面所围成的几何体为一个圆柱挖去一个圆锥.其中圆柱的底面半径R =AB =1,高h 1=BC =2,其体积V 1=πR 2h 1=π×12×2=2π;圆锥的底面半径r =DH =1,高h 2=1,其体积V 2=13πr 2h 2=13π×12×1=π3.故所求几何体的体积为V =V 1-V 2=2π-π3=5π3.故选C.4.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13答案 C解析 由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2 cm ,高为4 cm ;另一个圆柱的底面半径为 3 cm ,高为 2 cm.则零件的体积V 1=π×22×4+π×32×2=34π(cm 3).而毛坯的体积V =π×32×6=54π (cm 3),因此切削掉部分的体积V 2=V -V 1=54π-34π=20π(cm 3),所以V 2V =20π54π=1027.故选C.5.某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4答案 B解析 由三视图知,原几何体是棱长为2的正方体挖去两个底面半径为1,高为2的四分之一圆柱,故几何体的体积为8-2×π×2×14=8-π.故选B.6.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.355113答案 B解析 由题意可知:L =2πr ,即r =L 2π,圆锥体积V =13Sh =13πr 2h =13π·⎝ ⎛⎭⎪⎫L 2π2h =112πL 2h ≈275L 2h ,故112π≈275,π≈258,故选B. 7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2π D.4π3答案 D解析 依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R ,则2R =12+12+22=2,解得R =1,所以V =4π3R 3=4π3.8.一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4 答案 B解析 由三视图可得原石材为如下图所示的直三棱柱A 1B 1C 1-ABC ,且AB =8,BC =6,BB 1=12,AC =82+62=10.若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r =6+8-102=2.故选B.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案8π3解析 由三视图可得该几何体是由两个圆锥和一个圆柱构成的组合体,圆柱的底面圆的半径为1 m ,高为2 m ,圆锥的底面圆的半径和高都是1 m ,且圆锥的底面分别与圆柱的两个底面重合,故该组合体的体积为2π+2×13π=8π3(m 3).10.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案7解析 底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π×r 2×4+π×r 2×8=28π3r2=196π3,解得r =7.11.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.答案 14解析 由题意知,V D -ABE =V A -BDE =V 1,V P -ABC =V A -PBC =V 2.因为D ,E 分别为PB ,PC 中点,所以S △BDE S △PBC =14. 设点A 到平面PBC 的距离为d , 则V 1V 2=13S △BDE ·d 13S △PBC ·d =S △BDE S △PBC =14. 12.设甲、乙两个圆柱的底面积分别为S 1、S 2,体积分别为V 1、V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.答案 32解析 设甲、乙两个圆柱底面半径和高分别为r 1,h 1,r 2,h 2,则2πr 1h 1=2πr 2h 2,h 1h 2=r 2r 1.又S 1S 2=πr 21πr 22=94,所以r 1r 2=32,则V 1V 2=πr 21h 1πr 22h 2=r 21r 22·h 1h 2=r 1r 2=32. 13.已知三棱锥P -ABC 的各顶点均在一个半径为R 的球面上,球心O 在AB 上,PO ⊥平面ABC ,ACBC=3,则三棱锥与球的体积之比为________.答案3∶8π解析 如图,依题意,AB =2R ,又AC BC=3,∠ACB =90°,∴∠CAB =30°,因此AC =3R ,BC =R ,V P -ABC =13PO ·S △ABC =13×R ×⎝ ⎛⎭⎪⎫12×3R ×R =36R 3.而V 球=4π3R 3,因此V P -ABC ∶V 球=36R 3∶4π3R 3=3∶8π.。
高考数学一轮复习第八章 立体几何
第八章 立 体 几 何1.立体几何初步 (1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:·公理1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内.·公理2:过不在一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线平行. ·定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理: ·平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.·一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.·一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.·一个平面过另一个平面的垂线,则两个平面垂直.理解以下性质定理,并能够证明:·如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.·两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.·垂直于同一个平面的两条直线平行.·两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.2.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式. 3.空间向量与立体几何 (1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示. (3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.(4)理解直线的方向向量及平面的法向量. (5)能用向量语言表述线线、线面、面面的平行和垂直关系.(6)能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.§8.1 空间几何体的结构、三视图和直观图1.棱柱、棱锥、棱台的概念 (1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相______,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是A.棱柱的底面一定是平行四边形( 得到图解:还原正方体知该几何体侧视图为正方形,为实线,B 1C 的正投影为A 1D ,且B 1C 被遮挡为虚故选B.(2014·福建)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面________.解:所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故填2π.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′O ′C ′=68a.各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是三棱柱 C.四棱锥解:该几何体的三视图由一个三角形,两个矩形组成,经分析可知该几何体为三棱柱,故选解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是解:D 选项的正视图应为如图所示的图形.故选积为20cm ________cm 解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三直角边长分别为5cm ,6cm ,三棱锥的高为则三棱锥的体积为V =13×12×5×6×h =20,解得4.对于空间几何体的考查,从内容上看,锥的定义和相关性质是基础,以它们为载体考查三视图、体积和棱长是重点.本题给出了几何体的三视图,要掌握三视图的画法“长对正、高平齐,宽相等”,不难将其还原得到三棱锥.(2014·北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为__________.解:该三棱锥的直观图如图所示,易知PB ⊥平面ABC ,则有PA =22+2,故最长棱为P A.类型三 空间多面体的直观图 如图是一个几何体的三视图,用斜二测画法画出它的直观图解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥画法:(1)画轴.如图1,画x 轴、y 使∠xOy =45°,∠xOz =90°.图1画底面.利用斜二测画法画出底面′使OO ′等于三视图中相应高度,过的平行线′,Oy 的平行线O ′y ′,利用′画出底面A ′B ′C ′D ′.图2画正四棱锥顶点.在Oz 上截取点等于三视图中相应的高度.连接PA ′,PB ′,PC ′,PD ′D ,整理得到三视图表示的几何体2所示.点拨:根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴、y 轴、z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A. 2B.6 2C.13D.2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =22.因此该四棱锥的体积为V =13Sh =13×22×3=22.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r ,4r.根据相似三角形的性质得, 33+l =r4r,解得 l =9. 所以,圆台的母线长为9cm .点拨:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.(2014·湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4解:该几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,其最大球的半径为底面直角三角形内切圆的半径r ,由等面积法可得12×(6+8+10)·r =12×6×8,得r =2.故选B.1.在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a的正四面体A 1BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R).3.长方体的外接球(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度.由此得到:主俯长对正,主左高平齐,俯左宽相等.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变、三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C.2.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等 解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.4.(2014·江西)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解:由直观图可知,该几何体由一个长方体和一个截角三棱柱组成,从上往下看,外层轮廓线是一矩形,矩形内部有一条线段连接两个三角形.故选B.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )A.棱柱B.棱台C.圆柱D.圆台解:由俯视图可知该几何体的上、下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.(2014·课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.4 2C.6D.4解法一:如图甲,设辅助正方体棱长为4,三视图对应的多面体为三棱锥D ABC ,最长的棱为AD =6.解法二:将三视图还原为三棱锥D ABC ,如图若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为的正三棱柱,所以底面积为2×3×2×1=6,所以其表面积为3.已知某一多面体内接于球构成一个简单组合体,该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球____________.解:由三视图可知该组合体为球内接棱长为∴正方体的体对角线为球的直径,,r=3.