汽轮机抽气系统

合集下载

第五章_汽轮机抽汽系统详解

第五章_汽轮机抽汽系统详解

研究内容:新型 抽汽止回阀的设 计、制造、测试 和应用
应用前景:提高 抽汽系统的效率 和稳定性,降低 能耗和维护成本
研究进展:国内 外相关研究机构 和企业正在进行 新型抽汽止回阀 的研究和应用, 取得了一定的成 果
抽汽系统智能化控制的研究和应用
智能化控制技术在抽汽系统中的应用 智能化控制技术的发展趋势 智能化控制技术在抽汽系统中的应用案例 智能化控制技术在抽汽系统中的应用前景
功能:在紧急情况下快速关闭抽 汽口,防止蒸汽泄漏
应用:在汽轮机启动、停机、故 障处理等过程中使用
添加标题
添加标题
添加标题
添加标题
原理:通过电磁阀或气动阀控制 抽汽口的开闭
优点:提高汽轮机运行的安全性 和可靠性
调节抽汽压力和流量
调节抽汽压力:通过调节抽汽压力,可以控制汽轮机的输出功率和转速,从而实现对电力系统的 稳定控制。
调节抽汽流量:通过调节抽汽流量,可以控制汽轮机的输出功率和转速,从而实现对电力系统的 稳定控制。
调节抽汽压力和流量的关系:抽汽压力和流量是相互关联的,调节抽汽压力可以改变抽汽流量, 调节抽汽流量也可以改变抽汽压力。
调节抽汽压力和流量的方法:可以通过改变抽汽阀门的开度、改变抽汽管道的长度、改变抽汽管 道的直径等方式来调节抽汽压力和流量。
安全阀的作用: 在压力超过规定 值时自动开启, 释放压力,防止 设备损坏
安全阀的设置: 应安装在汽轮机 抽汽系统的关键 部位,如高压缸、 低压缸等
安全阀的选型: 应根据汽轮机抽 汽系统的压力、 温度、流量等参 数选的密封性能、开 启压力等参数, 确保其正常运行
添加标题
添加标题
添加标题
添加标题
结构:由阀体、阀芯、阀座等部 件组成

汽轮机原理-抽气器

汽轮机原理-抽气器

后,最后扩压至略高于大气压力的时候排出。
射水抽气器不消耗新蒸汽,运行费用较射汽抽
气器低。系统简单、运行可靠、维护方便。 但需
要另外安装射水泵。现代大型汽轮机都采用射水
抽气器。国产200MW汽轮机就是采用射水抽气器
作为主抽汽器。中小型汽轮机多采用射汽抽气器
作为主抽汽器。
6
第四节 抽气器 射水抽汽器
混合室 高压工作水 (循环水)
射水泵
工作水室
与凝汽器 抽气口相连 喷嘴 喉部 扩压管
高压水在喷嘴 中降压增速,形成高 速射流,卷吸混合室 的气体并带出混合室 ,混合室内形成高度 真空。射流与空气混 合物流出混合室,进 入扩压管流出。
抽气器垂直布 置,可以利用水柱自 重流动,减小水泵耗 功。
7
第四节 抽气器
四. 水环式真空泵
国产300MW和600MW汽轮机组的抽气装置都是采用水环式真空泵。其主 要部件有叶轮和壳体。壳体内形成一个圆柱体空间,叶轮偏心地安装在壳体内。 在壳体上开有吸气口和出气口,实行轴向吸气和排气。叶轮带有前弯叶片,偏 心地安装在充有适量工作水(密封水)的椭圆形泵体内。 当叶轮旋转时,由 于离心力作用,水向周围运动, 形成一个运动着的圆环(密封水环)。由于 偏心地安装的,水环的内表面也就与叶轮偏心,叶轮轮毂与水环间形成一个月 形空间。叶轮每转一周,每两个 相邻叶片与水环间所形成的空间由小到大, 又由大到小地周期性变化。当空间处于由小 到大变化时,该空间产生真空,由进气口吸 入气体。当空间处于由大到小变化时,该空 间产生压力,吸入的气体被压缩并经排气口 排出。这样,当叶轮连续运转时,就不断地 重复上述过程,起到一个连续抽气的作用。
启动抽气器功率大建立真空快,但工质和工质的热量不能回收,有经济损失。故它

汽轮机介绍之回热抽汽系统

汽轮机介绍之回热抽汽系统

汽轮机介绍之回热抽汽系统汽轮机是一种利用高温高压蒸汽驱动的热能转换装置,其工作原理是通过燃烧燃料产生高温高压蒸汽,然后利用蒸汽的热能将轮叶推动转子旋转,最终输出机械能。

