高考数学函数与导数专项练习题

合集下载

【高考数学】22道压轴题:导数及其应用(练习及参考答案)

【高考数学】22道压轴题:导数及其应用(练习及参考答案)

【高考数学】22道压轴题导数及其应用(练习及参考答案)1.已知函数xa x x f +=ln )(. (1)若函数)(x f 有零点,求实数a 的取值范围;(2)证明:当e a 2≥时,x e x f ->)(.2.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈).(1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.3.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.4.已知函数2()x f x x e =,3()2g x x =.(1)求函数()f x 的单调区间;(2)求证:x R ∀∈,()()f x g x ≥5.已知函数f (x )= xx ln ﹣ax +b 在点(e ,f (e ))处的切线方程为y =﹣ax +2e . (Ⅰ)求实数b 的值;(Ⅱ)若存在x ∈[e ,e 2],满足f (x )≤41+e ,求实数a 的取值范围.6.已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22. (1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示);(2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥.7.已知函数()ln a f x x x x=+,32()3g x x x =--,a R ∈. (1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,求实数a 的取值范围.8.设函数2)(--=ax e x f x(1)求)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,1)(1<'+-x f x x k 恒成立,其中)(x f '为)(x f 的导函数,求k 的最大值.9.设函数2()ln(1)f x x b x =++.(1)若对定义域内的任意x ,都有()(1)f x f ≥成立,求实数b 的值;(2)若函数()f x 的定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意的正整数n ,33311111()123n k f k n=<++++∑.10.已知函数1()(1)ln x f x a e x a a=-+-(0a >且1a ≠),e 为自然对数的底数. (Ⅰ)当a e =时,求函数()y f x =在区间[]0,2x ∈上的最大值;(Ⅱ)若函数()f x 只有一个零点,求a 的值.11.已知函数1()f x x x=-,()2ln g x a x =. (1)当1a ≥-时,求()()()F x f x g x =-的单调递增区间;(2)设()()()h x f x g x =+,且()h x 有两个极值12,x x ,其中11(0,]3x ∈,求12()()h x h x -的最小值.12.已知函数f (x )=ln x +x 2﹣2ax +1(a 为常数).(1)讨论函数f (x )的单调性;(2)若存在x 0∈(0,1],使得对任意的a ∈(﹣2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4(其中e 为自然对数的底数)都成立,求实数m 的取值范围.13.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.14.已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围; (2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >15.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(Ⅰ)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围;(Ⅱ)求面积2S 最大时,应怎样设计材料的长和宽?(Ⅲ)求面积()122S S +最大时,应怎样设计材料的长和宽?16.已知()()2ln x f x e x a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.17.已知函数()()()2ln 1f x ax x xa R =--∈恰有两个极值点12,x x ,且12x x <.(1)求实数a 的取值范围; (2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.18.已知函数f (x )=(ln x ﹣k ﹣1)x (k ∈R )(1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围.(3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .19.已知函数()21e 2x f x a x x =--(a ∈R ). (Ⅰ)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值; (Ⅱ)若函数()f x 有两个极值点,求a 的取值范围;(Ⅲ)证明:当1x >时,1e ln x x x x>-.20.已知函数()()321233f x x x x b b R =-++?. (1)当0b =时,求()f x 在[]1,4上的值域;(2)若函数()f x 有三个不同的零点,求b 的取值范围.21.已知函数2ln 21)(2--=x ax x f . (1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程;(2)讨论函数)(x f 的单调性.22.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈. (Ⅰ)求函数()f x 在其定义域内的极值;(Ⅱ)若在[1,]e 上至少存在一个0x ,使得0002()e kx f x x ->成立,求实数k 的取值范围.参考答案1.(1)函数x a x x f +=ln )(的定义域为),0(+∞. 由x a x x f +=ln )(,得221)(xa x x a x x f -=-='. ①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增, 又+∞→+∞→<=+=)(,,01ln )1(x f x a a f ,所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f . 所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增. 当1ln )]([min +==a x f a x .当01ln ≤+a ,即e a 10≤<时,又01ln )1(>=+=a a f , 所以函数)(x f 在定义域),0(+∞上有2个零点.综上所述实数a 的取值范围为]1,(e -∞. 另解:函数x a x x f +=ln )(的定义域为),0(+∞. 由xa x x f +=ln )(,得x x a ln -=. 令x x x g ln )(-=,则)1(ln )(+-='x x g . 当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈e x 时,0)(<'x g . 所以函数)(x g 在)1,0(e 上单调递增,在),1(+∞e 上单调递减. 故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=. 因+∞→+∞→)(,xf x ,两图像有交点得e a 1≤, 综上所述实数a 的取值范围为]1,(e -∞.(2)要证明当e a 2≥时,x e x f ->)(, 即证明当e a x 2,0≥>时,x e xa x ->+ln ,即x xe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h . 当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f . 所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e 上单调递增. 当e x 1=时,a ex h +-=1)]([min . 于是,当e a 2≥时,ea e x h 11)(≥+-≥.① 令x xe x -=)(ϕ,则)1()(x e xe e x x x x -=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f .所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减. 当1=x 时,ex 1)]([min =ϕ. 于是,当0>x 时,ex 1)(≤ϕ.② 显然,不等式①、②中的等号不能同时成立. 故当ea 2≥时,x e x f ->)(. 2.(Ⅰ)0,22)(2>-=-='x xa x x a x x f (1)当0≤a 时,0)(>'x f ,)(x f 在()上+∞,0单调递增,(2)当0>a 时,20)(a x x f =='得 有⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛>,22,0)(0a a x f a ,单调增区间是的单调减区间是时,所以 (Ⅱ) bx x x x g +-=ln 2)(2假设)(x g y =在0x 处的切线能平行于x 轴.∵()0,22)(>+-='x b xx x g 由假设及题意得:0ln 2)(11211=+-=bx x x x g0ln 2)(22222=+-=bx x x x g1202x x x +=022)(000=+-='b x x x g ④ 由-得,()()()0ln ln 221212221=-+---x x b x x x x即0212`12ln2x x x x x b --=由④⑤得,()1121212122222ln 1x x x x x x x x x x --==++ 令12x t x =,12,01x x t <∴<<.则上式可化为122ln +-=t t t , 设函数()()10122ln <<+--=t t t t t h ,则 ()()()()011141222>+-=+-='t t t t t t h , 所以函数()122ln +--=t t t t h 在(0,1)上单调递增. 于是,当01t <<时,有()()01=<h t h ,即22ln 01t t t --<+与⑥矛盾. 所以()y f x =在0x 处的切线不能平行于x 轴.3.(Ⅰ)n mx x x f ++='23)(2()02301=++='n m f 得由.01242>-=∆n m∴()3032-≠>+m m ,得到 ①∵()()()32313223)(2++-=+-+='m x x m mx x x f∴⎪⎭⎫ ⎝⎛+-==='32110)(m x x x f 或,得 由题3,1321-<>⎪⎭⎫⎝⎛+-m m 解得② 由①②得3-<m(Ⅱ)()02301=++='n m f 得由 所以()m mx x x f 2323)(2+-+='因为过点)1,0(且与曲线)(x f y =相切的直线有且仅有两条, 令切点是()00,y x P ,则切线方程为()()000x x x f y y -'=- 由切线过点)1,0(,所以有()()0001x x f y -'=-∴()()[]()0020020302323231x m mx x x m mx x -+-+=++--整理得0122030=++mx x.01220300有两个不同的实根的方程所以,关于=++mx x x ()()需有两个零点,则令x h mx x x h 1223++= ()mx x x h 262+='所以()3000mx x x h m -==='≠或得,且()03,00=⎪⎭⎫⎝⎛-=m h h 或由题,()03,10=⎪⎭⎫⎝⎛-=m h h 所以又因为0133223=+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-m m m 所以3-=m 解得,即为所求4.(Ⅰ)()x x e e x xe x f xxx22)(22+=+='∴()()()上单调递减;在时,0,2,002-<'<<-x f x f x()()()().,02,,002上单调递增和在时,或+∞-∞->'>-<x f x f x x()()()+∞-∞--,020,2)(,和,,单调递增区间是的单调递减区间是所以x f(Ⅱ)显然0≤x 时有)()(x g x f ≥,只需证0>x 时)()(x g x f ≥,由于02≥xx e x x 20≥>时,只需证()+∞∈-=,0,2)(x x e x h x 令 2)(-='x e x h2ln ,0)(=='x x h 得()()02ln ln 22ln 222ln 22ln )(2ln min >-=-=-==∴e e h x h ()恒成立0)(,,0>+∞∈∴x h x所以当0>x 时,)()(x g x f >. 