故填是截去一个角的长方体,试按图示的中几何体三视图如图b.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x轴,xOy=45°,∠xOz=∠yOz=90°画底面,利用斜二测画法画出底面ABCDEF 轴上截取O′,使OO′等于正六棱柱的高,过的平行线O′x′,Oy的平行线O′x′与O′y′画出底面A′.画正六棱锥顶点.在Oz上截取点P,使等于正六棱锥的高.成图.连接PA′,PB′,PC′,PD′,′,BB′,CC′,DD′,EE′,FF理得到三视图表示的几何体的直观图如图3注意:图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来..某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分和b,求ab的最大值.解:如图,则有1=7,DC1=6,1=a,AC=b,AB=x,AD=y,AA1=z,有图如图所示,其中与题中容器对应的水的高度解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2 空间几何体的表面积与体积1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=__________,S 正棱锥侧=__________, S 正棱台侧=__________(其中C ,C ′为底面周长,h 为高,h ′为斜高).(2)圆柱、圆锥、圆台的侧面积S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________(其中r ,r ′为底面半径,l 为母线长). (3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和. 2.柱体、锥体、台体的体积 (1)棱柱、棱锥、棱台的体积 V 棱柱=__________,V 棱锥=__________,V 棱台=__________ (其中S ,S ′为底面积,h 为高). (2)圆柱、圆锥、圆台的体积V 圆柱=__________,V 圆锥=__________,V 圆台=__________(其中r ,r ′为底面圆的半径,h 为高). 3.球的表面积与体积(1)半径为R 的球的表面积S 球=________. (2)半径为R 的球的体积V 球=________,________).自查自纠:1.(1)Ch 12Ch ′ 12()C +C ′h ′(2)2πrl πrl π(r +r ′)l (3)侧面积 两个底面积 侧面积 一个底面积2.(1)Sh 13Sh 13h ()S +SS ′+S ′(2)πr 2h 13πr 2h 13πh ()r 2+rr ′+r ′23.(1)4πR 2 (2)43πR 3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2) 解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,∴S 底=πr 2=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.∴S 底=πr 2=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3).故选C. 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( ) A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V =13×12×(2)2×2=23.故选C.(2014·安徽)一个多面体的三视图如图所示,则该多面体的体积是( )A.233B.476C.6D.7 解:如图示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.故选A. 长方体ABCD A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =3,AA 1=1,则球面面积为________.单位:解:由三视图可知,该几何体为圆柱与圆锥的其体积V =π×12×4+13π×22×.类型一 空间几何体的面积问题 如图,在△ABC 中,∠ABC =45°,AD 是BC 边上的高,沿AD 把△ABD BDC =90°.若BD =1,求三棱锥D ABC解:∵折起前AD 是BC 边上的高,∴沿AD 把△ABD 折起后,AD ⊥DC ,AD ⊥又∠BDC =90°.=DA =DC =1,∴AB =BC =CA =2.从而S △DAB =S △DBC =S △DCA =12×1×1=12,ABC =12×2×2×sin60°=32. ∴三棱锥D ABC 的表面积S =12×3+. 的矩形,正视图高为4的等腰三角形,侧视图底边长为6,面积S.解:由已知可得该几何体是一个底面为矩形,,顶点在底面的射影是矩形中心的四棱锥PAD ,PBC 是全等的等腰三角形,边上的高为h 1=42+⎝ ⎛2PAB ,PCD 也是全等的等腰三角形,h 2=42+⎝ ⎛⎭⎪⎫622⎝ ⎛12×6×42+12×8×5空间旋转体的面积问题如图,半径为4的球O 柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.设球的一条半径与圆柱相应的母线的夹角为=2π×4sin α=π4时,S 取最大值球的表面积与该圆柱的侧面积之差为32π.点拨:根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.圆台的上、下底面半径分别是10 cm和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的侧面积是____________cm 2.解:如图示,设上底面周长为c.∵扇环的圆心角是180°,∴c =π·S A. 又∵c =2π×10=20π, ∴SA =20.同理SB =40. ∴AB =SB -SA =20,∴S 圆台侧=π(10+20)·AB=600π(cm 2).故填600π.类型三 空间多面体的体积问题如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD BNC +V E AMD +V F BN C.依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32. 作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F BNC =13·S △BNC ·NF =224,V E AMD =V F BNC =224,V AMD BNC =S △BNC ·MN =24.∴V ABCDEF =23,故选A.点拨:求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.故选C. 类型四 空间旋转体的体积问题已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12B.4π3+16C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝ ⎛⎭⎪⎫223+13×⎝ ⎛⎭⎪⎫12×1×1×1=2π6+16.故选C.点拨:根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2014·课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59 C.1027 D.13解:原来毛坯体积为:π·32·6=54π(cm 3),由三视图知该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,故该零件的体积为:π·22·4+π·32·2=34π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故切削掉部分的体积与原来毛坯体积的比值为20π54π=1027 .故选C.1.几何体的展开与折叠 (1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱、正棱锥、正棱台也可直接利用公式;(2)圆柱、圆锥、圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面特别是轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法、补体法、还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.1.已知圆锥的正视图是边长为2的等边三角π B.8-π2 D.8-π4解:直观图为棱长为2的正方体割去两个底面14圆柱,其体积V =23-2×14×π×故选B.将长、宽分别为4和3的长方形ABCD 折成直二面角,得到四面体A BCD ,则四面体的外接球的表面积为( )B.50πC.5πD.10π解:由题设知AC 为外接球的直径,∴,S 表=4πR 2=4π×⎝ ⎛⎭⎪⎫522=25π.故选,N 是球O 半径OP 上的两点,且分别过N ,M ,O 作垂直于OP 的平面,得三个圆,则这三个圆的面积之比为( )∶6 B.3∶6∶8 ∶9 D.5∶8∶9解:设球的半径为R ,以N ,M 为圆心的圆的半,r 2.由题知M ,N 是OP 的三等分点,三个圆的面积之比即为半径的平方比,在球的轴截面的外接圆的半径R 2-r 2=63,的距离为2d =2d =13×34×23ABC ×2R =36,排除)一个六棱锥的体积为的正六边形,侧棱长都相等,则该________.设该六棱锥的高是h ,则V ,解得h =1.∴侧面三角形的高为,∴侧面积S =12×由题意可设直角梯形上底、下底和高为,它们分别为圆台的上、下底半径和高BC ⊥OA 于C ,则Rt ′B =4x -2x =2x ,+BC 2=(2x )2侧=[π(2x )2∶[π=2∶8∶9.·上海)底面边长为,其表面展开图是三角形P 1的边长及三棱锥的体积V.解:由正三棱锥P ABC 的性质及其表面展开图,B ,C 分别是△P 1P 2P .依三角形中位线定理可得4.易判断正三棱锥P 的正四面体,其体积为V =212×四面体体积公式可见8.1名师点津4)一个圆锥的底面半径为R =2,高为在这个圆锥内部有一个高为x 的内接圆柱值时,圆柱的表面积最大?最大值是多少?解:如图是圆锥的轴截面,设圆柱的底面半径,解得r =R -R H x =2- (图所示,该几何体从上到下由四个简单几何体组成,4<V 3 B.V 1<V 3<V 2<V 4 3<V 4 D.V 2<V 3<V 1<V 4解:由已知条件及三视图可知,该几何体从上到下依次是圆台,圆柱,正方体,棱台,则·π+4π)=7π3,V 2=π×8,V 4=13×1×(4+4×16+<V 1<V 3<V 4.故选C.§8.3 空间点、线、面之间的位置关系1.平面的基本性质 (1)公理1:如果一条直线上的______在一个平面内,那么这条直线在此平面内.它的作用是可用来证明点在平面内或__________________.(2)公理2:过____________上的三点,有且只有一个平面.公理2的推论如下:①经过一条直线和直线外一点,有且只有一个平面;②经过两条相交直线,有且只有一个平面; ③经过两条平行直线,有且只有一个平面. 公理2及其推论的作用是可用来确定一个平面,或用来证明点、线共面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们____________过该点的公共直线.它的作用是可用来确定两个平面的交线,或证明三点共线、三线共点等问题.2.空间两条直线的位置关系 (1)位置关系的分类 错误!(2)异面直线①定义:不同在任何一个平面内的两条直线叫做异面直线.注:异面直线定义中“不同在任何一个平面内的两条直线”是指“不可能找到一个平面能同时经过这两条直线”,也可以理解为“既不平行也不相交的两条直线”,但是不能理解为“分别在两个平面内的两条直线”.②异面直线的画法:画异面直线时,为了充分显示出它们既不平行又不相交,也不共面的特点,常常需要以辅助平面作为衬托,以加强直观性.③异面直线所成的角:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).异面直线所成角的范围是____________.若两条异面直线所成的角是直角,则称两条异面直线__________,所以空间两条直线垂直分为相交垂直和__________.3.平行公理公理4:平行于____________的两条直线互相平行(空间平行线的传递性).它给出了判断空间两条直线平行的依据.4.等角定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角____________.自查自纠:1.(1)两点 直线在平面内 (2)不在一条直线 (3)有且只有一条2.(1)一个公共点 没有公共点 没有公共点(2)③⎝⎛⎦⎥⎤0,π2 互相垂直 异面垂直3.同一条直线4.相等或互补(2013·安徽)在下列命题中,不是..公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解:公理是不需要证明的原始命题,而选项A 是面面平行的性质定理,故选A.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A.OB ∥O 1B 1且方向相同B.OB ∥O 1B 1C.OB 与O 1B 1不平行D.OB 与O 1B 1不一定平行解:两角相等,角的一边平行且方向相同,另一边不一定平行,如圆锥的母线与轴的夹角.故选D.若点P ∈α,Q ∈α,R ∈β,α∩β=m ,且R ∉m ,PQ ∩m =M ,过P ,Q ,R 三点确定一个平面γ,则β∩γ是( )A.直线Q RB.直线P RC.直线R MD.以上均不正确 解:∵PQ ∩m =M ,m ⊂β,∴M ∈β.又M ∈平面PQ R ,即M ∈γ,故M 是β与γ的公共点.又R∈β,R ∈平面PQ R ,即R∈γ,∴R 是β与γ的公共点.∴β∩γ=M R .故选C.给出下列命题:①空间四点共面,则其中必有三点共线; ②空间四点不共面,则其中任何三点不共线; ③空间四点中有三点共线,则此四点必共面; ④空间四点中任何三点不共线,则此四点不共。
