代数学引论第三章答案

合集下载

高等代数答案-第三章

高等代数答案-第三章

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案
(2) 利用反证法可证得,即假设1,2 ,, s 线性无关,再由(1)得 1, 2 ,, s 线性无 关,与 1, 2 ,, s 线性相关矛盾.
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线性代数第3章习题答案2011

线性代数第3章习题答案2011

1
.
0 1 3 3
解: 因为向量个数大于向量维数,所以向量组线性 相关。
二. 填空题
(1) 已知向量组 1 1,2,1T , 2 1,0,2T ,
3 1,8,k T 线性相关, 则k = _2_.
解: 令 k11 k22 k33 , 则有:
k1(1,1, 2)T k2 (1, 0, 2)T k3(1, 8, k) (0, 0, 0, 0)
1 1 2 1 1 2
∴向量组线性无关.
2 1 3
(4)
=
4
,
4
,
0
.
3 1 2
解: 设k1 k2 k3
2 1 3 0
即有
k1
4
k2
4
k3
0
0
,
3 1 2 0
也即有
42kk11
k2 4k2
3k3
0 0
3k1 k2 2k3 0
是否线性无关?
解:
1 0 0L 1 1 0L
01
0 0 1 1 m1
D 0 1 1 L 0 0 0 m为偶数 L L L L L L 2 0 m为奇数 0 0 0L 1 1
当m为偶数时,方程组有非零解,则向量组线性相关
当m为奇数时,方程组有零解,则向量组线性无关。
五. 设有向量组 1 (1,2,3)T ,2 (1,1,4)T ,3 (3,3,2)T
a0c 解: 要使 1,2,3 线性无关, 则有 b c 0 2abc 0,
所以 a , b , c 需满足a·b·c≠0.
0ab
(3)n维单位向量组1,2,L ,n都可由向量组 1,2,L ,r 线性表示, 则r____ n . 解: 因为n维单位向量组 1,2,L ,n 线性无关, 且每个向量都能由向量组1,2,L ,r 线性表示,

线性代数第三章习题及解答

线性代数第三章习题及解答

解:取 α1 = (1, 0, 0)T , α2 = (0, 1, 0)T , β1 = (−1, 0, 0)T , β2 =
(0, −1, 0) α1 + α2 + β1 + β2 = 0, 但 α1 , α2 线性无关, 且 β1 , β2 也线性无关 (3) 若只有当 λ1 , . . . , λm 全为 0 时,等式 λ1 α1 + · · · + λm αm + λ1 β1 +· · ·+λm βm = 0 才能成立, 则 α1 , α2 , . . . , αm 线性无关, β1 , β2 , . . . , βm
证明:因为 n = R(e1 , . . . , en ) ≤ R(α1 , . . . , αn ) ≤ n 于是 R(α1 , . . . , αn ) = n, 则 α1 , α2 , . . . , αn 线性无关
7. 设向量组 α1 , α2 , . . . , αm 线性相关,且 α1 ̸= 0, 证明:存在某
2
(0, 0, 0)T , β3 = (−1, −1, 1)T 5. 利用初等行变换求下列矩阵的列向量组的一个最大线性无关
组, 并把其余列向量用最大线性无关组线性表示 . 25 31 17 43 75 94 53 132 (1) 75 94 54 134 25 32 20 48 25 31 17 43 25 31 17 75 94 53 132 0 1 2 解: 75 94 54 134 −→ 1 3 0 25 32 20 48 0 1 3 α1 α2 α3 α4 25 31 17 43 1 0 0 8 5 0 1 2 3 0 1 0 −1 −→ 0 0 1 2 −→ 0 0 1 2 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3

代数学引论答案(第一章)

代数学引论答案(第一章)