综上R x ∈∀,()()f x g x ≥5.解:(Ⅰ)f (x )=﹣ax+b ,x ∈(0,1)∪(1,+∞), 求导,f′(x )=﹣a ,则函数f (x )在点(e ,f (e ))处切线方程y ﹣(e ﹣ex+b )=﹣a (x ﹣e ), 即y=﹣ax+e+b ,由函数f (x )在(e ,f (e ))处的切线方程为y=﹣ax+2e ,比较可得b=e , 实数b 的值e ;(Ⅱ)由f (x )≤+e ,即﹣ax+e≤+e ,则a≥﹣在[e ,e 2],上有解,设h (x )=﹣,x ∈[e ,e 2],求导h′(x )=﹣==,令p (x )=lnx ﹣2,()()()()0,,2ln ,0,2ln ,0>'+∞∈<'∈∴x h x x h x ()()()上单调递增上单调递减,在,在+∞∴,2ln 2ln 0x h∴x 在[e ,e 2]时,p′(x )=﹣=<0,则函数p (x )在[e ,e 2]上单调递减,∴p (x )<p (e )=lne ﹣2<0,则h′(x )<0,及h (x )在区间[e ,e 2]单调递减,h (x )≥h (e 2)=﹣=﹣,∴实数a 的取值范围[﹣,+∞].6.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+, l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =. ∵21()()(1)ln (1)12g x f x a x x ax a x =--=-+-+, ∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x--+-+-+=-+-==>, 当1(0,)x a∈时,'()0g x >,()g x 单调递增; 当1(,)x a∈+∞时,'()0g x <,()g x 单调递减. 故2max 111111()()ln()(1)1ln 22g x g a a a a a a a a==-+-+=-. (2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥.7.(1)当1a =-时,1()ln f x x x x =-,(1)1f =-,'21()ln 1f x x x=++, '(1)2f =,从而曲线()y f x =在1x =处的切线为2(1)1y x =--,即23y x =-.(2)对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,从而min max ()()f x g x ≥ 对32()3g x x x =--,'2()32(32)g x x x x x =-=-,从而()y g x =在12[,]23递减,2[,2]3递增,max 1()max{(),(2)}12g x g g ==. 又(1)f a =,则1a ≥. 下面证明当1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立. 1()ln ln a f x x x x x x x =+≥+,即证1ln 1x x x +≥. 令1()ln h x x x x =+,则'21()ln 1h x x x=+-,'(1)0h =. 当1[,1]2x ∈时,'()0h x ≤,当[1,2]x ∈时,'()0h x ≥,从而()y h x =在1[,1]2x ∈递减,[1,2]x ∈递增,min ()(1)1h x h ==,从而1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.8.(1)函数f (x )=e x -ax -2的定义域是R ,f ′(x )=e x -a ,若a ≤0,则f ′(x )=e x -a ≥0,所以函数f (x )=e x -ax -2在(-∞,+∞)上单调递增 若a >0,则当x ∈(-∞,ln a )时,f ′(x )=e x -a <0; 当x ∈(ln a ,+∞)时,f ′(x )=e x -a >0;所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)上单调递增 (2)由于a=1,1)1)((1)(1'+<--⇔<+-x e x k x f x x k x x e x k e x xx +-+<∴>-∴>11.01,0 令x e x x g x +-+=11)(,min )(x g k <∴,22')1()2(1)1(1)(---=+---=x x x xx e x e e e xe x g 令01)(,2)('>-=--=xxe x h x e x h ,)(x h ∴在),0(+∞单调递增,且)(,0)2(,0)1(x h h h ∴><在),0(+∞上存在唯一零点,设此零点为0x ,则)2,1(0∈x 当),0(00x x ∈时,0)('<x g ,当),(00+∞∈x x 时,0)('>x g000min 11)()(0x e x x g x g x +-+==∴, 由)3,2(1)(,20)(0000'0∈+=∴+=⇒=x x g x ex g x ,又)(0x g k <所以k 的最大值为29.(1)由01>+x ,得1->x .∴()x f 的定义域为()+∞-,1.因为对x ∈()+∞-,1,都有()()1f x f ≥,∴()1f 是函数()x f 的最小值,故有()01='f .,022,12)(/=+∴++=bx b x x f 解得4-=b . 经检验,4-=b 时,)(x f 在)1,1(-上单调减,在),1(+∞上单调增.)1(f 为最小值.(2)∵,12212)(2/+++=++=x bx x x b x x f 又函数()x f 在定义域上是单调函数,∴()0≥'x f 或()0≤'x f 在()+∞-,1上恒成立. 若()0≥'x f ,则012≥++x bx 在()+∞-,1上恒成立, 即x x b 222--≥=21)21(22++-x 恒成立,由此得≥b 21; 若()0≤'x f ,则012≤++x bx 在()+∞-,1上恒成立, 即x x b 222--≤=21)21(22++-x 恒成立. 因21)21(22++-x 在()+∞-,1上没有最小值,∴不存在实数b 使()0≤'x f 恒成立. 综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当1-=b 时,函数()()1ln 2+-=x x x f .令()()()1ln 233+-+-=-=x x x x x f x h ,则()()1131123232+-+-=+-+-='x x x x x x x h . 当()+∞∈,0x 时,()0<'x h ,所以函数()x h 在()+∞,0上单调递减.又()00=h ,∴当[)+∞∈,0x 时,恒有()()00=<h x h ,即()321ln x x x <+-恒成立.故当()+∞∈,0x 时,有()3x x f <.而*∈N k ,()+∞∈∴,01k .取k x 1=,则有311kk f <⎪⎭⎫ ⎝⎛. ∴33311312111n k f nk +⋅⋅⋅+++<⎪⎭⎫⎝⎛∑=.所以结论成立.10.解:(Ⅰ)当a e =时,1()(1)xf x e e x e=-+-,'()xf x e e =-,令'()0f x =,解得1x =,(0,1)x ∈时,'()0f x <;(1,2)x ∈时,'()0f x >,∴{}max ()max (0),(2)f x f f =,而1(0)1f e e =--,21(2)3f e e e=--, 即2max 1()(2)3f x f e e e==--. (Ⅱ)1()(1)ln xf x a e x a a=-+-,'()ln ln ln ()x xf x a a e a a a e =-=-, 令'()0f x =,得log a x e =,则 ①当1a >时,ln 0a >,所以当log a x e =时,()f x 有最小值min ()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,则min 1()ln 0f x e a a =--=,即1ln 0e a a+=, 因为当1a >时,ln 0a >,所以此方程无解. ②当01a <<时,ln 0a <,所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞, 所以min 1()ln 0f x e a a =--=,即1ln 0e a a+=(01a <<)(*) 设1()ln (01)g a e a a a =+<<,则2211'()e ae g a a a a -=-=, 令'()0g a =,得1a e=, 当10a e <<时,'()0g a <;当1a e>时,'()0g a >; 所以当1a e =时,min 11()()ln 0g a g e e e e ==+=,所以方程(*)有且只有一解1a e=. 综上,1a e=时函数()f x 只有一个零点.11.(1)由题意得F (x)= x --2a ln x . x 0,=,令m (x )=x 2-2ax+1,①当时F(x)在(0,+单调递增; ②当a 1时,令,得x 1=, x 2=x(0,) ()()+-+∴F (x)的单增区间为(0,),()综上所述,当时F (x)的单增区间为(0,+)当a 1时,F (x)的单增区间为(0,),()(2)h (x )= x -2a ln x , h /(x)=,(x >0),由题意知x 1,x 2是x 2+2ax+1=0的两根,∴x 1x 2=1, x 1+x 2=-2a,x 2=,2a=,-=-=2()令H (x )=2(), H /(x )=2()lnx=当时,H/(x)<0, H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h (x )=f (x )﹣g (x )=1ln x ax b x ---,则211()h x a x x'=+-, ∵h (x )=f (x )﹣g (x )在(0,+∞)上单调递增, ∴对∀x >0,都有211()0h x a x x '=+-≥,即对∀x >0,都有211a x x≤+,.…………2分 ∵2110x x+>,∴0a ≤, 故实数a 的取值范围是(],0-∞;.…………3分 (2)解:设切点为0001,ln x x x ⎛⎫-⎪⎝⎭,则切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,亦即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,令010t x =>,由题意得220011a t t x x =+=+,002ln 1ln 21b x t t x =--=--- , 令2()ln 1a b t t t t ϕ+==-+--,则()()2111()21t t t t ttϕ+-'=-+-=,.…………6分当()0,1t ∈时,()()0,t t ϕϕ'<在()0,1上单调递减;当()1,t ∈+∞时,()()0,t t ϕϕ'>在()1,+∞上单调递增,∴()()11a b t ϕϕ+=≥=-, 故a b +的最小值为﹣1;.…………7分 (3)证明:由题意知1111ln x ax x -=,2221ln x ax x -=, 两式相加得()12121212ln x x x x a x x x x +-=+ 两式相减得()21221112lnx x x a x x x x x --=-即212112ln 1x x a x x x x +=-∴()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭,即1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭,. 9分不妨令120x x <<,记211x t x =>, 令()21()ln (1)1t F t t t t -=->+,则()221()0(1)t F t t t -'=>+,∴()21()ln 1t F t t t -=-+在()1,+∞上单调递增,则()21()ln (1)01t F t t F t -=->=+, ∴()21ln 1t t t ->+,则2211122()ln x x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>,.…………10分 令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在()0,+∞上单调递增.又1ln 210.8512=+≈<,∴1ln G =>>>,即2122x x e >..…………12分15.(Ⅰ)由题意,AB x =,2-BC x =,2,12x x x >-∴<<Q .…………1分 设=DP y ,则PC x y =-,由△ADP ≌△CB'P ,故PA=PC=x ﹣y ,由PA 2=AD 2+DP 2,得()()2222x y x y -=-+即:121,12y x x ⎛⎫=-<< ⎪⎝⎭..