2021届高考数学一轮总复习第8章立体几何第2节空间几何体的表面积与体积跟踪检测文含解析
第八章 立体几何第二节 空间几何体的表面积与体积A 级·基础过关|固根基|1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A .4π B .3π C .2πD .π解析:选C 由几何体的形成过程知,所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故选C.2.(2020届惠州市高三第二次调研)某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,则该几何体的体积为( )A.2π3+16 B.2π6+12 C.2π6+16D.2π3+12解析:选C 由三视图可知该几何体是一个半球上面有一个三棱锥,其体积V =13×12×1×1×1+12×4π3×⎝ ⎛⎭⎪⎫223=2π6+16,故选C. 3.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .4+6 2解析:选C 由三视图知,该几何体是直三棱柱ABC -A 1B 1C 1,其中AB =AA 1=2,BC =AC =2,∠ACB =90°,其直观图如图所示,侧面为三个矩形,故该“堑堵”的侧面积S =(2+22)×2=4+42,故选C.4.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3解析:选A 设球的半径为R ,则由题意知,球被正方体上底面截得的圆的半径为4 cm ,球心到截面圆的距离为(R -2)cm ,则R 2=(R -2)2+42,解得R =5,所以球的体积为4π×533=500π3(cm 3).5.(2019届辽宁五校协作体联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A .36B .48C .64D .72解析:选B由几何体的三视图可得,几何体如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.解析:三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V D 1-EDF =V F -DD 1E =13×12×1=16.答案:167.(2019届福建市第一学期高三期末)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积为________.解析:如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.答案:16π8.已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC=π2,则过A ,B ,C ,D 四点的球的表面积为________.解析:连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD⊥AD,CD⊥AD,BD⊥CD,将折叠后的图形补成一个长、宽、高分别是 3,1,1的长方体,其体对角线长即为外接球的直径,2R =1+1+3=5,故该三棱锥外接球的半径是R =52,其表面积为4πR 2=5π. 答案:5π9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.10.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解:(1)交线围成的正方形EHGF 如图所示.(2)如图,作EM⊥AB,垂足为M ,则AM =A 1E =4,EB 1=16-4=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH = EH 2-EM 2=6,则AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. B 级·素养提升|练能力|11.已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A .3π+6B .6π+6C .3π+12D .12解析:选A 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥, 则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.12.体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA⊥平面ABC ,PA =2,∠ABC=120°,则球O 的体积的最小值为( )A.773π B.2873π C.19193π D.76193π 解析:选B 设AB =c ,BC =a ,AC =b ,由题可得,3=13×S △ABC ×2,解得S △ABC =332,因为∠ABC=120°,S △ABC =332=12acsin 120°,所以ac =6,由余弦定理可得,b 2=a 2+c 2-2accos 120°=a 2+c2+ac≥2ac+ac =3ac =18,当且仅当a =c 时取等号,此时b min =32,设△ABC 外接圆的半径为r ,则b sin 120°=2r(b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6,如图,设O 1为△ABC 外接圆的圆心,过O 作OD⊥PA,垂足为D ,R 为球O 的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,设OO 1=h ,在Rt △OO 1A 中,R 2=r 2+OO 21=r 2+h 2,在Rt △OPD 中,R 2=r 2+(2-h)2,联立得h =1.当r min =6时,R 2min =6+1=7,R min =7,故球O 体积的最小值为43πR 3min =43π×(7)3=287π3,故选B. 13.榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部分相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积为________,表面积为________.解析:由三视图可知,榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V=4×2×3+π×32×6=24+54π,表面积S=2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案:24+54π54π+3614.(2020届合肥调研)如图,已知三棱柱ABC-A1B1C1,M为棱AB上一点,BC1∥平面A1MC.(1)求证:AM=BM;(2)若△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,△A1MC的面积为42,求三棱柱ABC-A1B1C1的体积.解:(1)证明:如图,连接AC1交A1C于N,连接MN.∵BC1∥平面A1MC,BC1⊂平面ABC1,平面ABC1∩平面A1MC=MN,∴BC1∥MN.由三棱柱ABC-A1B1C1知,四边形ACC1A1为平行四边形,∴N为AC1的中点.∴M为AB的中点,即AM=BM.(2)连接A1B,∵△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,∴△ABC,△AA1B,△AA1C是全等的等边三角形,由(1)知,M为AB的中点,∴A1M⊥AB,CM⊥AB.∵A1M∩CM=M,∴AB⊥平面A1MC.设AB =2a ,则A 1M =CM =3a ,A 1C =2a ,∴△A 1MC 的面积为12·2a ·2a =2a 2=42,解得a =2,即AM =2,∴V 三棱锥A -A 1MC =13·S △A 1MC ·AM =823,从而V 三棱柱ABC -A 1B 1C 1=6·V 三棱锥A -A 1MC =16 2.。
2019高考数学一轮复习第八章立体几何82空间几何体的表面积与体积练习理
地地道道的达到§8.2 空间几何体的表面积与体积考纲解读考点内容解读要求高考示例常考题型展望热度2016 课标全国Ⅱ ,6;2016 课标全国Ⅲ ,9;2016 浙1. 几何体的表面积理解江 ,11; 选择题★★★填空题2015 课标Ⅰ ,11;2015 北京 ,5;理解球、柱体、锥体、台体2014 纲领全国 ,8的表面积和体积的计算公2017 课标全国Ⅱ ,4;2017 课标式 ( 不要求记忆公式 ) 全国Ⅲ ,8; 选择题2017 浙江 ,3;2017 2. 几何体的体积江苏 ,6;★★★理解填空题2017 天津 ,10;2017 山东 ,13; 2016 山东 ,5;2016 解答题北京 ,6;2015 课标Ⅰ ,6;2014 陕西 ,5剖析解读 1. 理解柱、锥、台、球的侧面积、表面积和体积的观点.2. 联合模型 , 在理解的基础上娴熟掌握柱、锥、台、球的表面积公式和体积公式 .3. 备考时关注以三视图、柱、锥与球的接切问题为命题背景, 突出空间几何体的线面地点关系的命题.4. 高考对本节内容的考察以计算几何体的表面积和体积为主, 分值约为5分,属中档题 .五年高考考点一几何体的表面积1.(2016 课标全国Ⅱ ,6,5 分 ) 以下图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为()A.20 πB.24 πC.28 πD.32 π答案 C2.(2015课标Ⅰ ,11,5分)圆柱被一个平面截去一部分后与半球( 半径为r) 构成一个几何体, 该几何体三视图中的正视图和俯视图以下图. 若该几何体的表面积为16+20π , 则 r=()A.1B.2C.4D.8呵呵复生复生复生地地道道的达到A.2+B.4+C.2+2D.5答案 C4.(2016浙江,11,6分)某几何体的三视图以下图( 单位 :cm), 则该几何体的表面积是cm2, 体积是cm3.答案72;32教师用书专用(5 — 8)5.(2015课标Ⅱ ,9,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点. 若三棱锥 O-ABC体积的最大值为36, 则球 O的表面积为 ()A.36 πB.64 πC.144 πD.256 π答案 C6.(2014重庆,7,5分)某几何体的三视图以下图, 则该几何体的表面积为()A.54B.60C.66D.72答案 B7.(2014浙江,3,5分)某几何体的三视图( 单位 :cm) 以下图 , 则此几何体的表面积是()呵呵复生复生复生地地道道的达到答案 D8.(2014纲领全国,8,5分)正四棱锥的极点都在同一球面上. 若该棱锥的高为4, 底面边长为2, 则该球的表面积为 ()A. B.16 πC.9 πD.答案 A考点二几何体的体积1.(2017 课标全国Ⅱ ,4,5分)如图,网格纸上小正方形的边长为1, 粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得, 则该几何体的体积为()A.90 πB.63 πC.42 πD.36 π答案 B2.(2017课标全国Ⅲ ,8,5分)已知圆柱的高为1, 它的两个底面的圆周在直径为 2 的同一个球的球面上, 则该圆柱的体积为 ()A. πB.C. D.答案 B3.(2017浙江,3,5分)某几何体的三视图以下图( 单位 :cm), 则该几何体的体积( 单位 :cm3) 是 ()A.+1B.+3C.+1D.+3答案 A4.(2015 课标Ⅰ ,6,5 分 ) 《九章算术》是我国古代内容极为丰富的数学名著, 书中有以下问题 : “今有委米依垣内角 , 下周八尺 , 高五尺 . 问 : 积及为米几何 ?”其意思为 : “在屋内墙角处堆放米( 如图 , 米堆为一个圆锥的四分之一 ), 米堆底部的弧长为8 尺 , 米堆的高为 5 尺 , 问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为1.62 立方尺 , 圆周率约为3, 估量出堆放的米约有 ()地地道道的达到A.14 斛B.22 斛C.36 斛D.66 斛答案 B5.(2017 江苏 ,6,5 分 ) 如图 , 在圆柱 O1O2内有一个球 O,该球与圆柱的上、下底面及母线均相切. 记圆柱 O1O2的体积为 V , 球 O的体积为 V , 则的值是.1 2答案6.(2017山东,13,5分)由一个长方体和两个圆柱体构成的几何体的三视图以以下图, 则该几何体的体积为.答案2+教师用书专用(7 — 21)7.(2016山东,5,5分)一个由半球和四棱锥构成的几何体, 其三视图以下图. 则该几何体的体积为()A.+ πB.+ πC.+πD.1+ π答案 C8.(2016北京,6,5分)某三棱锥的三视图以下图, 则该三棱锥的体积为()地地道道的达到A. B. C. D.1答案 A9.(2015 山东 ,7,5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2将.