平稳时间序列的统计性质
《时间序列分析》课程教学大纲
![《时间序列分析》课程教学大纲](https://img.taocdn.com/s3/m/08e80e1b90c69ec3d5bb7571.png)
《时间序列分析》课程教学大纲课程编号:33330775课程名称:时间序列分析课程基本情况:1.学分:3 学时:51学时(课内学时:45 课内实验:6)2.课程性质:专业必修课3.适用专业:统计学适用对象:本科4.先修课程:概率论、数理统计、随机过程5.首选教材:王燕:《应用时间序列分析》,中国人民大学出版社,2008出版。
备选教材:王振龙等编著:《时间序列分析》,中国统计出版社,2000年。
6.考核形式:闭卷考试7.教学环境:多媒体教室及实验室一、教学目的与要求本课程是数理统计学的一个重要分支,先期需完成的课程有概率论、随机过程。
通过本课程的学习,使学生掌握时间序列数据的分析方法,包括时间序列简介、平稳时间序列分析、时间序列分解、非平稳序列的随机分析、多元时间序列分析。
利用Eviews软件进行本课程的实验教学。
二、教学内容及学时分配课程内容及学时分配表三、教学内容安排第一章时间序列分析简介【教学目的】1、了解时间序列的定义及常用分析方法;2、掌握时间序列的几个基本概念:随机过程、平稳随机过程、非平稳随机过程、自相关、记忆性。
【教学重点】时间序列的相关概念。
【教学难点】随机过程、系统自相关性。
【教学方法】课堂讲授【教学内容】第一节时间序列的定义第二节时间序列分析方法第三节时间序列分析软件EVIEWS简介第二章时间序列的预处理【教学目的】1、掌握平稳性检验的原理和方法;2、掌握纯随机性检验的原理和方法。
【教学重点】平稳时间序列的定义及统计性质。
【教学难点】时间序列的相关统计量。
【教学方法】课堂讲授【教学内容】第一节平稳性检验一、特征统计量二、平稳时间序列的定义三、平稳时间序列的统计性质四、平稳时间序列的意义五、平稳时间序列的检验第二节纯随机性检验一、纯随机序列的定义二、白噪声序列的定义三、纯随机性检验第三章平稳时间序列序列分析【教学目的】1、理解ARMA模型的定义及性质。
2、掌握平稳序列建模方法。
3、掌握平稳时间序列的预测【教学重点】平稳时间序列建模【教学难点】模型识别,参数估计,序列预测【教学方法】课堂讲授与上机实验【教学内容】第一节方法性工具一、差分运算二、延迟算子三、线性差分方程第二节 ARMA模型的性质一、AR模型二、MA模型三、ARMA模型第三节平稳序列建模一、建模步骤二、样本自相关系数与偏相关系数三、模型识别四、参数估计五、模型检验六、模型优化第四节序列预测一、线性预测函数二、预测方差最小原则三、线性最小方差预测的性质四、修正预测第四章非平稳序列的确定性分析【教学目的】1、理解时间序列的分解原理。
统计预测与决策知识点考试必过辩析
![统计预测与决策知识点考试必过辩析](https://img.taocdn.com/s3/m/a92aa69a83d049649b66585f.png)
1.统计预测的概念: 预测就是根据过去和现在估计未来,预测未来。
2.三要素:实际资料是预测的依据,经济理论是预测的基础,数学建模是预测的手段3.统计预测、经济预测的联系和区别:主要联系它们都以经济现象的数值作为其研究的对象:它们都直接或间接地为宏观和微观的市场预测、管理决策、制定政策和检查政策等提供信息;统计预测为经济定量预测提供所需的统计方法论;主要区别:从研究的角度看,统计预测和经济预测都以经济现象的数值作为其研究对象,但着眼点不同。
前者属于方法论研究,其研究的结果表现为预测方法的完善程度;后者则是对实际经济现象进行预测,是一种实质性预测,其结果表现为对某种经济现象的未来发展做出判断。
从研究的领域来看,经济预测是研究经济领域中的问题,而统计预测则被广泛地应用于人类活动的各个领域。
4统计预测的分类:定性预测和定量预测两类,其中定量预测法又可大致分为回归预测和时间序列预测;按预测时间长短,分为近期预测、短期预测、中期预测和长期预测;按预测是否重复,分为一次性预测和反复预测5.预测方法考虑三个问题:合适性,费用,精确性6.统计预测的原则:连贯原则,类推原则7.统计预测的步骤:确定预测目的,搜索和审核资料选择预测类型和方法,分析误差改进模型,提出预测报告 8.德尔菲法:是根据有专门知识的人的直接经验,对研究的问题进行判断、预测的一种方法,也称专家调查法。
它是美国兰德公司于1964年首先用于预测领域的。
特点:反馈性,匿名性,统计性;优点:加快预测速度节约预测费用,获得不同的价值观点和意见,适用长期预测和对新产品的预测,历史资料不足或不可预测因素多时尤为适用;缺点:分地区的顾客群或产品的预测可能不可靠,责任分散,专家的意见未必完整9.主观概率法步骤:1准备相关资料2编制主观概率调查表3汇总整理4判断预测 10.情景预测法特点:1使用范围广不受假设条件限制2考虑问题全面应用灵活3定性和定量分析结合4能及时发现可能出现的难题减轻影响。
平稳时间序列模型
![平稳时间序列模型](https://img.taocdn.com/s3/m/1055b3026edb6f1aff001f72.png)
(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此
第2章 平稳时间序列分析
![第2章 平稳时间序列分析](https://img.taocdn.com/s3/m/335401870740be1e650e9adf.png)