…………3分(Ⅱ)记△ADP 的面积为2S ,则()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭.…………5分当且仅当()1,2x =时,2S 取得最大值.,宽为(2m 时,2S 最大.….…………7分 (Ⅲ)()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭于是令()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭分∴关于x 的函数12+2S S 在(上递增,在)上递减,∴当x =12+2S S 取得最大值.,宽为(m 时,12+2S S 最大..…………12分16.(1)1a =时,()()2ln 1xf x ex =++,()2121x f x e x '=++ ()01f =,()10231f '=+=,所以()f x 在()0,1处的切线方程为31y x =+ (2)存在[)00,x ∈+∞,()()20002ln f x x a x <++,即:()02200ln 0x ex a x -+-<在[)00,x ∈+∞时有解; 设()()22ln xu x ex a x =-+-,()2122x u x e x x a'=--+ 令()2122xm x ex x a =--+,()()21420x m x e x a '=+->+ 所以()u x '在[)0,+∞上单调递增,所以()()102u x u a''≥=- 1°当12a ≥时,()1020u a'=-≥,∴()u x 在[)0,+∞单调增, 所以()()max 01ln 0u x u a ==-<,所以a e > 2°当12a <时,()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭设()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭, ()11211122x h x x x -'=-=++ 令()102h x x '>⇒>,()1002h x x '<⇒<< 所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增 所以()1102h x h ⎛⎫≥=> ⎪⎝⎭,所以11ln 22x x ⎛⎫+>+ ⎪⎝⎭所以()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭设()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭,()2221x g x e x '=--,令()2221xx ex ϕ=--,()242420x x e ϕ'=-≥->所以()2221xx ex ϕ=--在[)0,+∞上单调递增,所以()()010g x g ''≥=>所以()g x 在()0,+∞单调递增,∴()()00g x g >>, 所以()()00g x g >>, 所以()()()22ln 0xu x e x a x g x =-+->>所以,当12a <时,()()22ln f x x a x >++恒成立,不合题意 综上,实数a 的取值范围为12a ≥.17.(1)因为()ln 2f x a x x '=-,依题意得12,x x 为方程ln 20a x x -=的两不等正实数根, ∴0a ≠,2ln x a x=,令()ln x g x x =,()21ln xg x x -'=, 当()0,x e ∈时,()0g x '>; 当(),x e ∈+∞时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,()10g =, 当x e >时,()0g x >, 所以()20g e a<< ∴()210g e a e<<= 解得2a e >,故实数a 的取值范围是()2,e +∞.(2)由(1)得,11ln 2a x x =,22ln 2a x x =,两式相加得()()1212ln ln 2a x x x x λ+=+,故()12122ln ln x x x x aλλ++=两式相减可得()()1212ln ln 2a x x x x -=-, 故12122ln ln x x a x x -=⋅-所以12ln ln 1x x λλ+>+等价于()1221x x aλλ+>+,所以()()1221x x a λλ+>+ 所以()()121212221ln ln x x x x x x λλ-+>+-,即()()121212ln ln 1x x x x x x λλ+->+-, 所以112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-, 因为120x x <<,令()120,1x t x =∈,所以()ln 11t t t λλ+>+-即()()()ln 110t t t λλ+-+-<,令()()()()ln 11h t t t t λλ=+-+-, 则()0h t <在()0,1上恒成立,()ln h t t tλλ'=+-,令()ln I t t t λλ=+-,()()()2210,1t I t t t t tλλ-'=-=∈ ①当1λ≥时,()0I t '<所以()h t '在()0,1上单调递减,()()10h t h ''>=所以()h t 在()0,1上单调递增,所以()()10h t h <=符合题意②当0λ≤时,()0I t '>所以()h t '在()0,1上单调递增()()10h t h ''<=故()h t 在()0,1上单调递减,所以()()10h t h >=不符合题意; ③当01λ<<时,()01I t t λ'>⇔<< 所以()h t '在(),1λ上单调递增,所以()()10h t h ''<=所以()h t 在(),1λ上单调递减, 故()()10h t h >=不符合题意综上所述,实数λ的取值范围是[)1,+∞.18.解:(1)∵f (x )=(lnx ﹣k ﹣1)x (k ∈R ), ∴x >0,=lnx ﹣k ,①当k≤0时,∵x >1,∴f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值; ②当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k时,f′(x )<0;当x >e k,f′(x )>0,∴函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k,无极大值. (2)∵对于任意x ∈[e ,e 2],都有f (x )<4lnx 成立,∴f (x )﹣4lnx <0,即问题转化为(x ﹣4)lnx ﹣(k+1)x <0对于x ∈[e ,e 2]恒成立,即k+1>对于x ∈[e ,e 2]恒成立,令g (x )=,则,令t (x )=4lnx+x ﹣4,x ∈[e ,e 2],则,∴t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e )=e ﹣4+4=e >0,故g′(x )>0, ∴g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2﹣,要使k+1>对于x ∈[e ,e 2]恒成立,只要k+1>g (x )max ,∴k+1>2﹣,即实数k 的取值范围是(1﹣,+∞).证明:(3)∵f (x 1)=f (x 2),由(1)知,函数f (x )在区间(0,e k)上单调递减, 在区间(e k,+∞)上单调递增,且f (e k+1)=0,不妨设x 1<x 2,则0<x 1<e k<x 2<e k+1,要证x 1x 2<e 2k,只要证x 2<,即证<,∵f (x )在区间(e k ,+∞)上单调递增,∴f (x 2)<f (),又f (x 1)=f (x 2),即证f (x 1)<,构造函数h (x )=f (x )﹣f ()=(lnx ﹣k ﹣1)x ﹣(ln﹣k ﹣1),即h (x )=xlnx ﹣(k+1)x+e 2k(),x ∈(0,e k)h′(x )=lnx+1﹣(k+1)+e 2k (+)=(lnx ﹣k ),∵x ∈(0,e k ),∴lnx ﹣k <0,x 2<e 2k ,即h′(x )>0,∴函数h (x )在区间(0,e k )上单调递增,故h′(x )<h (e k ), ∵,故h (x )<0,∴f (x 1)<f (),即f (x 2)=f (x 1)<f (),∴x 1x 2<e 2k成立.19.(Ⅰ)由()21e 2xf x a x x =--得()e 1x f x a x '=--.因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直, 所以()010f a '=-=,解得1a =.(Ⅱ)由(Ⅰ)知()e 1xf x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即 1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反. 令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-, 所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增. 又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<. (Ⅲ)证明:令()1e ln xg x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x'=+--.令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x-++, 因为1x >,所以e ln 0xx >,e 0xx >,()2e 10x x x ->,320x>, 所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增. 所以1x >时,()0g x >,即1x >时,1e ln xx x x>-.20.(1)当0b =时,()321233f x x x x =-+,()()()2'4313f x x x x x =-+=--.当()1,3x Î时,()'0f x <,故函数()f x 在()1,3上单调递减; 当()3,4x Î时,()'0f x >,故函数()f x 在()3,4上单调递增. 由()30f =,()()4143f f ==.∴()f x 在[]1,4上的值域为40,3轾犏犏臌;(2)由(1)可知,()()()2'4313f x x x x x =-+=--, 由()'0f x <得13x <<,由()'0f x >得1x <或3x >. 所以()f x 在()1,3上单调递减,在(),1-?,()3,+?上单调递增;所以()()max 413f x f b ==+,()()min 3f x f b ==,所以当403b +>且0b <,即403b -<<时,()10,1x $?,()21,3x Î,()33,4x Î,使得()()()1230f x f x f x ===,由()f x 的单调性知,当且仅当4,03b 骣琪?琪桫时,()f x 有三个不同零点.21.(1)当1=a 时,函数2ln 21)(2--=x x x f ,xx x f 1)('-=, ∴0)1('=f ,23)1(-=f , ∴曲线)(x f 在点))1(,1(f 处的切线方程为23-=y . (2))0(1)('2>-=x xax x f . 当0≤a 时,0)('<x f ,)(x f 的单调递减区间为),0(+∞; 当0>a 时,)(x f 在),0(a a 递减,在),(+∞aa 递增.22.(Ⅰ)211()0sin f x x x θ'=-+≥∙在[1,)-+∞上恒成立,即2sin 10sin x x θθ∙-≥∙.∵(0,)θπ∈,∴sin 0θ>.故sin 10x θ∙-≥在[1,)-+∞上恒成立 只须sin 110θ∙-≥,即sin 1θ≥,又0sin 1θ<≤只有sin 1θ=,得2πθ=.由22111()0x f x x x x-'=-+==,解得1x =. ∴当01x <<时,()0f x '<;当1x >时,()0f x '>.故()f x 在1x =处取得极小值1,无极大值. (Ⅱ)构造1212()ln ln e e F x kx x kx x x x x+=---=--,则转化为;若在[1,]e 上存在0x ,使得0()0F x >,求实数k 的取值范围.当0k ≤时,[1,]x e ∈,()0F x <在[1,]e 恒成立,所以在[1,]e 上不存在0x ,使得0002()ekx f x x ->成立. ②当0k >时,2121()e F x k x x+'=+-2222121()kx e x kx e e e x x x ++-+++-==. 因为[1,]x e ∈,所以0e x ->,所以()0F x '>在[1,]x e ∈恒成立. 故()F x 在[1,]e 上单调递增,max 1()()3F x F e ke e ==--,只要130ke e-->, 解得231e k e +>. ∴综上,k 的取值范围是231(,)e e++∞.。