梯形ABCD绕 AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2 π答案 C10.(2015浙江,2,5分)某几何体的三视图以下图( 单位 :cm), 则该几何体的体积是()A.8 cm 3B.12 cm 3C. cm 3D. cm 3答案 C11.(2015湖南,10,5分)某工件的三视图以下图, 现将该工件经过切削, 加工成一个体积尽可能大的长方体新工件 , 并使新工件的一个面落在原工件的一个面内, 则原工件资料的利用率为资料利用率= ()A. B.C. D.答案 A12.(2014 陕西 ,5,5 分 ) 已知底面边长为 1, 侧棱长为的正四棱柱的各极点均在同一个球面上, 则该球的体积为( )A. B.4 πC.2 π D.答案 D13.(2014 湖北 ,8,5 分 ) 《算数书》竹简于上世纪八十年月在湖北省江陵县张家山出土, 这是我国现存最早的有系统的数学文籍 , 此中记录有求“囷盖”的术: 置如其周 , 令相乘也 . 又以高乘之 , 三十六成一 . 该术相当于给出了由圆锥的底面周长L 与高 h, 计算其体积V 的近似公式2π 近V≈L h. 它其实是将圆锥体积公式中的圆周率似取为 3. 那么 , 近似公式 V≈L2h 相当于将圆锥体积公式中的π近似取为 ( ) A. B. C. D.答案 B14.(2013 天津 ,4,5 分 ) 已知以下三个命题 : ①若一个球的半径减小到本来的 , 则其体积减小到本来的 ; ②若两组数据的均匀数相等 , 则它们的标准差也相等 ;呵呵复生复生复生答案 C15.(2013 湖北 ,8,5 分 ) 一个几何体的三视图以下图, 该几何体从上到下由四个简单几何体构成, 其体积分别记为 V,V ,V ,V , 上边两个简单几何体均为旋转体, 下边两个简单几何体均为多面体,则有( )1 2 3 4A.V <V <V <VB.V <V <V <V1 2 4 3 1 3 2 4C.V2<V1<V3 <V4D.V 2 <V3<V1<V4答案 C16.(2017 天津 ,10,5 分 ) 已知一个正方体的全部极点在一个球面上, 若这个正方体的表面积为18, 则这个球的体积为.答案π17.(2016 天津 ,11,5 分 ) 已知一个四棱锥的底面是平行四边形, 该四棱锥的三视图以下图( 单位 :m), 则该四棱锥的体积为3 m.答案 218.(2016四川,13,5分)已知三棱锥的四个面都是腰长为 2 的等腰三角形, 该三棱锥的正视图以下图, 则该三棱锥的体积是.答案19.(2015 江苏 ,9,5 分 ) 现有橡皮泥制作的底面半径为5、高为 4 的圆锥和底面半径为2、高为 8 的圆柱各一个 . 若将它们从头制作成整体积与高均保持不变, 但底面半径同样的新的圆锥和圆柱各一个, 则新的底面半径为.答案20.(2013 江苏 ,8,5 分 ) 如图 , 在三棱柱 A1B1C1-ABC中,D,E,F 分别是 AB,AC,AA1的中点 , 设三棱锥 F-ADE 的体积为V, 三棱柱 ABC-ABC的体积为 V,则 V∶V= .1 1 1 12 1 2形状是正四棱柱ABCD-A1B1C1 D1( 以下图 ), 并要求正四棱柱的高O1O是正四棱锥的高PO1的 4 倍 .(1) 若 AB=6 m,PO1=2 m, 则库房的容积是多少?(2)若正四棱锥的侧棱长为 6 m, 则当 PO1为多少时 , 库房的容积最大 ?分析(1) 由 PO1=2 知 O1O=4PO1=8.由于 A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积V 锥=·A1·PO1=×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积V 柱=AB2·O1O=62×8=288(m3).所以库房的容积V=V锥 +V 柱 =24+288=312(m3).(2) 设 A1B1=a(m),PO 1 =h(m), 则 0<h<6,O 1O=4h(m). 连结 O1B1.由于在 Rt △PO1B1中,O 1+P=P,2即 a2=2(36-h 2).于是库房的容积222 3V=V柱+V 锥=a ·4h+a ·h=a h=(36h-h ),0<h<6,2 2进而 V'=(36-3h )=26(12-h).令 V'=0, 得 h=2 或 h=-2( 舍 ).当0<h<2 时,V'>0,V 是单一增函数;当 2<h<6 时 ,V'<0,V 是单一减函数 .故 h=2 时 ,V 获得极大值 , 也是最大值 .所以 , 当 PO1=2 m 时 , 库房的容积最大.三年模拟A 组2016— 2018 年模拟·基础题组考点一几何体的表面积1.(2018云南玉溪模拟,5) 若一个底面是正三角形的三棱柱的主视图以下图, 则其表面积为 ()A.6+2B.6+C.6+4D.10答案 A格小正方形的边长为1, 粗实线画出的是一种榫卯构件中榫的三视图, 则其体积与表面积分别为()A.24+52 π ,34+52 πB.24+52 π,36+54 πC.24+54 π ,36+54 πD.24+54 π,34+52 π答案 C3.(2017 河北沧州月考 ,11) 已知四棱锥 P-ABCD中 , 平面 PAD⊥平面 ABCD,此中底面 ABCD为正方形 , △PAD 为等腰直角三角形 ,PA=PD=,则四棱锥 P-ABCD外接球的表面积为 ( )A.10 πB.4 πC.16 πD.8 π答案 D4.(2017 河南洛阳期中 ,9) 在四周体 S-ABC中,SA⊥平面 ABC,∠BAC=120°,SA=AC=2,AB=1,则该四周体的外接球的表面积为 ( )A.11 πB.C.D.答案 D5.(2016 安徽江南十校 3 月联考 ,11) 某几何体的三视图以下图, 此中侧视图的下半部分曲线为半圆弧, 则该几何体的表面积为 ( )A.4 π +16+4B.5 π +16+4C.4 π +16+2D.5 π +16+2答案 D考点二几何体的体积6.(2018云南玉溪模拟,6) 如图 , 若一个空间几何体的三视图中, 正视图和侧视图都是直角三角形, 其直角边长均为 1, 则该几何体的体积为()答案 A7.(2018广东茂名模拟,7) 一个几何体的三视图以下图, 则该几何体的体积是()A.7B.C. D.答案 D8.( 人教 A 必 2, 一 ,1-3B,1,变式)一个几何体的三视图以下图( 单位 :cm), 则该几何体的体积是()A. cm 3B. cm 3C. cm 3D.7 cm 3答案 A9.(2017 安徽皖北协作区 3 月联考 ,10) 如图 , 网格纸上小正方形的边长为1, 粗线 ( 实线和虚线 ) 表示的是某几何体的三视图 , 则该几何体外接球的体积为()A.24 πB.29 πC.48 πD.58 π答案 BB 组2016— 2018 年模拟·提高题组(满分 :35 分时间:25分钟)选择题 (每题 5 分, 共 35分)1.(2018四川泸州模拟,7) 已知一个几何体的三视图以下图, 俯视图是一个等腰直角三角形和半圆, 则该几何体的体积为 ()A.2+B.+ πC.2+D.+ π答案 D2.(2018 四川达州模拟 ,8) 四棱锥 P-ABCD的全部极点都在半径为的球上, 四边形 ABCD是正方形 ,PA⊥平面ABCD, 当△ PAB的面积最大时, 四棱锥 P-ABCD的体积为 ()A.8B.C.D.4答案 D3.(2018四川绵阳诊疗,7) 如图 , 虚线网格小正方形的边长为1, 网格中是某几何体的三视图, 这个几何体的体积是 ()A.27- πB.12-3 πC.32-(-1)πD.12- π答案 D4.(2017湖南郴州质检,8) 已知一个正方体截去两个三棱锥后, 所得几何体的三视图以下图, 则该几何体的体积为()A.8B.7C.D.答案 B5.(2017河北沧州月考,6) 已知一个几何体的三视图以下图, 则这个几何体的体积是()A. B. C. D.答案 D6.(2017河南新乡二模,8) 已知一个几何体的三视图以下图, 则该几何体的体积为()A. B. C. D.答案 C7.(2016广东汕头模拟,9) 某几何体的三视图以下图, 则该几何体的外接球表面积为()A.4 πB.12 πC.24 πD.48 π答案 BC 组2016— 2018 年模拟·方法题组方法 1几何体表面积的求解方法1.(2018广东广州一调,7) 如图 , 网格纸上正方形小格的边长为1, 图中粗线画出的是某三棱锥的三视图, 则该三棱锥的外接球的表面积为()A. πB.6 πC.11 πD.12 π答案 C地地道道的达到A.258 cm 2B.414 cm 2C.416 cm 2D.418 cm 2答案 C3.(2017 河北衡水中学三调,10) 已知正方体 ABCD-AB C D 的外接球的体积为π , 将正方体割去部分后, 节余几何1 1 1 1体的三视图以下图 , 则节余几何体的表面积为 ( )A.+B.3+ 或 +C.2+D.+ 或 2+答案 B4.(2017 江西新余模拟 ,10) 已知 A、B、C 是球 O的球面上三点 ,AB=2,AC=2,∠ABC=60°, 且三棱锥O-ABC的体积为, 则球O的表面积为 ( )A.10 πB.24 πC.36 πD.48 π答案 D方法 2 几何体体积的求解方法5.(2018 四川德阳模拟 ,8) 已知一个简单几何体的三视图以下图, 则该几何体的体积为 ( )A.3 π +6B.6 π+6C.3 π +12D.12答案 A6.(2017河南、河北、山西百校联考,9) 已知某四棱锥的三视图以下图, 网格纸上小正方形的边长为1, 则该四棱锥的体积为()A. B.40 C. D.答案 D方法 3与球相关的表面积、体积的求解方法7.(2018云南民族大学附中月考,8) 《九章算术》是我国古代内容极为丰富的数学名著, 系统地总结了战国、秦、汉期间的数学成就. 书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”, 若某“阳马”的三地地道道的达到A.100 π cm3B. π cm 3C.400 π cm3D. π cm3答案 B8.(2018 四川泸州模拟 ,6) 已知圆锥的高为 5, 底面圆的半径为 , 它的极点和底面的圆周都在同一个球的球面上,则该球的表面积为 ( )A.4 πB.36 πC.48 πD.24 π答案 B9.(2018 四川南充模拟,9) 已知 A,B,C,D 是同一球面上的四个点, 此中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为 ( )A.32 πB.48 πC.24 πD.16 π答案 A10.(2017 湖北七市 3 月联考 ,10) 一个几何体的三视图以下图, 该几何体外接球的表面积为 ()A.36 πB. πC.32 πD.28 π答案 B11.(2016 河南中原名校 3 月联考 ,11) 如图 , 四棱柱 ABCD-A1B1C1D1是棱长为 1 的正方体 , 四棱锥 S-ABCD是高为 1 的正四棱锥 , 若点 S,A1,B 1,C1 ,D1在同一个球面上 , 则该球的表面积为 ( )A. πB. πC. πD. π答案 D。
2017高考数学一轮复习第八章立体几何813体积对点训练理
2017 高考数学一轮复习第八章 立体几何 体积对点训练理1.《九章算术》 是我国古代内容极为丰富的数学名著,书中有以下问题:“今有委米依 垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米 ( 如图,米堆为一个圆锥的四分之一 ) ,米堆底部的弧长为 8 尺,米堆的高为5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为1.62 立方尺,圆周率约为 3,估量出堆放的米约有 ()A .14 斛B .22 斛C .36 斛D .66 斛答案 B分析 设圆锥底面的半径为R 尺,由 1 ×2π =8 得 = 16 ,进而米堆的体积= 1 × 14 R R πV 4 32320 320 ≈22( 斛 ) .应选 B.πR ×5= 3π ( 立方尺 ) ,所以堆放的米约有 3×1.62 π2.某几何体的三视图以下图( 单位: cm),则该几何体的体积是 ()A . 8 cm 3B . 12 cm 3 C. 32 cm 3D. 40 cm 333答案 C分析 该几何体是由棱长为 2 的正方体和底面边长为 2,高为 2 的正四棱锥组合而成的 几何体.故其体积为 V =2×2×2+1 32 3×2×2×2=3 cm .3π3. 在梯形 ABCD 中, ∠ABC = 2 ,AD ∥ BC ,BC =2AD = 2AB = 2. 将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A. 2π B. 4π33C. 5πD . 2π3答案 C分析 如图,过点 D 作 BC 的垂线,垂足为 H . 则由旋转体的定义可知,该梯形绕 AD 所在的直线旋转一周而形成的曲面所围成的几何体为一个圆柱挖去一个圆锥.此中圆柱的底面22r = DH半径 R = AB = 1,高 h 1= BC =2,其体积 V 1= πR h 1= π ×1×2= 2π ;圆锥的底面半径221 2 212π=1,高 h= 1,其体积V =π rh =π ×1×1= .333π5π故所求几何体的体积为V = V 1- V 2= 2π- 3 = 3 . 应选 C.4.如图,网格纸上正方形小格的边长为1( 表示 1 cm) ,图中粗线画出的是某部件的三视图,该部件由一个底面半径为 3 cm ,高为 6 cm 的圆柱体毛坯切削获得,则切削掉部分的体积与本来毛坯体积的比值为()17 5 A. 27 B. 9 101 C. 27 D. 3答案 C分析 由三视图知该部件是两个圆柱的组合体.一个圆柱的底面半径为 2 cm ,高为 4 cm ;另一个圆柱的底面半径为3 cm ,高为 2 cm. 则部件的体积 22V 1= π ×2×4+ π ×3×2=3 ) .