1.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1] 对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.2.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.3.设n为一个正整数, nZ为正整数加法群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.4.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:由该表格可以知道B中的元素对置换的乘法封闭,并且B的每一元都可逆(任意元的逆为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.5. 证明:如果在一阶为2n 的群中有一n 阶子群,它一定是正规子群.证明:[方法1]设H 是2n 阶群G 的n 阶子群, 那么对任意a H, 有H aH=,并且aH G,H G,又注意到aH 和H 中都有n 个元素, 故此H aH=G.同理可证对任意a H, 有H Ha=, H Ha=G ,因此对任意a H ,有aH=Ha.对任意a H, 显然aH H, Ha H 又因aH,Ha 及H 中都有n 个元素,故aH=Ha=H.综上可知对任意a G,有aH=Ha ,因此H 是G 的正规子群.[方法2] 设H 是2n 阶群G 的n 阶子群,那么任取a H, h H, 显然有aha -1H.对给定的x H, 有H xH=, H xH=G.这是因为若假设y H xH, 则存在h H ,使得y=xh,即x=yh -1H 产生矛盾,因此H xH=;另一方面, xH G,H G, 又注意到xH 和H 中都有n 个元素, 故此H xH=G.那么任取a H,由上面的分析可知a xH, 从而可令a=xh 1这里h 1H.假设存在h H, 使得aha -1H,则必有aha -1xH,从而可令aha -1=xh2,这里h 2H.那么,xh 1ha -1=xh 2,即a= h 2h 1h H,产生矛盾.因此,任取a H, h H, 有aha -1H.综上可知对任取a G, h H, 有aha -1H,因此H 为G 的一个正规子群.6. 设群G 的阶为一偶数,证明G 中必有一元素a e 适合a 2=e.证明: 设b G ,且阶数大于2,那么b≠b -1,而b -1的阶数与b 的阶数相等.换句话说G 中阶数大于2的元素成对出现,幺元e 的阶数为1,注意到G 的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G 是一2n 阶交换群,n 为奇数则G 中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange 定理.[2] 群G 中,任取a G ,有a n =e ,那么G 一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n 有什么关系?7. 设H ,K 为群G 的子群,HK 为G 的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH ,下面证明HK 为G 的一子群.任取a,b ∈HK,可令a=h 1k 1,b=h 2k 2这里h i ∈H ,k i ∈K ,i=1,2. 那么ab=(h 1k 1)(h 2k 2)=h 1(k 1h 2)k 2 ---------------(1)因HK=KH ,故此k 1h 2= h 3k 3 ----------------------(2)。

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案

第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,bG,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,bG,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,bG,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若ij(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G 内元素.下面证明任意aG,存在bG,使得ab=ba=e.<1> 对任意aG,存在bG,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元aG,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意bG, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意dG, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,yG, xy=yx (xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,bG,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意aG,有a~a,故此aa-1=eS;对任意a,bS,由(ab)b-1=aS,可知ab~b,又be-1=bS,故b~e,由传递性可知ab~e,即(ab)e-1=abS.再者因ae-1=aS, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意aG, 有aa-1=eS,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构. [讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意aH, 有HaH=,并且aHG,HG,又注意到aH和H中都有n个元素, 故此HaH=G.同理可证对任意aH, 有HHa=, HHa=G,因此对任意aH,有aH=Ha.对任意aH, 显然aHH, HaH又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意aG,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取aH, hH, 显然有aha-1H.对给定的xH, 有HxH=, HxH=G.这是因为若假设yHxH, 则存在hH,使得y=xh,即x=yh-1H产生矛盾,因此HxH=;另一方面, xHG,HG, 又注意到xH和H中都有n个元素, 故此HxH=G.那么任取aH,由上面的分析可知axH, 从而可令a=xh1这里h1H.假设存在hH, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1hH,产生矛盾.因此,任取aH, hH, 有aha-1H.综上可知对任取aG, hH, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素ae适合a2=e.证明:设bG,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取aG,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构. 证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,kZ,0<rn.(2)A B i B j=B r G这里i+j=kn+r,kZ,0<rn.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,kZ,0<tn.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,bGa i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,bS,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即abS.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;… … …我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈a H;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果MN={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为MN={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmNm,那么该映射显然是一一对应,另外f(m i Nm j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1MN={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈MN,产生矛盾.2. 设f: MN/N→MmNm,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=axa=x-1axax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=SS=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群222综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p 阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为ab=ab, ab=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:ab=a+b-1,ab=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构. 证明:(i)证明L在运算下构成交换群:由的定义,得到(ab)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(bc)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(ab)c= a(bc).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)ab=ba,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(bc)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(ab)(ac)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(bc)= (ab)(ac).由于和满足交换律,故此(bc)a= (ba)(ca).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a. 所以a2=(ae L)a.因为L无零因子,所以满足消去律[注],故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