zt
(c1
c2t
cd t d1)1t
cd
t
1 d
1
cptp
复根场合
zt
rt (c1eit
c2eit
) c3t3
c
t
pp
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解zt
zt a1 zt1 a2 zt2 a p zt p h(t)
推导出
0
1 1 p
Green函数定义
设零均值平稳序列 {xt , t 0, 1, 2,...} 能够表示为
xt Gjt j t : WN (0, 2 ) j0
则称上式为平稳序列 {xt } 的传递形式,式中的加权系数 G j
称为Green函数,其中 G0 1 。
Green函数的含义
几个例题
0.8 0.6 0.4 0.2 0.0
2 4 6 8 10 12 14 16 18 20
2.2 2.0 1.8 1.6 1.4 1.2 1.0
2 4 6 8 10 12 14 16 18 20
几个例题
(5) yt 1.6yt1 0.9yt2 (6) yt 1.6yt1 1.1yt2
有关。
2.时间序列的协方差函数与自相关函数
协方差函数:
(t, s) E( Xt t ) X s s
(x t ) y s dFt,s (x, y) 其中,Ft,s (x, y) 为 ( X t , X s )的二维联合分布。
自相关函数:
(t, s) (t, s) / (t,t) (s, s)
特征根判别
AR(p)模型平稳的充要条件是它的p个特征根都在单 位圆内
什么是时间序列分析?有哪些应用场景?
![什么是时间序列分析?有哪些应用场景?](https://img.taocdn.com/s3/m/49092126571252d380eb6294dd88d0d232d43c7c.png)
时间序列分析是一种统计方法,专门用于研究有序时间点上观测到的数值数据。
这些数据点按照时间顺序排列,形成了一条时间序列。
时间序列分析旨在揭示这些数据随时间变化的模式、趋势和周期性,并预测未来的走势。
这一方法广泛应用于各个领域,包括但不限于金融、经济、气象、生物学、医学、社会科学和工程等。
**一、时间序列分析的基本概念**1. **时间序列的定义**:时间序列是一组按时间顺序排列的数据点,通常用于反映某个或多个变量随时间的变化情况。
这些数据点可以是连续的(如每秒的气温),也可以是离散的(如每天的股票价格)。
2. **时间序列的构成**:时间序列通常由四个部分组成:趋势(Trend)、季节性(Seasonality)、周期性(Cyclicality)和随机性(Randomness)。
* **趋势**:长期变化的方向,可以是上升、下降或平稳的。
* **季节性**:由外部因素(如季节变化)引起的周期性变化。
* **周期性**:由内部因素(如经济周期)引起的周期性变化。
* **随机性**:无法预测的随机波动。
3. **时间序列的类型**:根据数据的性质和分析目标,时间序列可以分为平稳时间序列和非平稳时间序列。
平稳时间序列的统计特性(如均值和方差)不随时间变化,而非平稳时间序列则可能存在长期趋势或其他非恒定特性。
**二、时间序列分析方法**1. **描述性统计**:通过计算时间序列的均值、方差、标准差等指标,初步了解数据的分布情况。
2. **时间序列图**:通过绘制时间序列图,可以直观地观察数据的趋势、季节性和周期性。
3. **时间序列模型**:常用的时间序列模型包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)等。
这些模型通过拟合历史数据来预测未来的趋势。
**三、时间序列分析的应用场景**1. **金融市场分析**:时间序列分析在金融市场分析中具有重要意义。
股票价格、汇率、债券收益率等金融数据都是典型的时间序列数据。
平稳时间序列模型概述
![平稳时间序列模型概述](https://img.taocdn.com/s3/m/0dac705f6ad97f192279168884868762caaebbbb.png)
平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。
平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。
平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。
ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。
SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。
ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。
SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。
计量经济学-第21章 时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整
![计量经济学-第21章 时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整](https://img.taocdn.com/s3/m/adffe7e1240c844769eaeec8.png)