函数与导数例高考题汇编(含答案)

函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。

高中数学导数练习题

高中数学导数练习题

高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。

2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。

3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。

4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。

5. 求函数 $f(x) = e^{2x}$ 的导数。

二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。

2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。

3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。

4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。

5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。

三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。

2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。

3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。

4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。

5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。

四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。

2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。

3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。

2024届高考数学复习:专项(参变分离法解决导数问题)练习(附答案)

2024届高考数学复习:专项(参变分离法解决导数问题)练习(附答案)

2024届高考数学复习:专项(参变分离法解决导数问题)练习一、单选题1.已知函数()e x b f x ax -=+(),a b ∈R ,且(0)1f =,当0x >时,()cos(1)f x x x >-恒成立,则a 的取值范围为( ) A .()0,+?B .()1e,-+∞C .(),e -∞D .()e,+∞2.若函数()ln x f x x x ae =+没有极值点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .1,e∞⎛⎤-- ⎥⎝⎦D .1,0e⎛⎫- ⎪⎝⎭3.若函数()24ln f x x x b x =-++在()0,∞+上是减函数,则b 的取值范围是( ) A .(],2-∞- B .(),2-∞-C .()2,-+∞D .[)2,-+∞4.已知函数()x ef x ex e -=+-(e 为自然对数的底数),()ln 4g x x ax ea =--+.若存在实数1x ,2x ,使得()()121f x g x ==,且211x e x ≤≤,则实数a 的最大值为( ) A .52eB .25e e + C .2e D .1 5.设函数()1axf x xe x-=-在()0,∞+上有两个零点,则实数a 的取值范围( )A .2,e ⎛⎫-∞ ⎪⎝⎭B .()1,eC .12,e e ⎛⎫⎪⎝⎭D .20,e ⎛⎫ ⎪⎝⎭6.已知关于x 的方程()22ln 2x x x k x +=++在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,则实数k 的取值范围为( )A .ln 21,15⎛⎤+ ⎥⎝⎦B .9ln 21,105⎛⎤+ ⎥⎝⎦C .(]1,2D .(]1,e7.若函数()2sin cos cos =++f x x x x a x 在R 上单调递增,则实数a 的取值范围是( ) A .[]1,1-B .[]1,3-C .[]3,3-D .[]3,1--8.若关于x 的不等式(a +2)x ≤x 2+a ln x 在区间[1e,e ](e 为自然对数的底数)上有实数解,则实数a 的最大值是( ) A .﹣1B .12(1)-+ee eC .(3)1--e e e D .(2)1--e e e 9.已知函数()1xf x e x =--,()ln 1g x x ax =--(0a >,e 为自然对数的底数).若存在()00x ∈+∞,,使得()()000f x g x ⋅>,则实数a 的取值范围为( ) A .()0,1B .10,e ⎛⎫ ⎪⎝⎭C .210,e ⎛⎫ ⎪⎝⎭D .310,e ⎛⎫ ⎪⎝⎭10.已知函数()3x f x e ax =+-,其中a R ∈,若对于任意的12,[1,)x x ∈+∞,且12x x <,都有()21x f x ()()1212x f x a x x -<-成立,则a 的取值范围是( )A .[3,)+∞B .[2,)+∞C .(,3]-∞D .(,2]-∞11.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦B .111e⎛⎫--- ⎪⎝⎭C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,12.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞ C .(],1-∞D .(],3-∞13.对于函数()f x ,把满足()00f x x =的实数0x 叫做函数()f x 的不动点.设()ln f x a x =,若()f x 有两个不动点,则实数a 的取值范围是( ) A .()0,eB .(),e +∞C .()1,+∞D .()1,e14.已知函数()xe f x ax x =-,()0,x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(],e -∞ B .(),e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦二、多选题15.对于函数()2ln xf x x=,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .()2f f f <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >16.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( ) A .当1a =时,()f x 在0x =处的切线方程为y x = B .若函数()f x 在()π,π-上恰有一个极值,则0a = C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点三、解答题17.已知函数()ln f x a x ax =+-,且()0f x ≤恒成立.(1)求实数a 的值;(2)记()()h x x f x x =+⎡⎤⎣⎦,若m ∈Z ,且当()1,x ∈+∞时,不等式()()1h x m x >-恒成立,求m 的最大值.18.已知函数32()()f x ax bx x R =+∈的图象过点(1,2)P -,且在P 处的切线恰好与直线30x y -=垂直.(1)求()f x 的解析式;(2)若()()3g x mf x x =-在[1,0]-上是减函数,求m 的取值范围. 19.已知函数()()()21ln 1f x x a x x =-+-+(0a >).(1)讨论函数()f x 的单调性; (2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围. 20.已知函数()212f x x =,()ln g x a x =. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)设()()()h x f x g x =+,若对任意两个不等的正数1x ,2x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;(3)若[]1,e 上存在一点0x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.21.已知函数()ln 1f x x x =++,2()2g x x x =+. (1)求函数()()()h x f x g x =-在(1,(1))h 处的切线方程;(2)若实数m 为整数,且对任意的0x >时,都有()()0f x mg x -≤恒成立,求实数m 的最小值. 22.设函数()()xf x a x e =-.(1)求函数的单调区间;(2)若对于任意的[)0,x ∈+∞,不等式()2f x x ≤+恒成立,求a 的取值范围.23.已知函数()ln f x mx nx x =+的图象在点(),()e f e 处的切线方程为4y x e =-.(本题可能用的数据:ln 20.69≈, 2.71828e = 是自然对数的底数)(1)求函数()f x 的解析式;(2)若对任意(1,)x ∈+∞,不等式2[()1](1)f x t x ->-恒成立,求整数t 的最大值. 24.已知函数()()()1ln f x a x x a R =-+∈. (1)当1a =-时,求()f x 的极值;(2)设()()1F x f x =+,若()0F x <对[)1,x ∈+∞恒成立,求实数a 的取值范围. 25.已知函数323()2f x x ax =-+. (1)讨论函数()f x 的单调性; (2)设1a =,当12x ≥时,()()xf x x k e >-,实数k 的取值范围.参考答案一、单选题1.已知函数()e x b f x ax -=+(),a b ∈R ,且(0)1f =,当0x >时,()cos(1)f x x x >-恒成立,则a 的取值范围为( ) A .()0,+?B .()1e,-+∞C .(),e -∞D .()e,+∞【答案】B 【要点分析】 由()0e1bf -==,可得0b =,从而()e xf x ax =+,从而当0x >时,e cos(1)xa x x>--恒成立,构造函数()()e ,0,xs x x x=∈+∞,可得()()min 1e s x s ==,结合1x =时,cos(1)x -取得最大值1,从而e cos(1)xx x--的最大值为1e -,只需1e a >-即可.【答案详解】 由题意,()0e1bf -==,解得0b =,则()e x f x ax =+,则当0x >时,e cos(1)xax x x +>-,即e cos(1)xa x x>--恒成立,令()()e ,0,xs x x x =∈+∞,则()()2e 1x x s x x-'=, 当()0,1∈x 时,()0s x '<,()1,∈+∞x 时,()0s x '>, 所以()s x 在()0,1上是减函数,在()1,+?是增函数,()()min 1e s x s ==,又因为当1x =时,cos(1)x -取得最大值1,所以当1x =时,e cos(1)xx x--取得最大值1e -,所以1e a >-. 故选:B. 【名师点睛】关键点名师点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e cos(1)xa x x>--,进而求出e cos(1)xx x--的最大值,令其小于a 即可.考查学生的逻辑推理能力,计算求解能力,属于中档题.2.若函数()ln x f x x x ae =+没有极值点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .1,e∞⎛⎤-- ⎥⎝⎦D .1,0e⎛⎫- ⎪⎝⎭【答案】C 【要点分析】先对函数求导,然后结合极值存在的条件转化为函数图象交点问题,分离参数后结合导数即可求解. 【答案详解】由题意可得,()1ln 0x f x x ae '=++=没有零点, 或者有唯一解(但导数在点的两侧符号相同),即1ln xxa e +-=没有交点,或者只有一个交点但交点的两侧符号相同. 令1ln ()x xg x e +=,0x >,则1ln 1()xx x g x e --'=, 令1()ln 1h x x x=--则()h x 在()0,∞+上单调递减且()10h =,所以当01x <<时,()0h x >,()0g x '>,()g x 单调递增, 当1x >时,()0h x <,()0g x '<,()g x 单调递减, 故当1x =时,()g x 取得最大值1(1)g e=, 又0x →时,()g x →-∞,x →+∞时,()0g x →, 结合图象可知,1a e -≥即1a e≤-. 故选:C.【名师点睛】方法名师点睛:已知函数没有极值点,求参数值(取值范围)常用的方法: (1)分离参数法:先求导然后将参数分离,转化成求函数的值域问题加以解决;(2)数形结合法:先求导然后对导函数变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.若函数()24ln f x x x b x =-++在()0,∞+上是减函数,则b 的取值范围是( )A .(],2-∞-B .(),2-∞-C .()2,-+∞D .[)2,-+∞【答案】A 【要点分析】2()4ln f x x x b x =-++在()0,∞+上是减函数等价于()'0f x ≤在()0,∞+上恒成立,利用分离参数求解即可. 【答案详解】∵2()4ln f x x x b x =-++在()0,∞+上是减函数,所以()'0f x ≤在()0,∞+上恒成立,即'()240bf x x x=-++≤,即224b x x ≤-, ∵22242(1)22x x x -=--≥-,∴2b ≤-,故选:A. 【名师点睛】本题主要考查“分离参数”在解题中的应用、函数的定义域及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 4.已知函数()x ef x ex e -=+-(e 为自然对数的底数),()ln 4g x x ax ea =--+.若存在实数1x ,2x ,使得()()121f x g x ==,且211x e x ≤≤,则实数a 的最大值为( ) A .52eB .25e e + C .2eD .1【答案】C 【要点分析】根据()1f e =可求得22e x e ≤≤,利用()21g x =得到22ln 3x a x e +=+,将问题转化为()ln 3x h x x e+=+,2,x e e ⎡⎤∈⎣⎦的最大值的求解问题,利用导数求得()max h x ,从而求得结果.【答案详解】()01f e e e e =+-= ,1x e ∴=,又211x e x ≤≤且20x >,22e x e ∴≤≤, 由()21g x =,即22ln 41x ax ea --+=,整理得:22ln 3x a x e+=+,令()ln 3x h x x e+=+,2,x e e ⎡⎤∈⎣⎦,则()()()()()221ln 3ln 2ex e x x x x h x x e x e +-+--'==+-, e y x= 和ln y x =-在2,e e ⎡⎤⎣⎦上均为减函数, ln 2e y x x∴=--在2,e e ⎡⎤⎣⎦上单调递减,max 1ln 220y e ∴=--=-<, 即()0h x '<在2,e e ⎡⎤⎣⎦上恒成立,()h x ∴在2,e e ⎡⎤⎣⎦上单调递减,()()max ln 322e h x h e ee +∴===,即实数a 的最大值为2e .故选:C. 【名师点睛】本题考查导数在研究函数中的应用,解题关键是能够通过分离变量的方式将问题转化为函数最值的求解问题,进而利用导数求得函数最值得到结果. 5.设函数()1axf x xe x-=-在()0,∞+上有两个零点,则实数a 的取值范围( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .()1,eC .12,e e ⎛⎫⎪⎝⎭D .20,e ⎛⎫ ⎪⎝⎭【答案】D 【要点分析】令()0f x =,进行参变分离得()2ln >0x a x x =,设()()2ln >0xg x x x=,将问题等价于y = a 与()g x 在()0+∞,有两个交点.求导,要点分析导函数的正负得出函数()g x 的单调性,从而作出图象和最值,运用数形结合的思想可得选项. 【答案详解】令()0f x =,即10axxe x--=,解得()2ln >0x a x x =,设()()2ln >0x g x x x =,所以()f x 在()0+∞,有两个零点等价于y = a 与()g x 在()0+∞,有两个交点. 因为()()()2'21ln 0>0x g x xx -==,得x e =,所以()g x 在(0,e )上单调递增,在()e +∞,上单调递减,所以()()max 2g x g e e==. 如图所示,画出()g x 的大致图象。