而毛坯的体积 2 3=-1=34π (cm = π×3×6= 54π (cm ) ,所以切削掉部分的体积2VVV V3V 2 20π 1054π - 34π= 20π (cm ) ,所以 V = 54π=27 .应选 C.5.某几何体三视图以下图,则该几何体的体积为( )A . 8-2πB . 8-πC . 8-πD . 8-π24答案 B分析 由三视图知,原几何体是棱长为2 的正方体挖去两个底面半径为1,高为 2 的四1分之一圆柱,故几何体的体积为8-2× π ×2× 4= 8- π . 应选 B.6.《算数书》 竹简于上世纪八十年月在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学文籍,此中记录有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高 ,计算其体积 V 的近似公式 ≈1 2 .hV 36L h22它其实是将圆锥体积公式中的圆周率 π 近似取为 3. 那么,近似公式 V ≈75L h 相当于将圆 锥体积公式中的 π 近似取为 ( )2225 A. 7B. 8157 355C. 50D.113答案 B分析由题意可知: L=2πr,即r=L,圆锥体积1 12 1π ·L 22πV= Sh=π r h=2πh=3 3 31 2 2 2 1 2 2512π L h≈75L h,故12π≈75 ,π ≈8 ,应选 B.7.已知底面边长为1,侧棱长为2的正四棱柱的各极点均在同一个球面上,则该球的体积为 ( )32πB. 4πA. 3C. 2π4πD.3答案 D分析依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R,则2R=2 2 24π 3 4π1 + 1 +2 =2,解得R=1,所以V=3R=3 .8.一块石材表示的几何体的三视图以下图.将该石材切削、打磨,加工成球,则能获得的最大球的半径等于()A.1 B .2C.3 D .4答案 B分析由三视图可得原石材为以下列图所示的直三棱柱A1B1C1-ABC,且 AB=8, BC=6,BB1=12, AC=82+ 62=10.若要获得半径最大的球,则此球与平面 A 1B 1BA ,BCC 1B 1,ACC 1A 1 相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r = 6+ 8- 10 2 =2. 应选 B.9. 一个几何体的三视图以下图 ( 单位: m),则该几何体的体积为 ________m 3.8π答案3分析 由三视图可得该几何体是由两个圆锥和一个圆柱组成的组合体, 圆柱的底面圆的半径为 1 m ,高为 2 m ,圆锥的底面圆的半径和高都是1 m ,且圆锥的底面分别与圆柱的两1 8π3个底面重合,故该组合体的体积为 2π +2× 3π = 3 (m ) .10.现有橡皮泥制作的底面半径为5、高为 4 的圆锥和底面半径为 2、高为 8 的圆柱各一个.若将它们从头制作成整体积与高均保持不变, 但底面半径同样的新的圆锥和圆柱各一个,则新的底面半径为 ________.答案712分析 底面半径为 5,高为 4 的圆锥和底面半径为 2、高为 8 的圆柱的整体积为 3π ×5×42 196π 1 2 2×8= 28π 2 +π ×2×8= . 设新的圆锥和圆柱的底面半径为r ,则 π × r ×4+ π × r 3 r 3 3196π=,解得 r = 7.311.三棱锥 P - ABC 中, D , E 分别为 PB , PC 的中点,记三棱锥D - ABE 的体积为 V 1,P-ABC 的体积为 V 2,则 V 1= ________.V2答案14分析 由题意知,D -ABE= A - BDE = 1,VVVV P - ABC = V A - PBC = V 2.S △BDE 1 由于 D , E 分别为 PB , PC 中点,所以= .S △PBC 4设点 A 到平面 PBC 的距离为 d ,V 1 △ BDE S13S· d则 1△ BDE=== .2·△ PBCV 3SdS41 △ PBC12.设甲、乙两个圆柱的底面积分别为S 1、 S 2,体积分别为 V 1、 V 2,若它们的侧面积相191等,且 S = ,则 V 的值是 ________.S V42 2答案32h 1分析 设甲、 乙两个圆柱底面半径和高分别为 r 1,h 1,r 2,h 2,则 2π r 1h 1= 2πr 2h 2,h 2 =r 2 S 1 π 2 9 r 13 V 1 π 2 2 h 1 r 1 3= 1 r 1h 1r 1r . 又 S r 2= ,所以 = ,则 = 2 = 2·= r = .1π r2 4r 2 2 V π r 2h r 2 h 22 222213.已知三棱锥 -的各极点均在一个半径为R 的球面上, 球心 O 在 上, ⊥平P ABCAB POAC面 ABC , = 3,则三棱锥与球的体积之比为 ________.BC答案3∶ 8πAC分析如图,依题意, AB = 2R ,又= 3,∠ ACB =90°,∴∠ CAB = 30°,所以 AC = 3BC1 11 × × =3 34π 3 3 3 R ,BC = R ,V P - ABC = PO ·S △ABC = × ×R . 而 V 球=R ,所以 V P - ABC ∶ V 球 =R ∶33 R 23R R 6 364π 33 R = 3∶ 8π.。
数学一轮总复习中的立体几何体积题解析
数学一轮总复习中的立体几何体积题解析立体几何是数学重要的分支之一,其中计算体积问题是练习和理解立体几何的关键。
在数学一轮总复习中,我们需要掌握解决立体几何体积问题的方法和技巧。
本文将对立体几何中的体积问题进行解析,帮助读者深入理解和掌握相关知识。
一、基本概念回顾在解决立体几何体积问题之前,我们首先需要回顾一些基本概念。
在立体几何中,体积是描述一个物体占据的空间大小的概念。
对于不规则的几何体,我们可以通过计算其体积来得知其大小。
在计算体积时,我们通常用立方单位来表示,如立方厘米、立方米等。
常见几何体的体积公式如下:1. 立方体的体积公式:V = a^3,其中 a 为边长。
2. 正方体的体积公式:V = a^3,其中 a 为边长。
3. 圆柱体的体积公式:V = πr^2h,其中 r 为底面半径,h 为高。
4. 圆锥体的体积公式:V = (1/3)πr^2h,其中 r 为底面半径,h 为高。
5. 球体的体积公式:V = (4/3)πr^3,其中 r 为半径。
二、实例分析为了更好地理解和应用上述体积公式,我们来看几个实例。
实例1:小明想要购买一个储存东西的木制盒子,这个盒子的尺寸为长10厘米、宽8厘米、高6厘米。
请问这个盒子的体积是多少?解析:根据立方体的体积公式V = a^3,我们可以计算出这个盒子的体积:V = 10厘米 × 8厘米 × 6厘米 = 480立方厘米。
因此,这个盒子的体积为480立方厘米。
实例2:一个圆柱体的底面半径为4米,高为6米。
求该圆柱体的体积。
解析:根据圆柱体的体积公式V = πr^2h,我们可以计算出该圆柱体的体积:V = π × 4米 × 4米 × 6米= 96π立方米。
因此,该圆柱体的体积为96π立方米。
实例3:一个立方体的体积为64立方厘米,求其边长。
解析:根据立方体的体积公式V = a^3,我们可以得到这个立方体的边长:a^3 = 64立方厘米,则 a = 4厘米。
高中数学一轮复习理数通用版:第八章 立体几何 Word版含解析
第八章⎪⎪⎪立体几何第一节 空间几何体的三视图、直观图、表面积与体积本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.突破点(一) 空间几何体的三视图和直观图[基本知识]1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[基本能力]1.判断题(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)棱台各侧棱的延长线交于一点.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()(4)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()答案:(1)×(2)√(3)×(4)×2.填空题(1)如图所示的几何体中,是棱柱的为________(填写所有正确的序号).解析:根据棱柱的定义,结合给出的几何体可知③⑤满足条件.答案:③⑤(2)有一个几何体的三视图如图所示,这个几何体的形状为________.解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台.答案:棱台(3)已知一个几何体的三视图如图所示,则此几何体从上往下依次由____________构成.解析:由三视图可知,该几何体是由一个圆台和一个圆柱组成的组合体.答案:圆台,圆柱(4)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1[全析考法]空间几何体的结构特征[例1]给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3[解析]①错误,只有这两点的连线平行于旋转轴时才是母线;②错误,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.[答案] A[方法技巧]解决与空间几何体结构特征有关问题的技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1中的命题②④易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(·河北衡水中学调研)正方体ABCD -A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()(2)(·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2 B.2 3C.2 2 D.2[解析](1)过点A,E,C1的截面为AEC1F,如图,则剩余几何体的侧视图为选项C中的图形.故选C.(2)在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=(22+22)+22=2 3.[答案](1)C(2)B[方法技巧]有关三视图问题的解题方法(1)由几何体的直观图画三视图需注意的事项①注意正视图、侧视图和俯视图对应的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符合“长对正、高平齐、宽相等”的基本特征.(2)由几何体的部分视图画出剩余视图的方法先根据已知的部分视图推测直观图的可能形式,然后推测其剩余视图的可能情形,若为选择题,也可以逐项检验.(3)由几何体三视图还原其直观图时应注意的问题要熟悉柱、锥、球、台的三视图,结合空间想象将三视图还原为直观图.空间几何体的直观图按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A[全练题点]1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边长为2的直角三角形,则该三棱锥的正视图可能为()解析:选C空间几何体的正视图和侧视图“高平齐”,故正视图的高一定为2,正视图和俯视图“长对正”,故正视图的底边长为 2.侧视图中的直角说明这个三棱锥最前面的面垂直于底面,这个面遮住了后面的一条侧棱.综合以上可知,这个三棱锥的正视图可能是C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二]已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选D 由题意知,三棱锥放置在长方体中如图所示,利用长方体模型可知,此三棱锥的四个面全部是直角三角形.故选D.突破点(二) 空间几何体的表面积与体积[基本知识]1.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)lS 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[基本能力]1.判断题(1)锥体的体积等于底面面积与高之积.( ) (2)台体的体积可转化为两个锥体的体积之差.( ) (3)球的体积之比等于半径比的平方.( ) 答案:(1)× (2)√ (3)× 2.填空题(1)已知圆柱的底面半径为a ,高为66a ,则此圆柱的侧面积等于________. 解析:底面周长l =2πa ,则S 侧=l ·h =2πa ·⎝⎛⎭⎫66a =63πa 2. 答案:63πa 2(2)已知某棱台的上、下底面面积分别为63和243,高为2,则其体积为________. 解析:V =13(63+243+63×243)×2=28 3.答案:28 3(3)已知圆锥的母线长是8,底面周长为6π,则它的体积是________.解析:设圆锥底面圆的半径为r ,则2πr =6π,∴r =3.设圆锥的高为h ,则h =82-32=55,∴V 圆锥=13πr 2h =355π.答案:355π(4)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为________.解析:在正三棱柱ABC -A 1B 1C 1中,∵AD ⊥BC ,AD ⊥BB 1,BB 1∩BC =B ,∴AD ⊥平面B 1DC 1.∴VA -B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.答案:1(5)一个空间几何体的三视图如图所示,则该几何体的表面积为________.