其中a是常数,ut 是平稳的,比如 E(ut ) 0,var(ut ) 2 ,
则这样的 Yt 过程叫做DSP
可见一个平稳时间序列可以用一个TS过程作为它的 模型,而一个非平稳时间序列则代表一个DS过程
对于存在随机趋势的时间序列的关系的分析需要做 协整以及非平稳性检验
在做PCE对PDI的回归时可以加进趋势变量t,消去PCE和PDI的时间趋 势。
当时我们曾经强调,只有当趋势变量是确定性的(deterministic),而不 是随机(stochastic)时,才可以这样做。
如果一个时间序列有一个单位根,则不能使用加进趋势变量t的方法来去 除趋势。
趋势平稳过程(trend-stationary process,简记为TSP),在下面的回归 中:
考虑一下模型
(21.3.4)
其中 ut 是均值为零,恒定方差且序列不相关的随 机误差项,即 ut 是white noise。
这是一个一阶自回归模型,Yt-1的系数为1,{Yt} 序列存在一个单位根。也就是说,{Yt}是一个非 平稳序列。
有一个单位根的时间序列叫做随机游走(时间序 列)。随机游走(random walk)是非平稳时间 序列的一个例子。
其中,n—样本容量,m—滞后长度 Q近似地(即在大样本中)服从m个自由度的
分布。
则拒绝全部 同时为零的虚拟 假设。也就是说,至少有一个(或一些) 是非零的。
设。
则不拒绝全部 为零的虚拟假
杨—博克斯(Ljung Box)构造的统计量是对博克 斯—皮尔斯(Box-Pierce)Q统计量的一种改进。
LB统计量比Q统计量具有更好的小样本性质。 图21.8中的例子,基于25期滞后的Q统计量为793, LB统计量为891,两者都是高度显著的,得到 值的P值几乎为零。
第3章 平稳时间序列分析(1)
![第3章 平稳时间序列分析(1)](https://img.taocdn.com/s3/m/1eac0750f5335a8102d220bc.png)
第3章平稳时间序列分析本章教学内容与要求:了解时间序列分析的方法性工具;理解并掌握ARMA 模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模与预测。
本章教学重点与难点:利用软件进行模型的识别、参数的估计以及序列的建模与预测。
型来息。
t x 为t x 的1阶差分: ▽1t t t x x x --=对1阶差分后的序列再进行一次1阶差分运算称为2阶差分,记▽2tx 为t x 的2阶差分:▽2t x =▽t x -▽1-t x以此类推,对p-1阶差分厚序列再进行一次1阶差分运算称为p 阶差分。
记▽p t x 为t x 的p 阶差分:▽p t x =▽p-1t x -▽p-11-t x (二)k 步差分kt x 为t x 的10,,1t = 10,,2 = 即2阶差分序列▽2t x :3,22,-63,-54,-6,16,-52,-40,10,,3t = 2步差分:▽29x x x 133=-= ▽234x x x 244=-=……▽2-28x x x 81010=-=即2步差分序列:9,34,-7,-26,12,21,-16,-28 二、延迟算子(滞后算子) (一)定义延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相x因此,15-18+6=343-30+9=222.k 步差分▽k =t k t k t k t t x )B 1(x B x x x -=-=--三、线性差分方程在实践序列的时域分析中,线性差分方程是非常重要的,也是极为有效的工具,事实上,任何一个ARMA模型都是一个现象差分方程。
因此,ARMA模型的性质往往取决于差分方程的性质。
为了更好地讨论ARMA 模型的性质,先简单介绍差分方程的一般性质。
设,,方程两边同除以,得特征方程(这是一个一元p次方程,应该至少有p个非零实根,称这p个实根为特征方程(3)的特征根,不防记作.特征根的取值情况不同,齐次线性差分方程的解会有不同的表达形式。
平稳时间序列模型的性质概述
![平稳时间序列模型的性质概述](https://img.taocdn.com/s3/m/91b138221fd9ad51f01dc281e53a580216fc509a.png)
平稳时间序列模型的性质概述平稳时间序列模型是一种描述时间序列数据的统计模型,它的核心假设是数据在时间上的统计特性不发生变化。
具体而言,平稳时间序列模型具有以下性质:1. 均值稳定性:平稳时间序列的均值不随时间变化而变化,即序列的均值是恒定的。
这意味着序列的长期趋势是稳定的,不存在明显的上升或下降趋势。
2. 方差稳定性:平稳时间序列的方差不随时间变化而变化,即序列的方差是恒定的。
这意味着序列的波动性是稳定的,不存在明显的波动增长或缩减。
3. 自协方差稳定性:平稳时间序列的自协方差(序列任意两个时间点之间的协方差)仅依赖于时间点之间的间隔,而不依赖于特定的时间点。
这意味着序列的相关性结构是稳定的,不存在明显的季节性或周期性变化。
4. 纯随机性:平稳时间序列被认为是纯随机的,没有系统性的模式或规律可寻。
这意味着序列的未来值无法通过过去的观察值来准确预测。
根据这些性质,我们可以使用平稳时间序列模型来进行时间序列的建模和预测。
常见的平稳时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA 模型)以及季节性模型等。