高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第8练 导数与函数的单调性习题精选一、单选题1. 函数21()9ln 2f x x x =-在区间上单调递减,则实数m 的取值范围是( )A.B. C.D.2. 若函数()sin()sin(2)cos()2f x x x a x πππ=+---在区间(0,]2π上单调递增,则实数a 的取值范围是( )A. (,1]-∞-B. (-∞C. D. [1,)+∞3. 若函数在其定义域上不单调,则实数a 的取值范围为( )A. 1a <或4a >B. 4aC. 14a <<D. 14a4. 若函数2()ln 2f x x ax =+-在区间1(,2)2内存在单调递增区间,则实数a 的取值范围是( )A. (-,-2]∞B. 1(-,+)8∞C. 1(-2,-)8D. (-2,+)∞5. 已知函数()f x 是定义在R 上的偶函数,设函数()f x 的导函数为()f x ',若对任意0x >都有2()()0f x xf x +'>成立,则( )A. 4(2)9(3)f f -<B. 4(2)9(3)f f ->C. 2(3)3(2)f f >-D. 3(3)2(2)f f -<-(2,1)m m +(0,1)(0,2)6. 定义在(0,)+∞上的函数()f x 满足()10xf x '+>,(3)=-ln 3f ,则不等式()+0x f e x >的解集为( )A. 3(,+)e ∞B. 3(0,)eC. (ln 3,)+∞D. 3(ln 3,)e7. 已知函数,若存在1[,2]2x ∈,使得()()0f x xf x +'>,则实数b 的取值范围是( )A.B. 9(,)4-∞C. (,3)-∞D. (,2)-∞8. 已知4ln 3a π=,3ln 4b π=,34ln c π=,则a ,b ,c 的大小关系是( ) A. c b a <<B. b c a <<C. b a c <<D. a b c <<9. 已知是函数的导数,且,当0x 时,,则不等式的解集是( )A.B.C.D.10. 设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()2f x f x x =-+,当0x >时,()2 1.f x x '>+若(1)()21f a f a a +-++,则实数a 的取值范围是( )A. 1[,)2-+∞B. 3[,)2-+∞C. [1,)-+∞D. [2,)-+∞二、填空题11. 函数2()24ln f x x x x =--,则()f x 的单调递增区间为__________12. 设函数()x x f x e ae -=+ (a 为常数),若()f x 为奇函数,则a =__________;若()f x 是R 上的增函数,则a 的取值范围是__________.13. 写出一个同时具有下列性质①②③的函数__________.()f x '()f x①;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.三、解答题14. 已知函数2()sin sin 2.f x x x =(1)讨论()f x 在区间(0,)π的单调性; (2)证明:33|()|8f x ; (3)设*n N ∈,证明:222sin sin 2sin 4x x x (2)3sin 2.4nnn x15. 已知0a >且1a ≠,函数()(0).ax x f x x a =>(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.16. 已知函数()2ln 1af x x x x=--+,()(2ln ).x g x e x x =- (1)若函数()f x 在定义域上是增函数,求a 的取值范围; (2)求()g x 的单调区间.17. 已知函数21()ln (1)(0).2f x a x a x x a =-++->(1)讨论()f x 的单调性; (2)若21()2f x x ax b -++恒成立,求实数ab 的最大值.18. (本小题12.0分)已知函数2().xf x e ax x =+-(1)当1a =时,讨论()f x 的单调性; (2)当0x 时,31()12f x x +,求a 的取值范围.19. 已知函数(1)令,讨论的单调区间;(2)若2a =-,正实数12,x x 满足,证明1251.2x x -+()g x 1212()()0f x f x x x ++=20. 已知函数2()(2)x x f x ae a e x =+--,().a R ∈(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.答案和解析1.【答案】A解:()f x 的定义域是(0,)+∞,9(3)(3)()x x f x x x x+-'=-=, 令()0f x '>,解得:3x >,令()0f x '<,解得:03x <<, 故()f x 在(0,3)递减,在(3,)+∞递增, 若函数21()9ln 2f x x x =-在区间(2,1)m m +上单调递减, 则20m 且013m <+且21m m <+,解得:01m <, 故选:.A2.【答案】A解:因为1()sin()sin(2)cos()cos sin cos sin 2cos 22f x x x a x x x a x x a x πππ=+---=+=+在(0,]2π上是增函数,所以当(0,]2x π∈时,,即212sin sin 0x a x --,因为当(0,]2x π∈时,sin (0,1],x ∈所以12sin sin a x x-+, 令1()2sin sin g x x x =-+,(0,],2x π∈则22cos 1()2cos cos (2)0sin sin x g x x x x x '=--=--<,所以()g x 在(0,]2π单调递减,所以,即(,1],a ∈-∞-故选.A3.【答案】A解:求导可得,()f x ∴在其定义域上不单调等价于方程有两个解,,解得1a <或 4.a >故选.A4.【答案】D解:根据题意得1()2f x ax x'=+, ()f x 在区间1(,2)2内存在单调递增区间,则()0f x '在内有解,,故min 21()2a x-,,令21()=-2g x x ,,则()g x 在1(,2)2单调递增,1()(2,)8g x ∈--, 故-2.a > 故选.D5. 【答案】A解:1()||f x x =时,3(3)1f -=,2(2)1f -=,可以排除D ; ()||f x x =时,2(3)6f =,3(2)3(2)6f f -==,可排除C ;设2()()g x x f x =,22()(())2()()(2()())g x x f x xf x x f x x f x xf x '='=+'=+',0x >时,2()()0f x xf x +'>,0x ∴>时()0g x '>,()g x 为(0,)+∞上的单调增函数;(2)(3)g g ∴<,4(2)9(3)f f ∴<,又()f x 为偶函数,4(2)9(3)f f ∴-<,A ∴对,A ,B 矛盾,故B 错,故选.A6.【答案】C解:令()()ln g x f x x =+,(0,).x ∈+∞ 在(0,)+∞上的函数()f x 满足()10xf x '+>,1()1()()0xf x g x f x x x'''+∴=+=>,∴函数()g x 在(0,)+∞上单调递增,(3)(3)ln 30g f =+=,而不等式,所以3x e >,即ln3x >,∴不等式()0x f e x +>的解集为(ln3,).+∞故选.C7.【答案】B解:,,∴,∴,存在,使得,即,∴,设,∴.而,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以,∴,故选:.B8.【答案】B解: 令ln ()xf x x=,0x >, 则21ln (),0xf x x x-'=>, 令()0f x '>,得0x e <<,令()0f x '<,得x e >, 所以()f x 在(0,)e 单调递增,在(,)e +∞单调递减, 又3e π>>, 所以()(3)f f π<,即ln ln 33ππ<, 所以3ln ln 3ππ<, 又4ln 3a π=,34ln c π=, 所以a c >, 又由()f x 的单调性得ln 4ln 4ππ<,即4ln 4ln ππ<, 因为343ln 4,4ln 3ln b c πππ===, 所以b c <, 综合得.b c a << 故选.B9.【答案】D解:设,则因为当0x 时,,所以当0x 时,,即在上单调递增. 因为,所以,所以是偶函数. 因为,所以,即,,则,解得1.2x <故选.D10.【答案】A解:设()()g x f x x =-,则()()()[()]0g x g x f x x f x x --=---+=,()()g x g x ∴=-,()g x ∴是偶函数,当0x >时,()()1g x f x '='-,而()21f x x '>+,则()()120g x f x x '='->>,()g x ∴在(0,)+∞上是增函数, (1)()21f a f a a +-++, (1)(1)()()f a a f a a ∴+-+---,即(1)()g a g a +-,|1|||a a ∴+-,()g x ()g x即12a -, 故选:.A11.【答案】(2,)+∞解:()f x 定义域为(0,)+∞,242(2)2(2)(1)()22x x x x f x x x x x---+'=--==,故当02x <<时,()0f x '<,()f x 单调递减, 当2x >时,()0f x '>,()f x 单调递增, 故()f x 的单调递增区间为(2,).+∞ 故答案为(2,).+∞12.【答案】1-(,0]-∞解:根据题意,函数()xxf x e ae-=+,若()f x 为奇函数,则()()f x f x -=-, 即()xx x x eae e ae --+=-+,变形可得1a =-,经检验,1a =-满足()f x 为奇函数,()f x 是R 上的增函数,()0f x '∴对x R ∀∈恒成立,即0x xae e -对x R ∀∈恒成立,2()x a e ∴恒成立. 2()0x e >,0.a ∴故答案为1-;(,0].