高等代数第三章答案

高等代数第三章答案

第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。

线性代数第一三四章练习题参考答案

线性代数第一三四章练习题参考答案

第一章练习题参考答案一、填空题.1.-6d;2. 12;3. 23231414()()a a b b a a b b --;4. 1(1)(1)n n ---;5. -10;6. 0;7.-888;8. 4;-6.9. 132531445213253241541325344251,,a a a a a a a a a a a a a a a . 二、计算题. 1. 14().j k k j D x x ≤<≤=∏-2. 117!(2)27D =-+++.3. (1)(2)2121(1)(1)2n n n n n D x x x ---+=- ;4. 34560;5. 11[1]()nni i i i a x a x a==+⋅∏--∑.6.11024x +.7. 3(2)x x + 三、3(1)2n n -第三章练习参考答案 一、选择题1. C ;2. C ;3. C;4.C. 二、填空题1. (1)m nab -; 2.100122010345⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. 2123n --; 4. 108; 5. 2132-⎡⎤⎢⎥-⎣⎦; 6. 0; 7. 301050103⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;8. 12; 9. 1100BA B A--⎡⎤⎢⎥⎣⎦; 10. 3E ;11. 3A E +; 12. 25A ;13. 88000880008808⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; 14. 12.三、计算与证明题 1. 600006006060031⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; 2. 02100000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. (1) T CA , (2) 101214122--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 4. 2a =-; 5. 12345B A A E -=++; 6. -16; 7. 001010100B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; 8. 见课堂笔记; 9. 111212132122222331323233114411441144b b b b b b b b b b b b ⎡⎤-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦. 10. 22211212513--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦. 11. 略. 第四章练习参考答案一、选择题1. C ;2. D ;3. B;4.D. 二、填空题1. (1,2,0,4)(0,3,3,10)T T t -+--, 其中t 为任意实数;2. 12,αα; 2;3. 3-;4.122113311441233224423443,,,,,E E E E E E E E E E E E ------; dimV=6;(2,3,1,4,2,2)T--; 5. 极大无关组为12,αα; 3124122,23αααααα=-+=-+;6. 12(1,0,1,1)(1,1,0,1)(1,3,1,0),T T Tk k α=-+-+-- 其中 12,k k 是任意数;7.141113M ⎡⎤=⎢⎥⎣⎦, 15(,)33TX =-. 三、计算与证明题1.(1) 当1b =时, 极大无关组为124,,ααα, (2) 当1b =时, 4α不能由12,αα线性表示, 3α能由12,αα线性表示(3122ααα=-+).2. (1) 5λ≠时,123,,ααα是基,21311222131222M λλλ⎡⎤⎢⎥-+⎢⎥⎢⎥=--⎢⎥⎢⎥+⎢⎥--⎣⎦; (2)ξ在基123,,βββ下的坐标为 (1,0,1)T;(3)所有非零向量为 (3,3,2)T k -. 3. (1) 只要证123,,0ααα≠ ,(2) 1232,0),1,1),2,1,5)TTTβββ==-=-;(3)M ⎤⎥⎥⎢⎥=⎢⎥⎢⎥⎢⎢⎣; (4)坐标为10)T β=.4. 1)通解为0112233X k k k ξηηη=+++, 其中021(,,0,0,0)33T ξ=-,1(5,2,3,0,0)Tη=,2(1,0,0,1,0)Tη=-,3(1,2,0,0,3)Tη=-, 123,,k k k 为任意数.2)解向量的极大无关组是0010203,,,.ξξηξηξη+++5. 1)过渡矩阵111100010010010M ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦; 2)α在基I 下的坐标为(1,1,1,1)TX =,α在基II 下的坐标为(4,1,1,1)TX =---; 3)(1,1,1,1)Tk β=,k 为任意常数.6. 15,5a b ==, 3121322βαα=+;7. 因为1V 的零元素00000⎡⎤=⎢⎥⎣⎦不在1V 中,所以1V 不是V 的子空间;而2V 是V 的子空间(主要验证运算封闭),2V 的基是2111010,,;dim 3.001001V -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6-10. 证明略。