而在汽轮机的工作过程中,会产生大量的低温低压蒸汽,这些蒸汽还能够进一步发挥作用,提高汽轮机的热能利用效率。

回热抽汽系统就是利用这种低温低压蒸汽,将其回收利用的一种技术。

其主要作用是在汽轮机的排汽过程中,将高温高压的蒸汽与低温低压的蒸汽进行热量交换,从而使低温低压蒸汽的热能得到利用,提高汽轮机的热能转换效率。

回热抽汽系统由回热器、抽汽涡轮以及与主汽轮机相连接的管道系统组成。

在汽轮机工作过程中,高温高压的蒸汽从高压缸排出后,进入回热器进行热量交换。

回热器是一种换热设备,通过将高温高压蒸汽与低温低压蒸汽进行热量交换,使高温高压蒸汽冷却、降压同时,使低温低压蒸汽升温、升压,从而实现热量的回收利用。

在回热抽汽系统中,低温低压蒸汽经过回热器后,进一步被抽入抽汽涡轮中,通过抽汽涡轮的旋转将蒸汽的热能转化为机械能输出。

抽汽涡轮与主汽轮机是通过一条共同的轴线连接的,因此抽汽涡轮的旋转也将带动主汽轮机的旋转,增加了汽轮机的输出功率。

回热抽汽系统的优势在于可以将一部分原本被浪费的低温低压蒸汽的热能回收利用。

通过回热抽汽系统,汽轮机的热能利用效率得到了提高,可以有效地节约能源资源,减少对环境的影响。

此外,由于回热抽汽系统可以提高汽轮机的输出功率和热效率,因此对于提高汽轮机的运行经济性和稳定性也具有重要作用。

然而,回热抽汽系统也存在一些挑战。

首先,回热抽汽系统的设计与优化需要考虑更多的参数,如回热器的结构与性能、抽汽涡轮的转速等,增加了系统的复杂性。

其次,由于回热抽汽系统的操作与控制相对较为复杂,需要精确调节和控制各个部件的工作参数,以实现系统的平稳运行。

总之,回热抽汽系统是汽轮机中一种重要的热能回收利用技术,通过回收利用低温低压蒸汽的热能,提高汽轮机的热能利用效率,节约能源资源,减少对环境的影响。

C15-4.9/0.98型15MW抽汽式汽轮机调节系统说明书

C15-4.9/0.98型15MW抽汽式汽轮机调节系统说明书
汽轮机的供油系统,采用 GB11120-89 中规定的 46 汽轮机油,在 冷却水进口温度经常低于 15℃情况下允许用 GB11120-89 中规定的 32 汽轮机油来代替,供油系统主要由主油泵、脉冲泵、Ⅰ号、Ⅱ号注油 器、交流高压电动油泵、交直流润滑油泵、油箱、冷油器、滤油器等 组成,可详见调节保安系统图;属于本厂供用的部套,其技术参数详 见其图纸;外购部套,详见其使用说明书。 4 保安系统
2880~3180 r/min
调压器未投入时 停机 手动复位
32 轴瓦瓦块温度报警值

33 轴瓦瓦块温度停机值

34 主油泵出口油压低报警值
MPa
35 润滑油压降低
MPa
36 润滑油压降低
MPa
37 润滑油压降低
MPa
38 润滑油压降低
MPa
39 润滑油压升高
MPa
40 主蒸汽压力高报警值
MPa
41 主蒸汽温度高报警值
本机组除 4.2 保安系统中提供的检测系统以外,还有油动机行程, 振动检测指示。详见其部套图纸及仪表说明书。根据实际需要,用户 必须配备其他热工仪表,实现对机组的所有参数的检测,可详见测点 布置图。 5 调节保安部套的主要安装数据
调节保安系统各部套在电站安装时允许解体清洗。安装时应保证 图纸上所注明的安装间隙,传感器安装则应达到各保护检测装置说明 书的要求。以下列出几项主要安装数据: 5.1 危急遮断器和危急遮断油门安装间隙
系统。实际使用中要详细参考本机组其他相关文件和图纸,特别是机
组的《调节系统图》(Z253-04-1),《测点布置图》(Z089-04-2),《电
气信号控制原理图》(Z211-09-1)等。
1 调节保安系统主要技术规范

汽轮机回热抽汽系统设计要点分析

汽轮机回热抽汽系统设计要点分析

汽轮机回热抽汽系统设计要点分析摘要:汽轮机回热抽汽系统的设计范围为:由汽轮机各级抽汽口至对应回热加热器加热蒸汽进口所有管道及附件的选型和布置设计,包括系统拟定和管道布置两个部分。