总而言之,平稳时间序列模型具有均值稳定性、方差稳定性、自协方差稳定性和纯随机性等性质,这使得它们成为分析和预测时间序列数据的常用工具。
通过运用这些模型,我们可以揭示序列的短期和长期特征,提供数据的统计属性并进行未来值的预测。
平稳时间序列模型是时间序列分析中非常重要的方法之一,它能够帮助我们理解和预测一系列观测值之间的关系。
在实际应用中,平稳时间序列模型常被用于金融市场分析、经济学研究、气象预测等领域。
首先,均值稳定性是平稳时间序列模型的一个重要性质。
这意味着序列的长期平均水平是恒定的,不随时间变化而变化。
例如,在金融市场中,股票价格的均值稳定性意味着股票价格的长期趋势是稳定的,不存在明显的上升或下降趋势。
通过建立平稳时间序列模型,我们可以更好地理解价格的平均水平,并预测未来的价格走势。
第三章平稳时间序列分析
![第三章平稳时间序列分析](https://img.taocdn.com/s3/m/216f292ef02d2af90242a8956bec0975f465a4e3.png)
t Pp t tt tt x B x x B x Bx x===---221第3章 平稳时刻序列分析一个序列通过预处理被识不为平稳非白噪声序列,那就讲明该序列是一个蕴含着相关信息的平稳序列。
3.1方法性工具 3.1.1差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x以此类推:记t p x ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x 二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇3.1.2延迟算子 一、定义延迟算子相当与一个时刻指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时刻向过往拨了一个时刻。
记B 为延迟算子,有 延迟算子的性质:1.10=B 2.假设c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B 4.n t t n x x B -= 5.)!(!!,)1()1(0i n i n C B C B i n i i n ni i n-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分3.2ARMA 模型的性质 3.2.1AR 模型定义具有如下结构的模型称为p 阶自回回模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε(3.4)AR(p)模型有三个限制条件:条件一:0≠p φ。
那个限制条件保证了模型的最高阶数为p 。
时间序列分析知识点总结(1)
![时间序列分析知识点总结(1)](https://img.taocdn.com/s3/m/6692860b326c1eb91a37f111f18583d048640f7b.png)
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
严平稳和宽平稳时间序列的关系
![严平稳和宽平稳时间序列的关系](https://img.taocdn.com/s3/m/7a55302ea55177232f60ddccda38376baf1fe094.png)
严平稳和宽平稳时间序列的关系1.引言1.1 概述时间序列是指按照一定的时间顺序排列的数据序列,在众多领域中都有重要的应用。
在时间序列分析中,我们常常关注序列的平稳性质,即序列的统计特征在时间上是否具有稳定性。
严平稳和宽平稳是时间序列中两种重要的平稳性质。
严平稳时间序列是指在时间域的任意滞后下,序列的统计特征保持不变。
也就是说,严平稳时间序列的均值、自相关函数和方差不会随时间的推移而变化。
这种平稳性质直观上意味着时间序列的基本统计特征在整个时间段内保持不变,因此可以更好地进行预测和分析。
与严平稳时间序列不同,宽平稳时间序列是指在时间域的某个滞后下,序列的统计特征保持不变。
宽平稳序列只要求序列的均值、自相关函数和方差在一个有限的时间段内是常数,而不一定要求在整个时间段内保持不变。
本文将重点讨论严平稳时间序列和宽平稳时间序列之间的关系。
通过分析两种平稳性质的定义和特征,探讨它们的联系与区别。
此外,还将探索严平稳和宽平稳时间序列的应用和意义,以及它们在实际问题中的具体应用场景和价值。
通过对严平稳和宽平稳时间序列的深入研究,将有助于我们更好地理解时间序列的统计特征和规律,从而提高对时间序列数据的分析和预测能力。
这对于许多领域中的决策和规划都具有重要的意义,例如金融市场预测、经济指标分析、天气预测等。
接下来,我们将逐步展开对严平稳和宽平稳时间序列的详细讨论。
1.2文章结构文章结构部分的内容可以这样编写:1.2 文章结构本文将按照以下结构进行阐述和分析严平稳和宽平稳时间序列的关系:2. 正文2.1 严平稳时间序列2.1.1 定义:介绍严平稳时间序列的定义和基本概念。
2.1.2 特征:探讨严平稳时间序列的主要特征以及其在实际应用中的重要性。
2.2 宽平稳时间序列2.2.1 定义:解释宽平稳时间序列的定义和基本概念。
2.2.2 特征:探讨宽平稳时间序列的主要特征以及其与严平稳时间序列之间的联系。
3. 结论3.1 严平稳和宽平稳的关系:总结和比较严平稳和宽平稳时间序列之间的关系和区别。
平稳时间序列分析-ARMA模型