代数学引论(近世代数)答案

代数学引论(近世代数)答案

第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a G,存在b G,使得ab=ba=e.<1> 对任意a G,存在b G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,y G, xy=yx(xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a G,有a~a,故此aa-1=e S;对任意a,b S,由(ab)b-1=a S,可知ab~b,又be-1=b S,故b~e,由传递性可知ab~e,即(ab)e-1=ab S.再者因ae-1=a S, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a G, 有aa-1=e S,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1 S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:由该表格可以知道B中的元素对置换的乘法封闭,并且B的每一元都可逆(任意元的逆为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a H, 有H aH=,并且aH G,H G,又注意到aH和H中都有n个元素, 故此H aH=G.同理可证对任意a H, 有H Ha=, H Ha=G,因此对任意a H,有aH=Ha.对任意a H, 显然aH H, Ha H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a H, h H, 显然有aha-1H.对给定的x H, 有H xH=, H xH=G.这是因为若假设y H xH, 则存在h H,使得y=xh,即x=yh-1H产生矛盾,因此H xH=;另一方面, xH G,H G, 又注意到xH和H中都有n个元素, 故此H xH=G.那么任取a H,由上面的分析可知a xH, 从而可令a=xh1这里h1H.假设存在h H, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1h H,产生矛盾.因此,任取a H, h H, 有aha-1H.综上可知对任取a G, h H, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a e适合a2=e.证明:设b G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G 中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a G,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构.证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,k Z,0<r n.(2) A B i B j=B r G这里i+j=kn+r,k Z,0<r n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,k Z,0<t n.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,b Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G 中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;………我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a ∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a ∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j ∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn ∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M N={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN m,那么该映射显然是一一对应,另外f(m i N m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1M N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M N,产生矛盾.2. 设f: MN/N→MmN m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax a=x-1ax ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群G={e,a,b,c},那么a2=b2=c2=e,ab=ba=c,ac=ca=b,bc=cb=a. 群表如下:这是Klein四阶群.综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein 四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为a b=ab, a b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a b=a+b-1,a b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算下构成交换群:由的定义,得到(a b)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(b c)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a b)c= a(b c).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)a b=b a,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(b c)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a b)(a c)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(b c)= (a b)(a c).由于和满足交换律,故此(b c)a= (b a)(c a).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a.所以a2=(ae L故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.证明:略.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z ≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c ≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1. (iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0}包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.解:45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.网易全新推出企业邮箱。

2019-高等代数第三版答案-优秀word范文 (28页)

2019-高等代数第三版答案-优秀word范文 (28页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高等代数第三版答案篇一:高等代数(北大版)第3章习题参考答案第三章线性方程组1.用消元法解下列线性方程组: ?x1?x?1?1)?x1?x?1??x1?3x2?5x3?4x4?1?3x2?2x3?2x4??2x2?x3?x4?x5?4x2?x3?x4?x5?2x2?x3?x4?x5 ?x1?2x2?3x4?2x5?1x5??1??x1?x2?3x3?x4?3x5?2?3 2)?2x?3x?4x?5x?2x?72345?1?3?9x?9x?6x?16x?2x?252345?1??1x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44??x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?1??7x?3x?x??3?7x?2x?x?3x??0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1? 3x1?2x2?x3?x4?1????3x1?2x2?2x3?3x4?2 5)? 6)?2x1?3x2?x3?x4?1?2x?2x?2x?x?1?5x1?x2?x3?2x4??1234?1?2x?x?x?3x?4234?1??5x1?5x2?2x3?2解 1)对方程组得增广矩阵作行初等变换,有?1?1??1??1??1?1?0???0??0??033?2?4201X0?1521112?3?20?1?4?2?11?1?1201X01?1?1101000 1??1???10??3???0??3??0??1???01??1???20??0???0??0??0?0???030?5?7?10000?15?3?4?4?400?200?42358?1201X01?1?11010001???2?2? ?2??2??1???2?0? ?0?0??因为rank(A)?rank(B)?4?5,所以方程组有无穷多解,其同解方程组为?x1?x4?1??2x1?x5??2, ??2x?03???x?x?0?24解得?x1?x?2??x3?x?4??x5?1?k?k?0?k??2?2k其中k为任意常数。

线性代数第三章习题答案

线性代数第三章习题答案

线性代数 (同济四版) 习题参考答案
1 2 3
35
列变换, 即: 两边分别左乘、 右乘了相应的初等矩阵, 那么矩阵 4 5 6 也要进行相应的行变换、 7 8 9 1 0 1 =⇒ 0 0 1 =⇒ 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 4 7 4 1 7 2 5 8 5 2 8 5 2 8 3 6 9 6 3 9 2 2 2 0 A 1 0 0 A 1 1 0 = 0 1 0 1 1 0 = 0 1 1 0
4 1 7
5 2 8
6
3 9
0 0 0 1 4 5 2 1 2 2 7 8 2