从设计程序上,应先进行系统拟定,后根据系统进行管道布置。

工程设计应本着安全第一的原则,设计的主要依据为国家标准、行业标准以及依据国家和行业标准编制的地方或企业标准,而图书及期刊只能作为参考资料使用。

有的设计人员不掌握汽轮机回热抽汽系统的设计流程,造成设计不合理或设计必须环节的遗漏;有的对汽轮机回热抽汽系统设计的关键点和需要注意的问题掌握不好,致使设计存在安全隐患。

关键词:汽轮机;回热抽汽系统;设计要点1回热抽汽系统概述由于回热抽汽管道一侧是汽轮机,一侧是加热器(包括除氧器),在汽轮机突降负荷、甩负荷或低负荷运行时,如果操作不当,就可能使湿蒸汽或水倒流入汽轮机,引起汽轮机超速或水击事故,为此,在抽汽管道上装设了气动或液动止回阀和电动隔离阀。

当电网甩负荷、汽轮机发生故障或加热器水侧水位超警戒水位时,能迅速切断抽汽管路。

电动隔离阀还可用于加热器故障停用时,切断加热汽源而不影响汽轮机的运行。

止回阀和隔离阀一般靠近汽轮机抽汽口布置,以减少抽汽管道上可能储存的蒸汽能量。

对于300MW以上的机组,由于除氧器汽化能量大,为加强保护,在与除氧器连接的抽汽管道上均增设一个止回阀。

另外在每一根与抽汽管道相连的外部蒸汽管道上也装设了止回阀和隔离阀。

2系统拟定2.1系统拟定原则系统拟定必须以汽轮热平衡为基础,结合工程需要,完成系统流程的拟定、管道及附件的选型、控制联锁条件要求、运行说明等。

2.2系统拟定要点2.2.1必须满足汽轮机热平衡的要求汽轮机抽汽系统管径选择必须满足汽轮机热平衡中规定的各级抽汽流量和压降要求,管道及附件强度必须满足汽轮机热平衡中规定的各级抽汽压力和温度要求,以保证运行安全,达到回热加热效果,确保汽轮机效率。

2.2.2气动止回阀为防止汽轮机甩负荷时,回热加热器中的饱和水闪蒸倒流入汽轮机引起汽轮机超速,汽轮机回热抽汽管道上一般需设置止回阀,止回阀同时也作为防止汽轮机进水的辅助措施。

汽轮机三段抽汽系统的问题

汽轮机三段抽汽系统的问题

汽轮机三级抽汽系统的问题一简要说明汽轮机的抽汽回热加热系统,共有六级管道及阀门等组成,其中,第三级抽汽,取自汽轮机中压缸的低部,主要作用是加热除氧器中的锅炉给水;在其进入除氧器之前,和来自机组辅助蒸汽加热系统中,用于机组启动初期使用的加热除氧器给水的管道合并,共用一根管道进入除氧器系统。

二存在的问题1)机组运行期间,三级抽汽出口压力经常小于或者等于除氧器压力,此时,三级抽汽系统不能正常供汽。

2)机组运行期间,控制机组辅助蒸汽加热系统中的辅助联箱压力偏高,经常大于三级抽汽出口的压力,此时,三级抽汽系统不能正常供汽。

三潜在危害1)三段抽汽系统不能正常供汽,造成管道内蒸汽滞留,容易凝结形成积水,特别是机组在低负荷下长期运行时,蒸汽滞留加聚,形成的积水也会更严重。

2)三段抽汽管道位于中压蒸汽进口处的中压缸低部,管道内的滞留蒸汽很容易反流进入中压缸低部,造成中压缸下部/上部的温差增大,如果存在积水,温差将会更大,其结果必会造成机组受力不均匀,引起机组振动,甚至跳机。

四采取的措施1)虽然三段抽汽系统有自动检测管道积水打开疏水阀组的功能,但是,按照运行实践经验,这些是有滞后的。

也就是说,不能等到其自动打开,最好是要提前采取措施,比如,机组低负荷下运行时间较长时,手动开启相应的疏水阀组减少积水现象。

2)严密监视三级抽汽压力,除氧器压力,以及辅助蒸汽联箱的压力,保证压差,确保三段抽汽系统正常供汽。

3)改变辅助蒸汽加热系统的供汽汽源,把目前使用的锅炉低温过热器出口蒸汽汽源,切换为再热蒸汽冷段蒸汽汽源,降低辅助联箱的供汽压力。

如不能满足汽轮机轴封供汽系统的压力温度时,退入辅助蒸汽加热除氧器系统运行。

4)机组低负荷(35%额定负荷以下)下长期运行时,要求锅炉增加热负荷,强化燃烧,提高锅炉出口蒸汽压力和温度等参数,尽量保证机组接近额定参数运行,保证三级抽汽压力正常。

刘大力2017年3月7日星期二。

为什么汽轮机要设计回热抽汽系统?