-∞13.【答案】2()(f x x =答案不唯一,均满足)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②,()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③. 故答案为:2()(f x x =答案不唯一,均满足)14.【答案】解:23(1)()sin sin 22sin cos f x x x x x ==,222222()2sin (3cos sin )2sin (34sin )2sin [32(1cos 2)]f x x x x x x x x ∴'=-=-=--22sin (12cos 2)x x =+,令()0f x '=,解得,3x π=,或23x π=, 当(0,)3x π∈或2(,)3ππ时,()0f x '>,当2(,)33x ππ∈时,()0f x '<, ()f x ∴在(0,)3π,2(,)3ππ上单调递增,在2(,)33ππ上单调递减.证明:(2)(0)()0f f π==,由(1)可知2()()3f x f π==极小值()()3f x f π==极大值()0f x '>()f x 'max 33()8f x ∴=,min 33()8f x =-, ,()f x 为周期函数,33|()|8f x ∴; (3)由(2)可知322333sin sin 2()84x x =,322333sin 2sin 4()84x x =,32232333sin 2sin 2()84x x =,…,3212333sin 2sin 2()84n nx x -=, 334sin sin 2sin 4x x x ∴……313233sin 2sin 2sin (sin sin 2sin 4n n x x x x x x -=……331223sin 2sin 2)sin 2()4nn nnx x x -,222sin sin 2sin 4x x x ∴……23sin 2.4nnn x15.【答案】解:(1)2a =时,2()2x x f x =,222ln 2()222ln 2(2ln 2)ln 2()(2)22x x x xxx x x x x x f x ⋅-⋅-⋅-'===, 当2(0,)ln 2x ∈时,()0f x '>,当2(,)ln 2x ∈+∞时,()0f x '<, 故()f x 在2(0,)ln 2上单调递增,在2(,)ln 2+∞上单调递减. (2)由题知()1f x =在(0,)+∞有两个不等实根,ln ln ()1ln ln a x x af x x a a x x a x a=⇔=⇔=⇔=, 令ln ()x g x x =,21ln ()xg x x-'=,()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,所以max 1()()g x g e e==, 又(1)0g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,即0()()g a g e <<,解得1a >且a e ≠, 所以a 的取值范围是(1,)(,).e e ⋃+∞16.【答案】解:(1)由题意得0x >,22()1af x x x'=-+,由函数()f x 在定义域上是增函数得,()0f x ', 即222(1)1(0)a x x x x -=--+>恒成立, 因为2(1)11(x --+当1x =时,取等号), 所以a 的取值范围是[1,).+∞2(2)()(2ln 1)x g x e x x x'=---+,由(1)得2a =时,2()2ln 1f x x x x=--+, 此时()f x 在定义域上是增函数,又(1)0f =, 所以,当(0,1)x ∈时,()0f x <, 当(1,)x ∈+∞时,()0.f x > 所以,当(0,1)x ∈时,()0g x '>, 当(1,)x ∈+∞时,()0.g x '< 所以()g x 的单调递增区间是(0,1),()g x 的单调递减区间是(1,).+∞17.【答案】解:,(0,0)a x >>,①1a =时,,()f x ∴在(0,)+∞上单调递减;②01a <<时,由()0f x '>,解得:1a x <<,()f x ∴在(,1)a 上单调递增,在(0,)a ,(1,)+∞上单调递减;③1a >时,同理()f x 在(1,)a 上单调递增,在(0,1),(,)a +∞上单调递减;21(2)()2f x x ax b -++恒成立,ln 0a x x b ∴-+恒成立,令()ln g x a x x b =-+,则()a xg x x-'=, ()g x ∴在(0,)a 上单调递增,在(,)a +∞上单调递减.max ()()ln 0g x g a a a a b ∴==-+,ln b a a a ∴-,22ln ab a a a ∴-,令22()ln (0)h x x x x x =->,则()(12ln )h x x x '=-,()h x ∴在上单调递增,在)+∞上单调递减,max ()2e h x h e e ∴==-=, .2e ab∴ 即ab 的最大值为.2e18.【答案】解:(1)当1a =时,2()x f x e x x =+-,()21x f x e x '=+-,记()()g x f x =',因为()20xg x e '=+>,所以()()21xg x f x e x ='=+-在R 上单调递增, 又(0)0f '=,得当0x >时()0f x '>,即2()xf x e x x =+-在(0,)+∞上单调递增; 当0x <时()0f x '<,即2()xf x e x x =+-在(,0)-∞上单调递减. 所以2()xf x e x x =+-在(,0)-∞上单调递减,在(0,)+∞上单调递增.(2)①当0x =时,a ∈R ;②当0x >时,31()12f x x +即32112xx x e a x++-, 令32112()x x x e h x x++-=,231(2)(1)2()x x e x x h x x ----'= 记21()12x m x e x x =---,()1x m x e x '=-- 令()1xq x e x =--,因为0x >,所以()10xq x e '=->,所以()()1xm x q x e x '==--在(0,)+∞上单调递增,即()1(0)0xm x e x m ''=-->=所以21()12x m x e x x =---在(0,)+∞上单调递增,即21()1(0)02x m x e x x m =--->=, 故当(0,2)x ∈时,()0h x '>,32112()xx x e h x x ++-=在(0,2)上单调递增; 当(2,)x ∈+∞时,()0h x '<,32112()xx x e h x x++-=在(2,)+∞上单调递减;所以2max7[()](2)4e h x h -==,所以274e a -,综上可知,实数a 的取值范围是27[,).4e -+∞19.【答案】(1)解:21()()(1)ln (1)12g x f x ax x ax a x =--=-+-+,所以21(1)1()(1)ax a x g x ax a x x-+-+'=-+-=,当0a 时,因为0x >,所以()0.g x '> 所以()g x 在(0,)+∞上是递增函数;当0a >时,1()(1)()a x x a g x x--+'=, 令()0g x '=,得1x a=, 所以当1(0,)x a∈时,()0g x '>;当1(,)x a∈+∞时,()0g x '<,因此函数()g x 在1(0,)a 是增函数,在1(,)a+∞是减函数,综上,当0a 时,()g x 的单调递增区间是(0,)+∞,无单调递减区间; 当0a >时,()g x 的单调递增区间是1(0,)a ,单调递减区间是1(,).a+∞(2)证明:当2a =-时,2()ln ,0f x x x x x =++>,由1212()()0f x f x x x ++=,即2211122212ln ln 0x x x x x x x x ++++++=,从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,则由()ln t t t ϕ=-,得1()t t tϕ-'=,0t >, 可知,()t ϕ在区间(0,1)上单调递减,在区间(1,)+∞上单调递增, 所以()(1)1t ϕϕ=,所以21212()()1x x x x +++,解得12512x x -+或12512x x --+, 又因为10x >,20x >,因此12512x x -+成立.20.【答案】解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(i)若0a ,则在(,)x ∈-∞+∞时()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ii)若0a >,则由()0f x '=得ln .x a =-当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(i)若0a ,由(1)知,()f x 在(,)-∞+∞上单调递减,故()f x 至多有一个零点,不合题意.(ii)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln .f a a a-=-+①当1a =时,由于(ln )0,f a -=故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0.f a -< 又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则0000()(2)n n f n e ae a n =+-- 000020.n n e n n >->-> 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).。