A= 1 2 2 7 8 2
或者有下面的解法 . 1 2 3 记B= 4 5 6 . 注意到 A 两边乘以的是初等矩阵, 可知矩阵 B 是把 A 进行初等变换 r1 ↔ r2 7 8 9 和 c3 + c1 得到的. 所以要得到 A, 需要将 B 进行初等变换 c3 − c1 和 r1 ↔ r2 . 即 1 2 3 1 2 2 4 5 2 c3 − c1 4 5 2 r1 ↔ r2 1 2 2 = A B= 4 5 6 7 8 9 7 8 2 7 8 2
1 0 0 0 0 1 0 0 1 1 4 7 1 0 0 4 1 7 2 3 1
0 1
r1 ↔ r2 0 5 6 8 9 0 0 1 0 5 2 8 0 1 c3 − c1 6 3 9 4 5 2 1 1 0

数值计算引论(第二版)三四五章习题解答

数值计算引论(第二版)三四五章习题解答

n=10 2 nonuniform interval uniform interval 1.5
1
0.5
0
-0.5 -1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
2.仍然考虑上述实验中的著名问题,使用Matlab的函数“spline”作f(x)的样 条插值。增加插值的节点,观察样条插值的收敛性。


5 2
16
3 (0)
P2 (0) R2 (0)
5.(a)求 f ( x) x 在节点
x1 2, x2 0.5, x3 0, x4 1.5, x5 2
上的三次自然样条插值(即
M1 M 5 0
)。
(b)用同样的数据做Lagrange插值。
将f(x)及它的三次自然样条插值和Lagrange多项式插值用Matlab画出来, 比较它们的结果。 解答:
x_lu=
-6.5000 42.8000 -36.0000
第四章 思考题 1. (a)对给定的连续函数,构造等距节点上的Lagrange插值多项式,节点数 目越多,得到的插值多项式越接近被逼近函数。× (b)对给定的连续函数,构造其三次样条插值,则节点数目越多,得到的 样条函数越接近被逼近的函数。√ (c)高次的Lagrange插值多项式很常用。×
(b)根据迭代收敛条件
1 a 1 2
( B) 1
( B) 2 a 1
1 1 a 2 2
实验题
4.考虑方程组Hx=b,其中系数矩阵为Hilbert矩阵,
H (hi , j ) nn , hi , j 1 , i, j 1, 2,...n i j 1