为什么汽轮机要设计回热抽汽系统?

为什么设计回热抽汽系统?当然这个问题不是绝对的,小的背压汽轮机就没有回热系统。

没有回热抽汽的小汽轮机咱就不考虑了。

一、什么是回热抽汽循环?把汽轮机中部分做过功的蒸汽抽出,送入加热器中加热给水,这种循环叫给水回热循环。

二、如果没有回热抽汽系统会怎么样?对于锅炉来说:若汽轮机没有抽汽回热系统,那么就没有各级加热器,如果不采用外来蒸汽加热,锅炉给水温度就是凝结水温度,哪怕真空是-90kPa,凝结水温度也只有45℃。

这么低的给水温度从省煤器开启进入锅炉,一是水温降低使锅炉燃料量增加,锅炉的主再热蒸汽温度就会变得很高,二是锅炉给水温度低,那么排烟温度将会将的很低,造成尾部烟道、空预器等设备低温腐蚀,三是锅炉受热面换热温差巨大,将会频繁引发爆管等事故。

这些都是影响锅炉的问题,下面说说影响汽机的问题。

如果没有回热抽汽系统,对于汽机来说最主要的一点,对于所有蒸汽都需要进入汽轮机做功,而在纯凝汽式汽轮机中大约只有30%的热能转变为电能,而其中70%的热量被凝汽器的循环水带走,热量经循环水由冷却塔排至大气,变成了汽轮机的冷源损失,冷源损失是火力发电厂损失最大的一项。

其次,因没有抽汽,汽轮机后几级的通流量就要增加,低压缸体积就需要增大,末级叶片就要加长。

三、综上,为了提高机组经济性,设置了回热抽汽系统汽轮机中间部分抽出一部分蒸汽,经过加热器提高给水温度。

就避免了这部分蒸汽在凝汽器中凝结放热,减少了冷源损失。

抽汽通过加热器提高了给水温度,使给水在锅炉中的吸热量减少,因此燃料量也减少。

对锅炉本身带来的好处就很多了,防止低温腐蚀、减小换热温差等。

理论上,回热级数越多,汽机循环效率就越高。

但随着回热级数的增加,循环效率的增长逐渐平缓。

锅炉给水温度的增加,提高了热经济性,但却使锅炉排烟温度提高,锅炉效益降低,或需增加锅炉尾部采热面,使锅炉投资增加。

因此在回热抽汽系统设计上要综合考虑汽轮机效率、锅炉效率、给机组带来的问题、投资建设费用、运行维护等影响因素设计回热抽汽级数。

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍1: TSI系统介绍1.1 TSI系统概述TSI(Turbine Supervisory Instrumentation)系统,又称为汽轮机监控系统,是用于对汽轮机性能进行监测和控制的关键系统。

它通过对汽轮机的各项性能参数进行实时监测和分析,确保汽轮机的运行安全稳定,并及时发现并修复潜在的故障。

1.2 TSI系统功能- 实时监测汽轮机的振动、温度、压力等关键参数;- 分析并预测汽轮机的运行状态,并给出相应的报警和建议;- 调整汽轮机的控制参数,以优化汽轮机的性能;- 存储和记录汽轮机的历史运行数据,方便后续分析和评估。

1.3 TSI系统组成TSI系统由传感器、数据采集设备、监控软件和人机界面等多个组件组成。

其中传感器用于对汽轮机各项参数进行实时监测,数据采集设备用于将传感器采集到的数据传输给监控软件,监控软件用于分析和处理数据,并通过人机界面向操作人员提供有关汽轮机状态的信息。

2: DEH系统介绍2.1 DEH系统概述DEH(Digital Electro-Hydraulic)系统,即数字电液系统,是一种用于汽轮机控制的先进技术。

它通过传感器采集汽轮机的各项参数,并根据这些参数通过数字信号控制液压装置,从而实现对汽轮机的精确控制。

2.2 DEH系统功能- 实时监测汽轮机的转速、压力、温度等参数,并将其进行数字化处理;- 根据监测结果自动调节液压装置,控制汽轮机的转速、负荷和压力等;- 对汽轮机的运行状态进行模拟和优化,并给出相应的报警和建议;- 存储和记录汽轮机的控制参数和历史运行数据,方便后续分析和评估。