解析:由三视图可知该几何体是一个底面为等腰梯形的平放的直四棱柱,所以该直四棱柱的表面积为S=2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.答案:48+817[全析考法]空间几何体的表面积[例1](1)(·福州市五校联考)某几何体的三视图如图所示,其中俯视图为一个直角三角形,一个锐角为30°,则该几何体的表面积为()A.24+12 3B.24+5 3C.12+15 3D.12+12 3(2)(·南昌市十校联考)已知某几何体的三视图如图所示,则该几何体的表面积是()A.(25+35)πB.(25+317)πC.(29+35)πD.(29+317)π[解析](1)由已知可得,该几何体为三棱柱,底面是斜边长为4,斜边上的高为3的直角三角形,底面面积为23,底面周长为6+23,棱柱的高为4,故棱柱的表面积S=2×23+4×(6+23)=24+123,故选A.(2)由三视图可知该几何体由一个上下底面直径分别为2和4,高为4的圆台,一个底面直径为4,高为4的圆柱和一个直径为4的半球组成,其直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+π×4×4+4π×222=π+317π+16π+8π=(25+317)π,故选B.[答案](1)A(2)B[方法技巧]求空间几何体表面积的常见类型及思路求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积空间几何体的体积[例2](1)(·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A .60B .30C .20D .10(2)(·洛阳市第一次统考)某几何体的三视图如图所示,则该几何体的体积是()A.15π2 B .8π C.17π2D .9π[解析] (1)如图,把三棱锥A -BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A -BCD 的高为4,故该三棱锥的体积V =13×12×5×3×4=10.(2)依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接,恰好可以形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.[答案] (1)D (2)B[方法技巧] 求空间几何体体积的常见类型及思路 规则 几何体 若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法不规则 几何体 若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解三视图若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观形式 图,然后根据条件求解[全练题点]1.[考点二](·石家庄市教学质量检测)某几何体的三视图如图所示(在网格线中,每个小正方形的边长为1),则该几何体的体积为( )A .2B .3C .4D .6解析:选A 由三视图知,该几何体为四棱锥如图所示,其底面面积S =12×(1+2)×2=3,高为2,所以该几何体的体积V =13×3×2=2,故选A.2.[考点一](·长沙市统一模拟考试)如图是某几何体的三视图,其正视图、侧视图均是直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为( )A .3πB .4πC .5πD .12π解析:选A 由三视图可知,该几何体是半径为1的半球,其表面积为2π+π=3π.选A.3.[考点二](·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =12×13π×12×3+13×12×2×2×3=π2+1.4.[考点一](·南昌市模拟)如图,直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为π·1·12+12+2π·12+π·12=(2+3)π.答案:(2+3)π5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得(5.4-x )×3×1+π×⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题与球有关的组合体问题常涉及内切和外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体时,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体时,正方体的各个顶点均在球面上,正方体的体对角线长等于球的直径.球与其他旋转体组合时,通常作它们的轴截面解题;球与多面体组合时,通常过多面体的一条侧棱和球心及“切点”或“接点”作截面图进行解题.[全析考法]多面体的内切球问题[例1] (1)(·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.(2)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] (1)设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.(2)设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14×63a =612a , 因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] (1)32 (2)63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(2)(·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.(3)(·河北衡水调研)一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为________.[解析] (1)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(2)由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.(3)由直六棱柱的外接球的直径为直六棱柱中最长的对角线,知该直六棱柱的外接球的直径为42+32=5,∴其外接球的表面积为4π×⎝⎛⎭⎫522=25π. [答案] (1)A (2)9π2 (3)25π[方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.[全练题点]1.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 2.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.3.[考点一](·东北三省模拟)三棱柱ABC -A 1B 1C 1的底面是边长为3的正三角形,侧棱AA 1⊥底面ABC ,若球O 与三棱柱ABC -A 1B 1C 1各侧面、底面均相切,则侧棱AA 1的长为( )A.12B.32C .1D. 3解析:选C 因为球O 与直三棱柱的侧面、底面均相切,所以侧棱AA 1的长等于球的直径.设球的半径为R ,则球心在底面上的射影是底面正三角形ABC 的中心,如图所示.因为AC =3,所以AD =12AC =32.因为tan π6=MD AD ,所以球的半径R =MD =AD tan π6=32×33×1=12,所以AA 1=2R =2×12=1.4.[考点二]三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为( )A .5π B.2π C .20πD .4π解析:选A 把三棱锥P -ABC 看作由一个长、宽、高分别为1、1、3的长方体截得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 5.[考点二](·洛阳统考)已知三棱锥P -ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P -ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P -ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P -ABC =13S △ABC h =13×⎝⎛⎭⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎫2332=203,所以三棱锥P -ABC 的外接球的表面积为4πR 2=80π3,故选D.[全国卷5年真题集中演练——明规律] 1.(·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.2.(·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34π×1=3π4. 3.(·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3解析:选B设球的半径为R,∵△ABC的内切圆半径为6+8-102=2,∴R≤2.又2R≤3,∴R≤32,∴V max=43×π×⎝⎛⎭⎫323=9π2.故选B.4.(·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π解析:选C由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h.由图得r=2,c=2πr=4π,h=4,由勾股定理得:l =22+(23)2=4,S表=πr2+ch+12cl=4π+16π+8π=28π.5.(·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17C.16 D.15解析:选D由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1=13×12×1×1×1=16,剩余部分的体积V2=13-16=56.所以V1V2=1656=15,故选D.6.(·全国卷Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O 的表面积为________.解析:由题意知,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积为S=4πR2=14π.答案:14π[课时达标检测][小题对点练——点点落实]对点练(一)空间几何体的三视图和直观图1.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0 B.1C.2 D.3解析:选A①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.2.(·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为()A.5 B.4C.3 D.2解析:选B由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B.3.在如图所示的空间直角坐标系O -xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为()A .①和③B .③和①C .④和③D .④和②解析:选D 由题意得,该几何体的正视图是一个直角三角形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2),且内有一条虚线(一顶点与另一直角边中点的连线),故正视图是④;俯视图即在底面的射影,是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.4.如图,△O ′A ′B ′是△OAB 的水平放置的直观图,其中O ′A ′=O ′B ′=2,则△OAB 的面积是________.解析:在Rt △OAB 中,OA =2,OB =4,△OAB 的面积S =12×2×4=4.答案:45.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为_______cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm).∴AB =122+52=13(cm).答案:13对点练(二) 空间几何体的表面积与体积1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a 2B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.(·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π解析:选B由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V=π×32×10-12×π×32×6=63π.3.(·湖北四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为()A.16 B.(10+5)πC.4+(5+5)πD.6+(5+5)π解析:选C该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为S=π+4π+4+5π=4+(5+5)π.4.(·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,。