《高等代数》第三章习题及答案

《高等代数》第三章习题及答案

习题3.1计算下列行列式:①5312--+a a ②212313121+----a a a解 ①5312--+a a =(a+2)(a-5)+3=a 2-3a-7②212313121+----a a a =(a-1)(a-1)(a+2)-3-12+2(a-1)-3(a-1)+6(a+2)= a 3+2a习题3.2求从大到小的n 阶排列(n n-1 … 2 1)的逆序数. 解 τ(n n-1 … 2 1)=(n-1)+(n-2)+…+1+0=2)1(-n n 习题3.31.在6阶行列式中,项a 23a 31a 42a 56a 14a 65和项a 32a 43a 14a 51a 66a 25应各带有什么符号?解 因为a 23a 31a 42a 56a 14a 65=a 14a 23a 31a 42a 56a 65,而τ(4 3 1 2 6 5)=3+2+0+0+1+0=6,所以项a 23a 31a 42a 56a 14a 65带有正号.又因为项a 32a 43a 14a 51a 66a 25=a 14a 25a 32a 43a 51a 66,而τ(4 5 2 3 1 6)=3+3+1+1+0+0=8,所以项a 32a 43a 14a 51a 66a 25带有正号. 2.计算:000400010002000300050000 解 因为a 15a 24a 33a 42a 51的逆序数为τ(5 4 3 2 1)=5×4/2=10,带有正号,所以000400010002000300050000=5×3×2×1×4=120 习题3.4计算:6217213424435431014327427246-解 6217213424435431014327427246-=6211003424431001014327100246-=100×621134244*********1246-=-294×105习题3.51.计算下列行列式:①1723621431524021----- ②6234352724135342------解 ①1723621431524021-----=1374310294111120001------=137410291111-----=-726②6234352724135342------=1035732130010313410------=0105731331310---- =05723133710----=-5×72337--=-1002. 计算下列n 阶行列式(n ≥2):①ab ba b a b a 000000000000 ②1210010010011110-n a a a③n n n n x x x x x x a a a a x a 1322113211000000000-----+④111)()1()()1()()1(111n a a a n a a a n a a a n n n n n n --------- 解 ① n n a b b a b a b a ⨯000000000000=)1()1(00000000000-⨯-⨯n n a b a b a b a a+)1()1(1000000000000)1(-⨯-+⨯-n n n b a b b ab b=a n+(-1)n+1b n② D n =1210010*********-n a a a=a n-1×D n-1+(-1)n+1×)1)(1(2100000000001111---n n n a a= a n-1D n-1+(-1)n+1×(-1)1+(n-1)×)2)(2(232100000000----n n n n a a a a=a n-1D n-1-a 1a 2…a n-2=a n-1(a n-2D n-2-a 1a 2…a n-3)-a 1a 2…a n-2 =a n-1a n-2D n-2-a n-1a 1a 2…a n-3-a 1a 2…a n-2 …= a n-1a n-2…a 2D 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2= a n-1a n-2…a 21110a -a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2=-a n-1a n-2…a 2-a n-1a n-2…a 3a 1-…-a n-1a n-2a 1a 2…a n-4-a n-1a 1a 2…a n-3-a 1a 2…a n-2 =-∑---11211)...(n i in a a a a ③ D n =nn n n x x x x x x a a a a x a 1322113211000000000-----+=112111...)1()1(---++-⨯-n n n n n n D x x x x a =a n x 1x 2…x n-1+x n D n-1=a n x 1x 2…x n-1+x n (a n-1x 1x 2…x n-2+x n-1D n-2) =a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+x n x n-1D n-2 …=a n x 1x 2…x n-1+x n a n-1x 1x 2…x n-2+…+x n x n-1…x 4a 3x 1x 2+x n x n-1…x 4x 3D 2=a n x 1x 2...x n-1+x n a n-1x 1x 2...x n-2+...+x n x n-1...x 4a 3x 1x 2+x n x n-1...x 4x 3[(a 1+x 1)x 2+a 2x 1] =)( (1)1121121∑=+--+ni n i i i n n x x a xx x x x x x④D n+1=111)()1()()1()()1(111n a a a n a a a n a a a n n n nn n ---------=nn n n n n n n a a a n a a a n a a a )1()1()()1()()1(111)1(1112)1(----------+=)1()]}1([)2)(1)]{(()2)(1[()1(2)1(---------+ n n n n=2!3!...n!3.