2.3 DEH系统组成DEH系统由传感器、控制器、液压装置和人机界面等多个组件组成。

其中传感器用于对汽轮机各项参数进行实时监测,控制器用于数字化处理监测数据并根据算法控制液压装置,液压装置用于实现对汽轮机的精确控制,人机界面用于向操作人员提供有关汽轮机控制的信息和操作界面。

汽轮机抽汽系统培训

汽轮机抽汽系统培训
电动截止阀的主要作用是在给水加热器水位过度上升时 防止汽轮机进水。
由于7,8号低加抽汽管道在冷凝器的喉部,故不 设止回阀及电动截止阀。对于这些加热器,防止汽机 进水的功能则需要由凝结水隔离来实现。凝结水电动 隔离阀关闭时,加热器退出运行,传热管泄露源也就 被隔绝了。此时,抽汽向加热器的传热终止,同时还 应隔离上级加热器逐级自流来的疏水。
谢谢!
四、抽汽系统的主要设备
高压加热器、低压加热器、除氧器的形式分为 表面式和混合式,除氧器多采用混合式,其余 几种以表面式居多。 1、高、低压加热器 高、低压加热器原理相同,主要用于提高主凝 结水的温度,与混合式相比表面式换热器组成 的热力系统具有工作泵数量少、工作调节范围 大等优点,故此多选择卧式表面式加热器。卧 式高、低压加热器其结构图如图示:
除上述三种加热器外,汽轮机组回热抽汽系统还包括相应阀门、管道、疏水扩容器等设 备。
二、汽轮机抽汽系统的功能
在电厂正常运行期间,汽轮机抽汽系统从汽轮机各级后抽取部分做功的蒸汽供给凝结水系统 和主给水系统的回热加热器,加热凝结水和主给水。回热系统的性能对整个汽轮机组热循环 效率的提高起着重大的作用。
三、汽轮机抽汽系统的流程
2、除氧器 除氧器的作用是加热凝结水并除去溶解于
给水中的不凝结气体,以提高机组热效率并减 少设备的腐蚀,其结构形式一般选用混合式, 如图所示:
3、电动截止阀和止回阀
高加,除氧器以及5,6号低加的所有抽汽管道都装有气 动止回阀及电动截止阀。
抽汽止回阀的主要作用是在负荷突降时防止下游抽汽管 道内的蒸汽倒流引起汽机超速。
通常用于除氧器和高压加热器的抽汽由高压、中 压缸(或者它们的排汽)处引出,用于低压加热器的 抽汽由低压缸处引出。为了尽量降低汽轮机进水的可 能性,所有抽汽管道在疏水或蒸汽凝结水积聚的低点 及低位都设置了自动疏水系统。疏水通过管道流入冷 凝器。

汽轮机抽气回热系统

汽轮机抽气回热系统

在实际应用中,给水温度并非加热到最佳给水温度,这是因为还必须要全盘考虑技术经济性,一方面,给水温度的提高,使排烟温度升高,锅炉效率降低,或需增大锅炉尾部受热面,使锅炉投资增加;另一方面,由于回热使得锅炉的蒸发量和汽轮机高压端的通流量都要增加,而汽轮机的低压端的通流量和蒸汽流量相应减少,因而不同程度地影响锅炉、汽轮机以及各相关辅助系统的投资、拆旧费和厂用电。通过技术经济比较确定的最佳给水温度,称为经济最佳给水温度。
在四级抽汽管道接除氧器的管道上还装设一只电动门和一只逆止门。除氧器还接有从辅助蒸汽系统来的起动加热用汽和低负荷切换用汽。
在抽汽系统的各级抽汽管道的电动隔离阀前后和逆止门后,以及管道的最低点,分别设置疏水点,以防在机组起动,停机和加热器发生故障时,在系统中有水的积聚。各疏水管道通过疏水集管接至本体疏水扩容器后导至凝汽器。
汽机抽汽回热系统
1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。
2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。

汽轮机抽汽系统组成

汽轮机抽汽系统组成

汽轮机抽汽系统组成1、高压加热器为了减小端差,提高表面式加热器的热经济性,现代大型机组的高压加热器和少量低压加热器采用了联合式表面加热器。

此类加热器一般由以下三部分组成:1)过热蒸汽冷却段当抽汽过热度较高时,导致回热器的换热温差加大,不可逆换热损失也随之增大,为此在高压加热器和部分低压加热器装设了过热蒸汽冷却段,只利用抽汽蒸汽的过热度,蒸汽的过热度降低后,再引至凝结段,以减小总的不可逆换热损失。