![平稳时间序列分析-ARMA模型](https://img.taocdn.com/s3/m/eaeeccd0e109581b6bd97f19227916888486b9b5.png)
1 0 1 2
所以,平稳AR(2)模型的协方差函数递推公式为
0
1 2 (1 2 )(1 1 2 )(1 1
2
)
2
1
1 0 1 2
k
1 k1 2 k2,k
2
4、自相关系数
(1)自相关系数的定义:
k
k 0
特别
0 1
(2)平稳AR(P)模型的自相关系数递推公式:
k 1k 1 2 k 2 p k p
例3.5:— (3)xt xt1 0.5xt2 t
自相关系数呈现出“伪周期”性
例3.5:— (4)xt xt1 0.5xt2 t
自相关系数不规则衰减
6、偏自相关函数
自相关函数ACF(k)给出了Xt与Xt-k的总体 相关性,但总体相关性可能掩盖了变量间完全 不同的相关关系。
例如,在AR(1) 中,Xt与Xt-2间有相关性可 能主要是由于它们各自与Xt-1间的相关性带来 的:
对于非中心化序列
xt 0 1xt1 2 xt2
p xt p t
作变换
1 1
0
p
yt xt
则原序列即化为中心化序列
yt 1 yt1 2 yt2 p yt p t
所以,以后我们重点讨论中心化时间序列。
AR模型的算子表示
令 (B) 11B 2B2 p B p
则 AR( p) 模型可表示为
平稳AR(1)模型的传递形式为
xt
t 1 1B
i0
(1B)i t
1i ti
i0
Green函数为 Gj 1 j , j 0,1,
平稳AR(1)模型的方差为
Var(xt )
G2jVar(t )
j0
《统计预测与决策》第四版-徐国祥-复习试卷及答案
![《统计预测与决策》第四版-徐国祥-复习试卷及答案](https://img.taocdn.com/s3/m/67a4681e42323968011ca300a6c30c225901f0d3.png)
试卷一一、单项选择题(共 10 小题,每题 1 分,共 10 分)1 统计预测方法中,以逻辑判断为主的方法属于( ) 。
A 回归预测法B 定量预测法C 定性预测法D 时间序列预测法2 下列哪一项不是统计决策的公理( ) 。
A 方案优劣可以比较B 效用等同性C 效用替换性D 效用递减性3根据经验 D-W 统计量在( )之间表示回归模型没有显著自相关问题。
A 1.0- 1.5B 1.5-2.5C 1.5-2.0D 2.5-3.54 当时间序列各期值的二阶差分相等或大致相等时 ,可配合( )进行预测。
A 线性模型B 抛物线模型C 指数模型D 修正指数模型5 ( )是指国民经济活动的绝对水平出现上升和下降的交替。
A 经济周期B 景气循环C 古典经济周期D 现代经济周期6 灰色预测是对含有( )的系统进行预测的方法。
A 完全充分信息B 完全未知信息C 不确定因素D 不可知因素7 状态空间模型的假设条件是动态系统符合( ) 。
A 平稳特性B 随机特性C 马尔可夫特性D 离散性8 不确定性决策中“乐观决策准则”以( )作为选择最优方案的标准。
A 最大损失B 最大收益C 后悔值D α系数9 贝叶斯定理实质上是对( )的陈述。
A 联合概率B 边际概率C 条件概率D 后验概率10 景气预警系统中绿色信号代表( ) 。
A 经济过热B 经济稳定C 经济萧条D 经济波动过大二、多项选择题(共 5 小题,每题 3 分,共 15 分)1 构成统计预测的基本要素有( ) 。
A 经济理论B 预测主体C 数学模型D 实际资料2 统计预测中应遵循的原则是( ) 。
A 经济原则B 连贯原则C 可行原则D 类推原则3 按预测方法的性质,大致可分为( )预测方法。
A 定性预测B 情景预测C 时间序列预测D 回归预测4 一次指数平滑的初始值可以采用以下( )方法确定。
A 最近一期值B 第一期实际值C 最近几期的均值D 最初几期的均值5 常用的景气指标的分类方法有( ) 。
时间序列分析--第三章平稳时间序列分析
![时间序列分析--第三章平稳时间序列分析](https://img.taocdn.com/s3/m/2e92a3910508763231121281.png)
2019/9/23
课件
25
Green函数递推公式
原理 xt( BG )x(tB )tt (B)G(B)t t
方法
待定系数法
递推公式
2019/9/23
G G0j 1k j1kGjk, j1,2, ,其中 k 0k ,k ,kpp
非齐次线性差分方程的通解
齐次线性差分方程的通解和非齐次线性差分方程的
特解之和 z t
zt ztzt
2019/9/23
课件
10
3.2 ARMA模型的性质
AR模型(Auto Regression Model) MA模型(Moving Average Model) ARMA模型(Auto Regression Moving
2019/9/23
课件
38
例3.5:— (4 )x t x t 1 0 .5 x t 2t
自相关系数不规则衰减
2019/9/23
课件
39
偏自相关系数
定义
对于平稳AR(p)序列,所谓滞后k偏自相关系数就 是指在给定中间k-1个随机变量 的 xt1,xt2, ,xtk1 条件下,或者说,在剔除了中间k-1个随机变 量的干扰之后, x 对 tk x影t 响的相关度量。用数 学语言描述就是
2019/9/23
课件
29
例3.3:求平稳AR(1)模型的协方差
递推公式
k 1k11k0
平稳AR(1)模型的方差为
0
2
1 12