计算下列n 阶行列式(n ≥1):①n a a a a ++++1111111111111111321②ax x x x x a x x x x a x a x x x x x a x n n nn ----- 321321321321解 ① D n =na a a a ++++1111111111111111321=na a a a +++++++11110111*********11321=1111111111111111321a a a ++++na a a a111011101110111321+++ =110010010321a a a +1-n n D a =a n D n-1-a 1a 2…a n-1=a n (a n-1D n-2-a 1a 2…a n-2)-a 1a 2…a n-1 =a n a n-1D n-2-a n a 1a 2…a n-2-a 1a 2…a n-1 =n ni n i i a a a a a aa 211111)(+∑=+-=⎪⎪⎭⎫ ⎝⎛+∑=ni i n a a a a 12111 (a i ≠0) ②D n =a x x x x x a x x x x a x a x x x x x a x n n n n -----321321321321=ax x x x x a x x x x a x a x x x x x a x n n n n -+-+--+- 321321321321000=n n n n x x x x x a x x x x a x a x x x x x a x 321321321321----+ax x x a x x x a x a x x x x a x -----321321321321000 =x n (-a)n-1(x 1+x 2+…+x n )+(-a)n4.证明:n 阶行列式yz z x y y x z xzz zz y y x z z yy y x z yy y y x nn ----=)()( 其中z ≠y .解 D n =xzz zzy y x z z yy y x z x y zx00--=(x-z)D n-1-(y-x))1()1(-⨯-n n x zz zy y x zy y y z=(x-z)D n-1-(y-x)z)1()1(111-⨯-n n x z z y y x y yy=(x-z)D n-1-(y-x)z)1()1(10010001-⨯-----n n y x yz y z y x=(x-z)D n-1-(y-x)z(x-y)n-2=(x-z)D n-1+z(x-y)n-1即有D n =(x-z)D n-1+z(x-y)n-1(1)又D n =xzz zy y x z yy y x x z yy y y y x--=(x-y)D n-1-(z-x))1()1(-⨯-n n x zz zy y x zy y y y=(x-y)D n-1-(z-x)y)1()1(1111-⨯-n n x z z z yy x z=(x-y)D n-1-(z-x)y)1()1(001111-⨯-----n n z x z y z y z x=(x-y)D n-1-(z-x)y(x-z)n-2即有D n =(x-y)D n-1+y(x-z)n-1(2) 联立式(1)和式(2)得yz z x y y x z xzz zzy y x z z yy y x z yy y y x nn ----=)()( 习题3.61.设A,B,P ∈Mat n ×n (F),并且P 是可逆的,证明:如果B=P -1AP ,则|B|=|A|.证 因为|P -1||P|=1,所以|B|=|P -1AP|=|P -1||A||P|=|A|. 2*.仿照例3.6.1,试用分块初等变换,证明定理3.6.1. 证 设A ,B 都是n ×n 矩阵,则nE BA -0=B A B A A E B n n n n=-=--+)1(0)1(另一方面,对nE BA -0的第2行小块矩阵乘以A 加到第一行上去,有nE BA -0=AB E BAB n=0所以B A AB =.习题3.71.求下列矩阵的伴随矩阵和逆矩阵①⎪⎪⎭⎫⎝⎛--1112 ②⎪⎪⎪⎭⎫ ⎝⎛--325436752解 ①设原矩阵为A ,则A 11=-1,A 21=-1,A 12=1,A 22=2,伴随矩阵A *=⎪⎪⎭⎫⎝⎛--2111,|A|=-2+1=-1,所以,A -1=⎪⎪⎭⎫ ⎝⎛---211111=⎪⎪⎭⎫ ⎝⎛--2111②设原矩阵为A ,则A 11=3243--=-9+8=-1,A 21=3275---=-(-15+14)=1,A 31=4375=20-21=-1,A 12=3546--=38,A 22=3572-=-41,A 32=4672-=34, A 13=2536-=-27,A 23=2552--=29,A 33=3652=-24伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛-----242927344138111,|A|=-18-84+100-105+16+90=-1,所以,A -1=⎪⎪⎪⎭⎫ ⎝⎛------24292734413811111=⎪⎪⎪⎭⎫ ⎝⎛----2429273441381112.证明:上三角形矩阵是可逆矩阵的充分必要条件是:它的主对角线元全不为零.证 因为矩阵可逆的充分必要条件是它的行列式不为零,而上三角形矩阵的行列式等于它的主对角线上所有元的乘积,所以上三角形矩阵的行列式不为零的充分必要条件是:它的主对角线元全不为零,故上三角形矩阵可逆矩阵的充分必要条件是:它的主对角线元全不为零.3.设A 是n ×n 矩阵.证明:A 是可逆的,当且仅当A *也是可逆的.证 因为 AA *=|A|E ,两边取行列式得|A||A *|=|A|n.若A 可逆,则A 的行列式|A|≠0,从而有|A *|=|A|n-1≠0,所以A *可逆.反之,若A *可逆,设A *的逆阵为(A *)-1.用反证法,假设A 不可逆,则A 的行列式|A|=0,所以AA *=|A|E=0,对AA *=0两边同时右乘(A *)-1,得A=0,从而A 的任一n-1阶子式必为零,故A *=0,这与A *可逆相矛盾,因此A 可逆. 4.证明定理3.7.2的推论1.推论1的描述:设A 是分块对角矩阵,A=diag(A 1,A 2,…,A s ),证明:A 可逆当且仅当A 1,A 2,…,A s 均可逆,并且A -1=diag(A 1-1,A 2-1,…,A s -1).证 A 可逆,当且仅当A 的行列式|A|≠0,而|A|=|A 1||A 2|…|A s |,所以|A|≠0当且仅当|A 1|,|A 2|,…,|A s |都不为零,即A 1,A 2,…,A s 均可逆.令B=diag(A 1-1,A 2-1,…,A s -1),则有AB=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛S A A A21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11211s A A A =⎪⎪⎪⎪⎪⎭⎫⎝⎛S E E E21=E 故A -1=diag(A 1-1,A 2-1,…,A s -1).4.设A=⎪⎪⎪⎭⎫⎝⎛333231232221131211a a aa a a a a a 是实矩阵(实数域上的矩阵),且a 33=-1.