在该冷却段中,不允许加热蒸汽被冷却到饱和温度,因为达到该温度时,管外壁会形成水膜,使该加热段蒸汽的过热度被水膜吸附而消失,没有被给水利用,因此在此段的蒸汽都保留有剩余的过热度。

在该段中,被加热水的出口温度接近或略低于抽汽蒸汽压力下的饱和温度。

1)凝结段加热蒸汽在此段中是凝结放热,其出口的凝结水温是加热蒸汽压力下的饱和温度,因此被加热水的出口温度,低于该饱和温度。

2)疏水冷却段设置该冷却段的作用是使凝结段来的疏水进一步冷却,使进入凝结段前的被加热水温得到提高,其结果一方面使本级抽汽量有所减少,另一方面,由于流入下一级的疏水温度降低,从而降低本级疏水对下级抽汽的排挤,提高了系统的热经济性。

实现疏水冷却的基本条件是被冷却水必须浸泡在换热面中,是一种水-水热交换器,该加热段出口的疏水温度,低于加热蒸汽压力下的饱和温度。

一个加热器中含有上面三部分中的两段或全部。

一般认为蒸汽的过热度超过50℃~70℃时,采用过热蒸汽冷却段比较有利,因此低压加热器采用过热蒸汽冷却段的很少。

只采用了凝结段和疏水冷却段的加热器,其端差较大。

我公司选用东方锅炉厂提供的JG-2500-1、JG-2500-2和JG -1700-3型高压加热器。

为卧式、表面凝结、U型换热器,采用三台高压加热器大旁路配置。

高压加热器的基本结构如图3-2所示意。

由钢管组成的U型管束放在圆筒形加热器壳体内,并以专门的骨架固定。

管子胀接在管板上。

被加热的水经连接管进入水室一侧,经U形管束之后,从水室另一侧的管口流出。

汽轮机抽气回热循环的原理

汽轮机抽气回热循环的原理

汽轮机抽气回热循环的原理汽轮机抽气回热循环是一种常用于发电厂和工业领域的能量回收系统。

它通过在汽轮机的排气中抽取一部分高温高压蒸汽,经过回热器与主蒸汽循环进行热交换后,再次进入汽轮机以产生额外的功率输出。

汽轮机抽气回热循环的原理如下:1. 汽轮机工作原理:汽轮机通过高压蒸汽的喷射作用驱动转子旋转,以此产生机械能。

蒸汽从锅炉中产生,然后经过高压和低压缸的连续膨胀和冷凝循环来工作。

2. 抽气装置:在汽轮机排气系统中,设置了一个抽气装置来抽取部分高温高压蒸汽。

这个装置通常位于高压缸和低压缸之间,可以将一部分高温高压蒸汽抽出。

3. 回热器:抽出的高温高压蒸汽进入回热器,与主蒸汽循环中的低压蒸汽进行热交换。

在回热器内,高温高压蒸汽的热量被传递给低压蒸汽,使其温度和压力升高。

4. 再次进入汽轮机:通过回热器进行热交换后,高温高压蒸汽再次被引导进入汽轮机,进入低压缸和高压缸进行膨胀工作。

通过进一步释放热量和能量,这部分蒸汽可以产生额外的功率输出。

汽轮机抽气回热循环的优势:1. 提高效率:通过在汽轮机排气中回收热能,抽气回热循环可以提高汽轮机的热效率,使能源利用更加高效。

2. 减少能源浪费:回收排气中的高温高压蒸汽,使其再次进入汽轮机以产生额外的功率,可以减少能源的浪费。

3. 实现能源综合利用:通过将回收的热能用于其他工业过程或提供给供热系统,汽轮机抽气回热循环可以实现能源的综合利用,提高能源利用效率。

4. 减少环境污染:汽轮机抽气回热循环可以降低烟气中的二氧化碳和其他有害物质的排放,对环境有一定的净化作用。

5. 成本效益:通过提高汽轮机的热效率和能源利用效率,汽轮机抽气回热循环可以降低能源消耗和成本,提高经济效益。

总结起来,汽轮机抽气回热循环通过在汽轮机排气中回收高温高压蒸汽,经过回热器与主蒸汽循环进行热交换,再次进入汽轮机以产生额外的功率输出。

它能够提高汽轮机的热效率、减少能源浪费、实现能源综合利用、降低环境污染并提高成本效益,对于节约能源、改善能源结构和保护环境具有重要意义。

汽轮机真空系统抽气装置的选择

汽轮机真空系统抽气装置的选择

汽轮机真空系统抽气装置的选择在汽轮机的运行中,真空系统起着至关重要的作用,而抽气装置则是维持真空系统正常运行的关键设备之一。