协方差函数的递推公式为
k
1k
2 112
,k1
2019/9/23
课件
《时间序列》试卷
![《时间序列》试卷](https://img.taocdn.com/s3/m/450423d1f705cc1754270906.png)
《时间序列分析》试卷注意:请将答案直接写在试卷上一、填空题(1分*20空=20分)1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有11年周期依靠的是 时序分析方法。
2. 时间序列预处理包括 和 。
3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为和 。
使用序列的特征统计量来定义的平稳性属于 。
4. 统计时序分析方法分为 和 。
5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。
6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图,据此判断,该序列{}t X 是否平稳(填“是”或者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。
用Eviews 软件对该序列做差分运算的表达式是 。
7. ARIMA 模型的实质 是和的结合。
8. 差分运算的实质是使用的方式提取确定性信息。
9. 用延迟算子表示中心化的AR(P)模型是 。
二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答班级 姓名 学号50010001500200025003000350040009394959697989900图1案代码填入相应括号内,2分*5题=10分)1.下列属于白噪声序列{}t ε所满足的条件的是( )A. 任取T t ∈,有με=)(t E (μ为常数)B. 任取T t ∈,有0)(=t E εC.)(0),(s t Cov s t ≠∀=εεD. 2)(εσε=t Var (2εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( ) A.n x x x x x n x n t n t t n t n t t ),(1~2112112121-+--++----++++++= 为奇数;B. n x x x x x n x n t n t t n t n t t),(1~212122+-++--++++++= 为偶数;C. )(1~11+--+++=n t t t t x x x n x ; D. n x x x x x n x n t n t t n t n t t),2121(1~212122+-++--++++++= 为偶数。
第二章 线性平稳时间序列模型.ppt
![第二章 线性平稳时间序列模型.ppt](https://img.taocdn.com/s3/m/7ea331fd6bec0975f565e24f.png)
m tm
44
若时间序列是非平稳的,则可先
对序列进行差分运算,然后再建立
ARMA模型,即求和自回归移动平均
模型(Auto Regressive Integrated
Moving Average modek)简称
ARiMA模型
AR, MA
at
Biblioteka ARMA
X
t
ARIMA
xt:0 0 1 0 0
这种状况可用模型概括为:xt 1at1
2019/11/8
40
(3)如果当天的反应是疼痛 0 ,第二天 出现了红肿 1 ,那么:
时间 输入 输出
t :1 2 at: 0 1 xt:0 0
3 45 0 00 1 0 0
这种状况可用模型概括为:xt 0at 1at1
2019/11/8
返回例题
17
例3 北京市最高气温自相关图
2019/11/8
返回例题
18
二、纯随机性检验
(一)纯随机序列的定 义
(二)纯随机性的性质 (三)纯随机性检验
2019/11/8
上一页 下一页 返回本节首页 19
(一)纯随机序列的定义
纯随机序列也称为白噪声序列,它满足 如下两条性质
2019/11/8
ˆ k
~
N (0, 1) n
,k 0
上一页 下一页 返回本节首页 24
2.假设条件
原假设:延迟期数小于或等于m 期的序列 值之间相互独立
H 0:1 2 m 0,m 1
H1:至少存在某个 k 0,m 1,k m
备择假设:延迟期数小于或等于m 期的 序列值之间有相关性
平稳时间序列预测法
![平稳时间序列预测法](https://img.taocdn.com/s3/m/e65bb876bdd126fff705cc1755270722182e5979.png)
试证明:
X t 宽平稳。
回总目录 回本章目录
证明:
E Xt E Acosct B sin ct 0 r s,t E Acos ct B sin ct Acos cs B sin cs E[A2 coscs cosct AB cosct sin cs AB sin ct cos cs B2 sin ct sin cs] coscs cos ct sin ct sin cs cos c(t s)
设平稳时间序列 yTt 是一个ARMA(p,q)
过程,则其最小二乘预测为:
yˆTt l E yT 1 yT ,..., y1
AR(p)模型预测
yˆTt l 1 yˆT l 1 ... p yˆT l p l 1,2,...