高考数学一轮复习 立体几何【配套文档】第八章 8.2
§8.2 空间几何体的表面积与体积2014高考会这样考 1.与三视图相结合,考查几何体的表面积、体积;2.作为解答题中的某一问,与空间线面关系相结合考查几何体体积的计算.复习备考要这样做 1.熟记公式,理解公式的意义;2.结合几何体的结构特征,运用公式解决一些计算问题.1. 柱、锥、台和球的侧面积和体积面积 体积 圆柱 S 侧=2πrh V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2圆台 S 侧=π(r 1+r 2)lV =13(S 上+S 下+S 上S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′V =13Sh正棱台 S 侧=12(c +c ′)h ′V =13(S 上+S 下+S 上S 下)h球S 球面=4πR 2V =43πR 32. (1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. [难点正本 疑点清源] 1. 几何体的侧面积和表面积几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.如直棱柱(圆柱)侧面展开图是一矩形,则可用矩形面积公式求解.再如圆锥侧面展开图为扇形,此扇形的特点是半径为圆锥的母线长,圆弧长等于底面的周长,利用这一点可以求出展开图扇形的圆心角的大小.2. 等积法等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.1. 圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是________.答案 4πS解析 设圆柱的底面半径为r ,则r =Sπ, 又侧面展开图为正方形,∴圆柱的高=2πS , ∴S 圆柱侧=4πS .2. 设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m 3.答案 4解析 这个空间几何体是一个三棱锥,这个三棱锥的高为2,底面是一个一条边长为4、这条边上的高为3的等腰三角形,故其体积V =13×12×4×3×2=4.3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r . 则12πl 2+πr 2=3π,πl =2πr , ∴r =1,即圆锥的底面直径为2.4. 一个球与一个正方体的各个面均相切,正方体的边长为a ,则球的表面积为________.答案 πa 2解析 由题意知,球的半径R =a2.所以S球=4πR2=πa2.5. 如图所示,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P —BB 1C 1C 的体积为________.答案163解析 ∵四棱锥P —BB 1C 1C 的底面积为16,高PB 1=1, ∴VP —BB 1C 1C =13×16×1=163.题型一 空间几何体的表面积例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80思维启迪:先通过三视图确定空间几何体的结构特征,然后再求表面积. 答案 C解析 由三视图知该几何体的直观图如图所示,该几何体的下底面是 边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂 直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽 为4,长为42+12=17.所以S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.探究提高 (1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是________cm 2.答案 4π+12解析 由三视图知该几何体为一个四棱柱、一个半圆柱和一个半球的组合体,其中四棱柱上表面与半球重合部分之外的面积为1×2-12×π×12=2-π2,四棱柱中不重合的表面积为2-π2+1×2×2+2×2+2=12-π2,半圆柱中不重合的表面积为12×2π×2+12π=52π,半球的表面积为12×4π=2π,所以该几何体的表面积为4π+12.题型二 空间几何体的体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.思维启迪:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积, 再利用棱锥的体积公式求出其体积;思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,∴A 1C 1∥平面B 1EDF . ∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. ∵平面B 1D 1D ⊥平面B 1EDF , 平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高. ∵△B 1O 1H ∽△B 1DD 1,∴O 1H =B 1O 1·DD 1B 1D =66a .∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3.方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF =13·S △C 1EF ·(h 1+h 2)=16a 3. 探究提高 在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(2012·课标全国)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为 ( )A.26B.36C.23D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.题型三 几何体的展开与折叠问题例3 (1)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O ,剪去△AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、 B 、C 、D 、O 为顶点的四面体的体积为________.(2)有一根长为3π cm ,底面直径为2 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________ cm.思维启迪:(1)考虑折叠后所得几何体的形状及数量关系;(2)可利用圆柱的侧面展开图. 答案 (1)823(2)5π解析 (1)把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形 ABCD (如图),由题意知BC =3π cm ,AB =4π cm ,点A 与点C 分别是 铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度. AC =AB 2+BC 2=5π (cm),故铁丝的最短长度为5π cm. (2)折叠后的四面体如图所示.OA 、OC 、OD 两两相互垂直,且OA =OC =OD =22,体积V =13S △OCD ·OA =13×12×(22)3=823.探究提高 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.如图,已知一个多面体的平面展开图由一边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________. 答案 26解析如图,四棱锥的高 h =1-⎝⎛⎭⎫222=22, ∴V =13Sh =13×1×22=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC ′到M 的最短路线长为29,设这条最短路线与 CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长; (3)三棱锥C —MNP 的体积.审题视角 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现怎样的形式;(3)三棱锥以谁做底好. 规范解答解 (1)该三棱柱的侧面展开图为一边长分别为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如下图,设PC =x ,则MP 2=MA 2+(AC +x )2.∵MP =29,MA =2,AC =3,∴x =2,即PC =2. 又NC ∥AM ,故PC P A =NC AM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332. ∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分]温馨提醒 (1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上. 如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题.(3)本题的易错点是,不知道从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方法与技巧1. 对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决. 2. 要注意将空间问题转化为平面问题.3. 求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4. 一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. 失误与防范1. 几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系. 2. 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·课标全国)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18答案 B解析 由题意知,此几何体是三棱锥,其高h =3,相应底面面积为S =12×6×3=9,∴V =13Sh =13×9×3=9.2. 已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如右图所示),则三棱锥B ′—ABC 的体积为( )A.14B.12C.36D.34答案 D解析 V B ′—ABC =13×BB ′×S △ABC =13×3×34×12=34.3. 正六棱柱的高为6,底面边长为4,则它的表面积为( )A .48(3+3)B .48(3+23)C .24(6+2)D .144答案 A 解析 S 底=6×34×42=243,S 侧=6×4×6=144, ∴S 全=S 侧+2S 底=144+483=48(3+3).4. (2012·北京)某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+12 5答案 B解析 由几何体的三视图可知,该三棱锥的直观图如图所示, 其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3, AE =4.∵AE =4,ED =3,∴AD =5. 又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,所以AC =41且S △ACD =10. 在Rt △ABE 中,AE =4,BE =2,故AB =2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+6 5.二、填空题(每小题5分,共15分)5. (2012·山东)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.答案 16解析 利用三棱锥的体积公式直接求解.VD 1-EDF =VF -DD 1E =13S △D 1DE ·AB =13×12×1×1×1=16. 6. (2011·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 4解析 此几何体是两个长方体的组合,故V =2×1×1+1×1×2=4.7. 已知三棱锥A —BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________.答案 3π解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,所以正方体ANDM —FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球就是正方体ANDM —FBEC 的外接球,所以三棱锥A —BCD 的外接球的半径为32.所以三棱锥A —BCD 的外接球的表面积为S 球=4π⎝⎛⎭⎫322=3π. 三、解答题(共22分)8. (10分)如图所示,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.解 设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件⎩⎪⎨⎪⎧l +r +2r =(5+2)×22πr l =π2, 解得r =2,l =42,S =πrl +πr 2=10π,h =l 2-r 2=30,V =πr 2h =230π. 9. (12分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.