正确选择合适的抽气装置对于提高汽轮机的效率、保证机组的安全稳定运行具有重要意义。

首先,我们需要了解汽轮机真空系统的工作原理。

简单来说,汽轮机在运行时,蒸汽在汽缸内膨胀做功,排汽压力越低,蒸汽能够膨胀的程度越大,做功能力也就越强。

而真空系统的作用就是及时抽出汽缸内的不凝结气体和蒸汽中的水分,从而维持汽缸内的低压力,提高机组的热效率。

常见的汽轮机真空系统抽气装置主要有射水抽气器、射汽抽气器和水环真空泵三种。

射水抽气器是利用高速水流通过喷嘴形成负压,从而将气体吸入并排出。

它的优点是结构简单、运行可靠、维护方便,而且成本相对较低。

但是,射水抽气器的耗水量较大,在水资源紧张的地区使用可能会受到一定限制。

射汽抽气器则是利用高压蒸汽通过喷嘴膨胀形成高速气流,产生负压来抽吸气体。

这种抽气器的抽气效率较高,适用于大容量的汽轮机。

然而,它的运行成本较高,因为需要消耗一定量的高品质蒸汽。

水环真空泵是通过叶轮旋转形成水环,利用水环与叶轮之间的容积变化来实现抽气。

水环真空泵具有抽气量大、适应性强、运行平稳等优点,但其缺点是能耗较高,并且对工作水温有一定要求。

在选择抽气装置时,需要考虑多个因素。

首先是汽轮机的容量和运行工况。

对于小容量的汽轮机,射水抽气器通常能够满足要求;而对于大容量、高参数的汽轮机,则可能需要选择抽气效率更高的射汽抽气器或水环真空泵。

其次,要考虑运行成本。

如前所述,射汽抽气器需要消耗高品质蒸汽,成本较高;射水抽气器耗水量大,水的成本和处理费用也需要考虑;水环真空泵的能耗相对较高。

因此,在选择时需要综合评估各种装置的长期运行成本。

另外,现场的资源条件也是一个重要因素。

如果水资源丰富,射水抽气器可能是一个较好的选择;如果有充足的高品质蒸汽供应,射汽抽气器可能更合适;而如果对抽气要求较高,且能够承受较高的能耗成本,水环真空泵可能是首选。

电厂汽轮机设备及系统

电厂汽轮机设备及系统

(二)汽缸
汽缸的作用和组成:
汽缸是汽轮机的外壳,汽轮机本体的主要零 部件几乎包含在汽缸内。汽缸的作用是将 汽轮机的通流部分与大气隔开, 形成封闭 的汽室,保证蒸汽在汽轮机内完成能量转 换过程。汽缸内部装有喷嘴室、喷嘴、隔 板、隔板套和汽封等零部件。汽缸外部装 有调节汽阀及进汽、排汽和回热抽汽管道 等。
电厂汽轮机设备及系统
第一节 概述
火电厂基本概念 (一)能量转换过程
燃料化学能 → 蒸汽热能 → 机械能 → 电能
(二)火电厂三大主机 锅 炉:将燃料的化学能转变为蒸汽的热能 汽轮机:将锅炉生产蒸汽热能转化为转子旋转机械 能 发电机:将旋转机械能转化为电能
火力发电厂示意图
S
T B
P
C
T 4
1´ 1
(七)联轴器
联轴器又称对轮或靠背轮。作用是传递扭矩。
(1)刚性联轴器:结构简单,能够承受相邻转子分 配来的重量,,减少支撑轴承数,并缩短机组长度 。缺点是传递振动和轴向位移,对找中心要求高
(2)半挠性联轴器:两半联轴器之间加了一段波形 圆筒。他在传递扭矩时是呈刚性的,还能传递一定 轴向推力,部分吸收转子之间传递的振动。它也允 许相邻两轴端之间有少许的不同心度和端面瓢偏度 。
汽轮机本体包括静止部分(固定件)、转动部分 (转子组体)及支承部分(轴承)三部分。
汽轮机静止部分包括基础、台板(机座)、汽缸 、喷嘴、隔板、隔板套、汽封等固定件。
汽轮机转动部分总称为转子,主要由主轴、叶轮 (或轮鼓)、动叶及联轴器等组成。
(一)喷嘴、隔板
1.喷嘴和隔板的作用和特点: ➢ 喷嘴是组成汽轮机的主要部件之一。它的


3
2 2´
S
B:锅炉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽机抽汽回热系统
1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。