高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

高三数学 导数大题20道训练

高三数学 导数大题20道训练

高三数学导数大题20道训练II)若函数f(x)在[0,1]上单调递增,求a的取值范围;III)若函数f(x)的最小值为-2,求a的取值范围.10.已知函数f(x)=x3-3x2+2x+1.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,1]上单调递增,求函数在[0,1]上的最小值.11.已知函数f(x)=x2e-x.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,1]上单调递减,求函数在[0,1]上的最大值.12.已知函数f(x)=x3-3x2+3x-1.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递增,求函数在[0,2]上的最小值.13.已知函数f(x)=x3-6x2+9x-2.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[1,3]上单调递减,求函数在[1,3]上的最大值.14.已知函数f(x)=x3-3x+2.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递增,求函数在[0,2]上的最小值.15.已知函数f(x)=x3-3x2+4.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递减,求函数在[0,2]上的最大值.16.已知函数f(x)=x3-6x2+12x-8.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[1,3]上单调递增,求函数在[1,3]上的最小值.17.已知函数f(x)=x3-9x2+24x-16.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[2,4]上单调递减,求函数在[2,4]上的最大值.18.已知函数f(x)=x3-2x2-5x+6.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[1,3]上单调递增,求函数在[1,3]上的最小值.19.已知函数f(x)=x3-3x2+3.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递减,求函数在[0,2]上的最大值.20.已知函数f(x)=x3-3x+1.I)求函数f(x)的单调区间;II)求函数f(x)的极值;III)若函数f(x)在[0,2]上单调递增,求函数在[0,2]上的最小值.Ⅱ) 当 $a>0$ 时,若过原点与函数 $f(x)$ 的图像相切的直线恰有三条,求实数 $a$ 的取值范围。

2024届高考数学复习:专项(利用导数解决双变量问题)练习(附答案)

2024届高考数学复习:专项(利用导数解决双变量问题)练习(附答案)