由P A 1=PD 1=2, A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2 =22+42(cm 2),体积V =23+12×(2)2×2=10(cm 3). B 组 专项能力提升 (时间:25分钟,满分:43分) 一、选择题(每小题5分,共15分)1. 某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为 ( )A.32πB .π+ 3 C.32π+ 3 D.52π+ 3 答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π·1×2=3+3π2. 2. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25V B.13V C.23V D.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD.因为M是AE的中点,所以V M—ABCD=12V.所以V E—MBC=12V-V E—MDC.而V E—MBC=V B—EMC,V E—MDC=V D—EMC,所以V E—MBCV E—MDC =V B—EMCV D—EMC=h1h2.因为B,D到平面EMC的距离即为到平面EAC的距离,而AB∥CD,且2AB=3CD,所以h1h2=3 2.所以V E—MBC=V M-EBC=310V.3.(2011·辽宁)已知球的直径SC=4,A、B是该球球面上的两点,AB=3,∠ASC=∠BSC =30°,则棱锥S-ABC的体积为() A.3 3 B.2 3C. 3 D.1答案 C解析由题意知,如图所示,在棱锥S-ABC中,△SAC,△SBC都是有一个角为30°的直角三角形,其中AB=3,SC=4,所以SA=SB=23,AC=BC=2,作BD⊥SC于D点,连接AD,易证SC⊥平面ABD,因此V=13×34×(3)2×4= 3.二、填空题(每小题5分,共15分)4.如图,已知正三棱柱ABC—A1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为______ cm.答案13解析根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.5.已知一个几何体是由上、下两部分构成的组合体,其三视图如图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是________.答案 43π 解析 这个几何体是由一个底面半径为1,高为2的圆锥和一个半径为1的半球组成的几何体,故其体积为13π×12×2+12×43π×13=43π. 6. (2012·上海)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是________.答案 23c a 2-c 2-1 解析 利用椭圆的定义及割补法求体积.∵AB +BD =AC +CD =2a >2c =AD ,∴B 、C 都在以AD 的中点O 为中心,以A 、D 为焦点的两个椭圆上,∴B 、C 两点在椭圆两短轴端点时,到AD 距离最大,均为a 2-c 2, 此时△BOC 为等腰三角形,且AD ⊥OC ,AD ⊥OB ,∴AD ⊥平面OBC .取BC 的中点E ,显然OE ⊥BC ,OE max =a 2-c 2-1,∴(S △BOC )max =12×2×a 2-c 2-1=a 2-c 2-1. ∴V D -ABC =V D -OBC +V A -OBC=13·OD ·S △OBC +13·OA ·S △OBC =13(OD +OA )S △OBC =13×2c a 2-c 2-1=23c a 2-c 2-1. 三、解答题7.(13分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D—ABC,如图2所示.图1图2(1)求证:BC⊥平面ACD;(2)求几何体D—ABC的体积.(1)证明在图中,可得AC=BC=22,从而AC2+BC2=AB2,故AC⊥BC.又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂平面ABC,∴BC⊥平面ACD.(2)解由(1)可知BC为三棱锥B—ACD的高,BC=22,S△ACD=2,∴V B—ACD=13S△ACD·BC=13×2×22=42 3,由等体积性可知,几何体D—ABC的体积为423.。
高考数学一轮复习 第八章 立体几何 第1讲 空间几何体及其表面积与体积课件 理
中点,记三棱锥 D-ABE 的体积为 V1,P-ABC 的体积为 V2,
则VV12=________. 解析 设 A 到平面 PBC 距离为 h,则 V1=VA-BDE=13S△BDE·h
=13·14S△PBC·h=14V2.所以VV12=14.
答案
1 4
考点一 空间几何体的结构特征 【例1】 给出下列四个命题:
诊断自测
1.判断正误(在括号内打“√”或“×”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱 柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱 锥.( × ) (3)棱柱中一条侧棱的长叫做棱柱的高.( × ) (4)圆柱的侧面展开图是矩形.(√ )
2.以长方体的各顶点为顶点,能构建四棱锥的个数是________. 解析 设长方体ABCD-A1B1C1D1,若点A为四棱锥的顶点, 则底面可以为不过点A的矩形A1B1C1D1,矩形BCC1B1,矩形 CDD1C1,矩形BB1D1D,矩形BCD1A1,矩形CDA1B1,共有6 个不同的四棱锥,8个顶点可以分别作为四棱锥的顶点,共 6×8=48(个)不同的四棱锥.
答案 ①②③
规律方法 解决该类题目需准确理解几何体的定义,要真正 把握几何体的结构特征,并且学会通过反例对概念进行辨析, 即要说明一个命题是错误的,设法举出一个反例即可.
【训练1】 (1)给出以下命题: ①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆面; ④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数是________. (2)一个正方体内接于一个球,过球心作一个截面,则截面的可 能图形为________(填正确答案的序号).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考数学一轮复习 第八章 立体几何 8.1.3 体积对点训练 理
1.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )
A .14斛
B .22斛
C .36斛
D .66斛
答案 B
解析 设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×
13πR 2
×5=3203π(立方尺),因此堆放的米约有3203×1.62π
≈22(斛).故选B.
2.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )
A .8 cm 3
B .12 cm 3
C.
323
cm 3
D.403
cm 3
答案 C
解析 该几何体是由棱长为2的正方体和底面边长为2,高为2的正四棱锥组合而成的几何体.故其体积为V =2×2×2+13×2×2×2=323
cm 3
.
3.在梯形ABCD 中,∠ABC =π
2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直
线旋转一周而形成的曲面所围成的几何体的体积为( )
A.2π3
B.4π3
C.5π3
D .2π
答案 C
解析 如图,过点D 作BC 的垂线,垂足为H .则由旋转体的定义可知,该梯形绕AD 所在的直线旋转一周而形成的曲面所围成的几何体为一个圆柱挖去一个圆锥.其中圆柱的底面半径R =AB =1,高h 1=BC =2,其体积V 1=πR 2
h 1=π×12
×2=2π;圆锥的底面半径r =DH =1,高h 2=1,其体积V 2=13πr 2h 2=13π×12
×1=π3
.
故所求几何体的体积为V =V 1-V 2=2π-π3=5π
3
.故选C.
4.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
A.1727
B.59
C.
1027
D.13
答案 C
解析 由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2 cm ,高为4 cm ;另一个圆柱的底面半径为 3 cm ,高为 2 cm.则零件的体积V 1=π×22
×4+π×32
×2=34π(cm 3
).而毛坯的体积V =π×32
×6=54π (cm 3
),因此切削掉部分的体积V 2=V -V 1=54π-34π=20π(cm 3
),所以V 2V =
20π54π=10
27
.故选C.
5.某几何体三视图如图所示,则该几何体的体积为( )
A .8-2π
B .8-π
C .8-π2
D .8-π4
答案 B
解析 由三视图知,原几何体是棱长为2的正方体挖去两个底面半径为1,高为2的四分之一圆柱,故几何体的体积为8-2×π×2×1
4
=8-π.故选B.
6.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2
h .
它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2
h 相当于将圆
锥体积公式中的π近似取为( )
A.227
B.258
C.
15750
D.
355113
答案 B
解析 由题意可知:L =2πr ,即r =L 2π,圆锥体积V =13Sh =13πr 2h =13π·⎝ ⎛⎭
⎪⎫L 2π2
h =
112πL 2h ≈275L 2h ,故112π≈275,π≈25
8
,故选B. 7.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )
A.32π
3
B .4π
C .2π D.4π3
答案 D
解析 依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R ,则2R =12
+12
+
2
2
=2,解得R =1,所以V =4π3R 3=4π
3
.
8.一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )
A .1
B .2
C .3
D .4 答案 B
解析 由三视图可得原石材为如下图所示的直三棱柱A 1B 1C 1-ABC ,且AB =8,BC =6,
BB 1=12,AC =82+62=10.
若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r =6+8-10
2
=2.故选B.
9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3
.
答案
8π3
解析 由三视图可得该几何体是由两个圆锥和一个圆柱构成的组合体,圆柱的底面圆的半径为1 m ,高为2 m ,圆锥的底面圆的半径和高都是1 m ,且圆锥的底面分别与圆柱的两个底面重合,故该组合体的体积为2π+2×13π=8π3
(m 3
).
10.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.
答案
7
解析 底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52
×4
+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π×r 2×4+π×r 2
×8=28π3r
2=196π
3
,解得r =7.
11.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2
=________.
答案 14
解析 由题意知,V D -ABE =V A -BDE =V 1,
V P -ABC =V A -PBC =V 2.
因为D ,E 分别为PB ,PC 中点,所以S △BDE S △PBC =1
4
. 设点A 到平面PBC 的距离为d , 则V 1V 2=1
3S △BDE ·d 13
S △PBC ·d =S △BDE S △PBC =14
. 12.设甲、乙两个圆柱的底面积分别为S 1、S 2,体积分别为V 1、V 2,若它们的侧面积相
等,且S 1S 2=94,则V 1
V 2
的值是________.
答案 32
解析 设甲、乙两个圆柱底面半径和高分别为r 1,h 1,r 2,h 2,则2πr 1h 1=2πr 2h 2,h 1h 2
=
r 2r 1.又S 1S 2=πr 21πr 22=94,所以r 1r 2=32,则V 1V 2=πr 21h 1πr 22h 2=r 21
r 22·h 1h 2=r 1r 2=32
. 13.已知三棱锥P -ABC 的各顶点均在一个半径为R 的球面上,球心O 在AB 上,PO ⊥平面ABC ,AC
BC
=3,则三棱锥与球的体积之比为________.
答案
3∶8π
解析 如图,依题意,AB =2R ,又AC BC
=3,∠ACB =90°,∴∠CAB =30°,因此AC =3
R ,BC =R ,V P -ABC =13PO ·S △ABC =13
×R ×⎝ ⎛⎭
⎪⎫12
×3R ×R =
36R 3.而V 球=4π3R 3,因此V P -ABC ∶V 球=36
R 3∶4π3
R 3
=3∶8π.。