采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。

2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。

综合以上原因说明抽汽回热系提高了机组循环热效率。

因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。

3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。

在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。

如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。

可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。

4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。

这是因为给水加热温度提高后,相应的抽汽压力也提高,对该部分的抽汽而言,每千克抽汽在汽轮机中热变功的量减少了,若发电量不变,则要增加进入汽轮机中的新蒸汽量,以弥补因抽汽而减少的发电量,抽汽压力愈高,增加的新蒸汽量就愈多,因而汽耗率也愈大,相应的排向低温热源的热量也就越大,锅炉加热的数值虽不断降低,但汽耗率增加较快,以致使热耗率相应增大,从而使循环热效率降低。

理论上,加热级数愈多,最佳给水温度愈高。

在实际应用中,给水温度并非加热到最佳给水温度,这是因为还必须要全盘考虑技术经济性,一方面,给水温度的提高,使排烟温度升高,锅炉效率降低,或需增大锅炉尾部受热面,使锅炉投资增加;另一方面,由于回热使得锅炉的蒸发量和汽轮机高压端的通流量都要增加,而汽轮机的低压端的通流量和蒸汽流量相应减少,因而不同程度地影响锅炉、汽轮机以及各相关辅助系统的投资、拆旧费和厂用电。

通过技术经济比较确定的最佳给水温度,称为经济最佳给水温度。

理论上,给水回热的级数越多,汽轮机的热循环过程就越接近卡诺循环,汽热循环效率就越高,但加热级数增加时,热效率的增长逐渐放慢,相对得益不多,运行也更加复杂,同时回热抽汽的级数受投资和场地的制约,因此不可能设置的很多。

在实际中,600MW机组的加热级数一般为7~8级。

5、抽汽系统组成:本汽轮机共设七段非调整抽汽,第一段抽汽引自高压缸,供1高加;第二段抽汽引自高压缸排汽,供给2高加;第三段抽汽引自中压缸,供3高加;第四段抽汽引自中压缸,供给除氧器和辅助蒸汽系统;第五、六、七段抽汽均引自低压缸,分别供给三台低压加热器。

6、抽汽逆止门:除第七级抽汽外,一、二、三、五、六级抽汽管道上分别装设具有快关功能的电动门和气动逆止门各一个。

气动门止阀布置在电动门之后。

电动门作为汽轮机防进水的第一级保护,气动逆止门作为防止汽轮机突然甩负荷后的超速保护,兼防止汽轮机进水事故的第二级保护。

在四级抽汽管道上,在电动门后装设二只串联的气动逆止门,装设二只逆止门的原因是:在四级抽汽管道上连接有众多的设备,这些设备或者接有高压汽源,或者接有辅助蒸汽汽源(如除氧器等),在机组起动低负荷运行,汽轮机突然甩负荷或停机时,其它汽源的蒸汽有可能串入四级抽汽管道,造成汽轮机超速的危险性最大,所以串联二个逆止门可以起到双重的保护作用。

在四级抽汽管道接除氧器的管道上还装设一只电动门和一只逆止门。

除氧器还接有从辅助蒸汽系统来的起动加热用汽和低负荷切换用汽。

在抽汽系统的各级抽汽管道的电动隔离阀前后和逆止门后,以及管道的最低点,分别设置疏水点,以防在机组起动,停机和加热器发生故障时,在系统中有水的积聚。

各疏水管道通过疏水集管接至本体疏水扩容器后导至凝汽器。

抽气逆止门控制气管路上所装的电磁阀与汽轮机的危急遮断联动。

当主汽阀关闭时,空气引导阀关闭,抽汽阀控制汽管路被切断。

当主汽阀关闭或甩负荷时,电磁阀线圈断电,电磁阀动作,切断气源,将抽汽阀操纵座内的空气排空,抽汽逆止门的阀碟在自重和操纵座弹簧作用下关闭。

机组挂闸后,如抽汽逆止门气控电磁阀故障,应及时开启其旁路,将抽汽逆止门控制气缸开
启。

机组运行过程中抽汽逆止门需定期进行活动试验,其目的是为防止或及早发现阀门的卡死、失灵。

抽汽管路上的手动滑阀,旁路门等可供试验和维修的使用。

抽汽逆止门气控管道上设置液气分离器,当其液位高时,应及时切换,联系检修处理,以防止油液进入抽汽逆止门控制气缸。

抽汽逆止门定期活动试验要求:
1)机组每次启动前,均应进行系统的联动试验及抽汽逆止门的活动试验。

2)机组正常运行期间,必须每周一次进行抽汽逆止门的活动试验,以检查其灵活性。

3)定期活动试验必须逐一进行,待做完一组。

并复位后方能进行下一组的试验。

4) 活动试验时应注意动作行程不宜太大,以免影响机组正常运行。

相关文档
最新文档