回总目录 回本章目录
ARMA(p,q)模型预测
p
q
yˆTt l j yˆT l j jˆT l j
7.3 单位根检验和协整检验
一、单位根检验
利用迪基—福勒检验( Dickey-Fuller Test)和 菲利普斯—佩荣检验(Philips-Perron Test),也可 以测定时间序列的随机性,这是在计量经济学中非 常重要的两种单位根检验方法,与前者不同的是, 后一个检验方法主要应用于一阶自回归模型的残差 不是白噪声,而且存在自相关的情况。
回总目录 回本章目录
解答:
Yule-Walker方程为:
0 1 1 1 1 2 2 2
即:
0.3 0 0.41 1 0.31 0.4 0 2
回总目录 回本章目录
且:
0 0.31 0.4 2 2 1
联合上面三个方程,解出:
0 100 / 63
1 50 / 63
时间序列分析第三章平稳时间序列分析
![时间序列分析第三章平稳时间序列分析](https://img.taocdn.com/s3/m/14a069d3d4bbfd0a79563c1ec5da50e2524dd126.png)
时间序列分析第三章平稳时间序列分析轴表示序列取值。
时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。
根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。
如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。
从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳。
procarimadata=e某ample3_1;identifyvar=某nlag=8;run;图一图二样本自相关图图三样本逆自相关图2图四样本偏自相关图图五纯随机检验图实验结果分析:(1)由图一我们可以知道序列样本的序列均值为-0.06595,标准差为1.561613,观察值个数为84个。
(2)根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。
我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向0.03衰减的速度非常快,延迟5阶之后自相关系数即在0.03值附近波动。
这是一个短期相关的样本自相关图。
所以根据样本自相关图的相关性质,可以认为该序列平稳。
(3)根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列样本属于非白噪声序列。
procarimadata=e某ample3_1;identifyvar=某nlag=8minicp=(0:5)q=(0:5);run;IDENTIFY命令输出的最小信息量结果3某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。
建模的基本步骤如下:A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 延迟 k自相关系数
k
(k) (0)
❖ 规范性 ❖ 对称性 ❖ 非负定性
❖ 非唯一性
自相关系数的性质
0 1 , 且 k 1 , k
k k
m为非负定阵,正整数m
0 1 L
m
1 M
0 L ML
m1
m2
L
m1
m2
例题
❖ 例2.1
▪ 检验1964年——1999年中国纱年产量序列的平稳性
❖ 例2.2
▪ 检验1962年1月——1975年12月平均每头奶牛月产奶量序列 的平稳性
❖ 例2.3
▪ 检验1949年——1998年北京市每年最高气温序列的平稳性
例2.1:中国纱年产量时序图
例2.1自相关图
例2.2:奶牛月产奶量时序图
DX t (0) 2
❖ 检验原理 ❖ 假设条件 ❖ 检验统计量 ❖ 判别原则
纯随机性检验
Barlett定理
❖ 如果一个时间序列是纯随机的,得到一个观察期
数为n 的观察序列,那么该序列的延迟非零期的
样本自相关系数将近似服从均值为零,方差为序 列观察期数倒数的正态分布
ˆ k
~N (0, 1) n
2
(x t ) dFt (x)
❖自协方差 (t, s) E( X t t )( X s s )
❖自相关系数 (t, s) (t, s)
DXt DX s
平稳时间序列的定义
❖ 严平稳
▪ 严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序 列所有的统计性质都不会随着时间的推移而发生变化时,该 序列才能被认为平稳。