证明:如果A 的每一个元都等于它的代数余子式,则|A|=1.证 如果A 的每一个元都等于它的代数余子式,则A 的伴随矩阵A *=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =A T .所以|A *|=|A|,又AA *=|A|E ,两边取行列式得|A|2=|A|3. 由a 33=-1,得AA *=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a aa a a a a a ⎪⎪⎪⎭⎫ ⎝⎛332313322212312111a a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛-12313322212312111a a a a a a a a ⎪⎪⎪⎭⎫⎝⎛-12313322212312111a a a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛++1232231a a =⎪⎪⎪⎭⎫ ⎝⎛||000||000||A A A比较最后一个等式两端第3行3列的元素知|A|=a 312+a 322+1≠0,对|A|2=|A|3两边同时除以|A|2得|A|=1.6.设A=(a ij )是n ×n 可逆矩阵,有两个线性方程组(Ⅰ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++u x c x c x c bx a x a x a b x a x a x a b x a x a x a n n nn nn n n n n n n (221122112222212111212111)(Ⅱ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n nn nn n n n n n n (221122112222211211221111)如果(Ⅰ)有解.证明:当且仅当u =v 时,(Ⅱ)有解.证 设方程组(Ⅰ)的解为x 1*, x 2*,…, x n *,代入方程组(Ⅰ)得(Ⅲ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++ux c x c x c bx a x a x a b x a x a x a b x a x a x a n n n n n nnn n n n n **2*1**2*12*2*22*211*1*12*11................................................ (212)12121 当u =v 时,因为 A=(a ij )是n ×n 可逆矩阵,A 的行列式不等于零,根据克莱姆法则,方程组(Ⅱ)的前n 个方程作为一个线性方程组,它有唯一解,记该解为x 1**, x 2**,…, x n **,代入方程组(Ⅱ)的前n 个方程中得(Ⅳ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++----nnn n n n nn n n n n c x a x a x a cx a x a x a c x a x a x a c x a x a x a n n nn ****2**11**1**12**112**2**22**121**1**21**11......................................................21212121 对等式组(Ⅳ)中第1个等式的两端同时乘以x 1*,第2个等式的两端同时乘以 x 2*,…, 第n个等式的两端同时乘以 x n *,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅲ)式,可得b 1x 1**+b 2x 2**+…+b n x n **=c 1x 1*+ c 2x 2*+…+ c n x n *=u由u =v ,得b 1x 1**+b 2x 2**+…+b n x n **=u即x 1**, x 2**,…, x n **也满足(Ⅱ)中最后一个方程.所以方程组(Ⅱ)有解.反之,若方程组(Ⅱ)有解,设其解为x 1**, x 2**,…, x n **,代入(Ⅱ)得到(Ⅴ)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++-vx b x b x b cx a x a x a c x a x a x a c x a x a x a n n n n n n nn n n n n ****2**11****2**12**2**22**121**1**21**11......................................................21212121 对等式组(Ⅲ)中第1个等式的两端同时乘以x 1**,第2个等式的两端同时乘以 x 2**,…,第n 个等式的两端同时乘以 x n **,然后将n 各等式的左边全部相加,也将右边全部相加,并利用(Ⅴ)式,可得c 1x 1*+c 2x 2*+…+c n x n *=b 1x 1**+ b 2x 2**+…+ b n x n **将上式左端与(Ⅴ)式中最后一个等式比较,将上式右端与(Ⅲ)式中最后一个等式比较,得 u =v .7.设A 是n ×n 矩阵.证明:|A *|=|A|n-1证 因为AA *=|A|E ,两边取行列式得 |A||A *|=|A|n .如果|A|≠0,两边除以|A|,得|A *|=|A|n-1如果|A|=0,也可写成|A *|=|A|n-1,总之,有|A *|=|A|n-1成立.。

代数学引论(近世代数)答案

代数学引论(近世代数)答案

代数学引论(近世代数)答案第⼀章代数基本概念习题解答与提⽰(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [⽅法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[⽅法2]对任意a,b G,a2b2=e=(ab)2,由上⼀题的结论可知G为交换群.3.设G是⼀⾮空的有限集合,其中定义了⼀个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成⼀群.证明:[⽅法1]设G={a1,a2,…,a n},k是1,2,…,n中某⼀个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下⼀题的结论可知G在该乘法下成⼀群.下⾯⽤另⼀种⽅法证明,这种⽅法看起来有些长但思路⽐较清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档