{t ,t T} {,t T}
❖ 原本每个随机变量的均值(方差,自相关系数)只能依靠 唯一的一个样本观察值去估计,现在由于平稳性,每一个 统计量都将拥有大量的样本观察值。
❖ 这极大地减少了随机变量的个数,并增加了待估变量的样 本容量。极大地简化了时序分析的难度,同时也提高了对 特征统计量的估计精度
(2)
(t,
s)
2,
t
s
,
t,
s
T
0,t s
标准正态白噪声序列时序图
白噪声序列的性质
❖ 纯随机性
▪ 各序列值之间没有任何相关关系,即为 “没有记忆”的序 列
(k) 0,k 0
❖ 方差齐性
▪ 根据马尔可夫定理,只有方差齐性假定成立时,用最小二乘 法得到的未知参数估计值才是准确的、有效的
例2.2 自相关图
例2.3:北京市每年最高气温时序图
例2.3自相关图
本章结构
1. 平稳性检验 2. 纯随机性检验
2.2 纯随机性检验
❖ 本节结构
▪ 纯随机序列的定义 ▪ 纯随机性的性质 ▪ 纯随机性检验
纯随机序列的定义
❖ 纯随机序列也称为白噪声序列,它满足如下两条 性质
(1)EXt , t T
平稳性的检验(图检验方法)
❖ 时序图检验
▪ 根据平稳时间序列均值、方差为常数的性质,平稳 序列的时序图应该显示出该序列始终在一个常数值 附近随机波动,而且波动的范围有界、无明显趋势 及周期特征
❖ 自相关图检验
▪ 平稳序列通常具有短期相关性。该性质用自相关系 数来描述就是随着延迟期数的增加,平稳序列的自 相关系数会很快地衰减向零
,k 0
假设条件
❖原假设:延迟期数小于或等于 m 期的序列值之间 相互独立
H 0:1 2 m 0,m 1
❖备择假设:延迟期数小于或等于 m 期的序列值之 间有相关性
H
:至少存在某个
1
k
0, m
1,k
m
❖ 宽平稳
▪ 宽平稳是使用序列的特征统计量来定义的一种平稳性。它认 为序列的统计性质主要由它的低阶矩决定,所以只要保证序 列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。
平稳时间序列的统计定义
❖ 满足如下条件的序列称为严平稳序列
正整数m, t1,t2, ,tm T,正整数,有
Ft1,t2 tm ( x1 , x2 , , xm ) Ft1 ,t2 tm ( x1 , x2 , , xm )
第二章 时间序列的预处理
本章结构
1. 平稳性检验 2. 纯随机性检验
2.1平稳性检验
❖ 本节结构
▪ 概率分布与特征统计量 ▪ 平稳时间序列的定义 ▪ 平稳时间序列的统计性质 ▪ 平稳时间序列的意义 ▪ 平稳性的检验
概率分布
❖ 概率分布的意义
▪ 随机变量族的统计特性完全由它们的联合分布函数 或联合密度函数决定
❖ 满足如下条件的序列称为宽平稳序列
1) EXt2 , t T
2) EXt , 为常数,t T 3) (t, s) (k, k s t),t, s, k且k s t T
严平稳与宽平稳的关系
❖ 一般关系
▪ 严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶 矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳 成立
❖ 时间序列概率分布族的定义
{Ft1,t2,L ,tm (x1, x2,L , xm )} ,m (1, 2,L , m),t1,t2,L ,tm T
❖ 实际应用的局限性
特征统计量
❖ 均值 ❖ 方差
ቤተ መጻሕፍቲ ባይዱ
t EX t xdFt (x)
DX t
E(Xt t )2
M
0
一个平稳时间序列一定唯一决定了它的自相关 函数,但一个自相关函数未必唯一对应着一个 平稳时间序列。
时间序列数据结构的特殊性
❖ 传统统计分析的数据结构
▪ 有限个变量,每个变量有多个观察值
❖ 时间序列数据结构
▪ 可列多个随机变量,而每个变量只有一个样本观察值
平稳性的重大意义
❖ 在平稳序列场合,序列的均值等于常数,这意味着原本含 有可列多个随机变量的均值序列变成了只含有一个变量的 常数序列。
❖ 特例
▪ 不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯 西分布的严平稳序列就不是宽平稳序列
▪ 当序列服从多元正态分布时,宽平稳可以推出严平稳
平稳时间序列的统计性质
❖ 常数均值 ❖ 自协方差函数和自相关函数只依赖于时间的平移长度
而与时间的起止点无关 ▪ 延迟 k 自协方差函数
(k) (t,t k), k为整数