2024届高考数学复习:专项(利用导数解决双变量问题)练习一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln 2-B .34ln 2-C .53ln 2-D .55ln 2-3.已知函数()e ,()ln xf x xg x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( )A .1eB .2eC .21e D .24e 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D.二、解答题 6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>.10.已知函数1()ln f x a x x x=-+,其中0a >. (1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+?单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.13.已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--.14.已知函数2()(2)()x f x xe a x x a R =-+∈. (1)当1a =时,求函数()f x 的单调区间; (2)当1a e>时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x …都成立,求实数a 的取值范围.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围; (2)已知1x ,2x 是函数()f x的两个不同的零点,求证:12x x +>. 17.已知函数()()()1xxf x ae ea x a R -=--+∈,()f x 既存在极大值,又存在极小值.(1)求实数a 的取值范围;(2)当01a <<时,1x ,2x 分别为()f x 的极大值点和极小值点.且()()120f x kf x +>,求实数k 的取值范围.18.已知函数()()22ln xg x x t t R e=-+∈有两个零点1x ,2x . (1)求实数t 的取值范围; (2)求证:212114x x e+>. 19.已知函数()1ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+?上单调递增,求实数a 的取值范围;(2)当0b =时,若()f x 与()g x 的图象有两个交点()11,A x y ,()22,B x y ,试比较12x x 与22e 的大小.(取e 为2.8,取ln 2为0.7为1.4)20.已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x …成立,求实数a 的取值范围. 21.设函数22()ln ()f x a x x ax a R =-+-∈. (1)当1a =时,试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若函数()y h x =与函数y m =有两个不同交点1(C x ,)m ,2(D x ,)m ,设线段的中点为(,)E s m ,试问s 是否为()0h s '=的根?说明理由.22.已知函数()()2ln 1f x x a x =++.(1)若函数()y f x =在区间[)1,+∞内是单调递增函数,求实数a 的取值范围; (2)若函数()y f x =有两个极值点1x ,2x ,且12x x <,求证:()210ln f x x <<(注:e 为自然对数的底数)23.已知函数()ln x f x e x λλ=-(1)当1λ=-时,求函数()f x 的单调区间;(2)若0e λ<<,函数()f x 的最小值为()h λ,求()h λ的值域.24.已知函数21()ln ()2f x x ax x a =-+∈R . (1)若()f x 在定义域单调递增,求a 的取值范围;(2)设1e ea <+,m ,n 分别是()f x 的极大值和极小值,且S m n =-,求S 的取值范围. 25.已知函数21()(1)ln 2f x x a x a x =-++.(1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.参考答案一、单选题 1.设函数()311433f x x x =-+,函数()221g x x bx =-+,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .7,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .7,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【要点分析】由题意只需()()min min f x g x ≥,对函数()f x 求导,判断单调性求出最小值,对函数()g x 讨论对称轴和区间[]0,1的关系,得到函数最小值,利用()()min min f x g x ≥即可得到实数b 的取值范围. 【答案详解】若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,只需()()min min f x g x ≥, 因为()311433f x x x =-+,所以()24f x x '=-,当[]1,2x ∈时,()0f x '≤,所以()f x 在[]1,2上是减函数,所以函数()f x 取得最小值()25f =-. 因为()()222211g x x bx x b b =-+=-+-,当0b ≤时,()g x 在[]0,1上单调递增,函数取得最小值()01g =,需51-≥,不成立; 当1b ≥时,()g x 在[]0,1上单调递减,函数取得最小值()122g b =-,需522b -≥-,解得72b ≥,此时72b ≥; 当01b <<时,()g x 在[]0,b 上单调递减,在(],1b 上单调递增,函数取得最小值()21g b b =-,需251b -≥-,解得b ≤或b ≥综上,实数b 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭, 故选:A . 【名师点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2.已知函数1()ln f x x a x x=-+,且()f x 有两个极值点12,x x ,其中(]11,2x ∈,则()()12f x f x -的最小值为( ) A .35ln 2- B .34ln 2-C .53ln 2-D .55ln 2-【答案】A 【要点分析】()f x 的两个极值点12,x x 是()0f x '=的两个根,根据韦达定理,确定12,x x 的关系,用1x 表示出2x ,()()12f x f x -用1x 表示出,求该函数的最小值即可.【答案详解】解:()f x 的定义域()0,∞+,22211()1a x ax f x x x x'++=++=,令()0f x '=,则210x ax ++=必有两根12,x x , 2121240010a x x a x x ⎧->⎪+=->⎨⎪=>⎩,所以2111112,,a x a x x x ⎛⎫<-==-+ ⎪⎝⎭, ()()()11211111111111ln ln f x f x f x f x a x x a x x x x ⎛⎫⎛⎫∴-=-=-+--+ ⎪ ⎪⎝⎭⎝⎭,1111111111122ln 22ln x a x x x x x x x ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(]11()22ln ,1,2h x x x x x x x ⎛⎫⎛⎫=--+∈ ⎪ ⎪⎝⎭⎝⎭,22211112(1)(1)ln ()2121ln x x x h x x x x x x x x ⎡⎤+-⎛⎫⎛⎫⎛⎫'∴=+--++⋅= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当(]1,2x ∈时,()0h x '<,()h x 递减, 所以()()min 235ln 2h x h ==-()()12f x f x -的最小值为35ln 2-故选:A. 【名师点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3.已知函数()e ,()ln x f x x g x x x ==,若()()12f x g x t ==,其中0t >,则12ln tx x 的最大值为( ) A .1eB .2eC .21eD .24e 【答案】A 【要点分析】 由题意转化条件2ln 2ln x ex t ⋅=,通过导数判断函数()f x 的单调性,以及画出函数的图象,数形结合可知12ln x x =,进而可得12ln ln t t x x t =,最后通过设函数()()ln 0th t t t=>,利用导数求函数的最大值. 【答案详解】由题意,11e x x t ⋅=, 22ln x x t ⋅=,则2ln 2e ln xx t ⋅=,()()1x x x f x e xe x e '=+=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减, 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增,又(),0x ∈-∞时,()0f x <,()0,x ∈+∞时,()0f x >, 作函数()e xf x x =⋅的图象如下:由图可知,当0t >时,()f x t =有唯一解,故12ln x x =,且1>0x ,∴1222ln ln ln ln t t tx x x x t==⋅⋅, 设ln ()t h t t =,0t >,则21ln ()th t t-'=,令()0h t '=,解得e t =, 易得当()0,e t ∈时,()0h t '>,函数()h t 单调递增, 当()e,t ∈+∞时,()0h t '<,函数()h t 单调递减, 故()()1e eh t h ≤=,即12ln t x x ⋅的最大值为1e .故选:A . 【名师点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断12ln x x =. 4.设函数()12ln 133f x x x x=-+-,函数()25212g x x bx =--,若对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,则实数b 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .5,8⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .5,8⎛⎤-∞ ⎥⎝⎦【答案】A 【要点分析】根据对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立,用导数法求得()f x 的最小值,用二次函数的性质求得()g x 的最小值,再解不等式即可. 【答案详解】因为()12ln 133f x x x x =-+-, 所以()211233'=--f x x x,211233=--x x, 22323-+=-x x x,()()2123--=-x x x , 当12x <<时,()0f x '>,所以()f x 在[]1,2上是增函数, 所以函数()f x 取得最小值()213f =-. 因为()()2225521212=--=---g x x bx x b b , 当0b ≤时,()g x 取得最小值()0251=-g ,因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以()()10≥f g ,不成立; 当1b ≥时,()g x 取得最小值()71212=-g b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以722123-≤-b ,解得58≥b ,此时1b ≥; 当01b <<时,()g x 取得最小值()2512=--g b b , 因为对于[]11,2x ∀∈,[]20,1x ∃∈,使()()12f x g x ≥成立, 所以221352--≤-b ,解得12b ≥,此时112b ≤<; 综上:实数b 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选:A 【名师点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5.已知函数()224x x f x x ++=-,()111323x xxx g x -⋅-=,实数a ,b 满足0a b <<.若[]1,x a b ∀∈,[]21,1x ∃∈-,使得()()12f x g x =成立,则b a -的最大值为( )A .3B .4C .5D .【答案】A 【要点分析】首先化简函数()42,0f x x x x ⎛⎫=--+< ⎪⎝⎭,和()11233xx g x ⎛⎫=- ⎪⎝⎭,[]1,1x ∈-,并判断函数的单调性,由条件转化为子集关系,从而确定,a b 值. 【答案详解】()42f x x x ⎛⎫=--+ ⎪⎝⎭,0x <()241f x x '=-+,0x <, 当()0f x '>时,解得:20x -<<,当()0f x '<时,解得:2x <-,所以()f x 在(),0-∞的单调递增区间是()2,0-,单调递减区间是(),2-∞-,当2x =-时取得最小值,()22f -=()11233xx g x ⎛⎫=- ⎪⎝⎭,函数在[]1,1-单调递增,()3116g -=-,()13g =,所以,()3136g x -≤≤, 令()3f x =,解得:1x =-或4x =-,由条件可知()[],,,0f x x a b a b ∈<<的值域是()[],1,1g x x ∈-值域的子集, 所以b 的最大值是1-,a 的最小值是4-, 故b a -的最大值是3. 故选:A 【名师点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型. 二、解答题 6.已知函数()2x f x x e =-.(Ⅰ)求函数()f x 的图象在点()()0,0f 处的切线方程;(Ⅱ)若存在两个不相等的数1x ,2x ,满足()()12f x f x =,求证:122ln 2x x +<. 【答案】(Ⅰ)1y x =-;(Ⅱ)证明见解析. 【要点分析】(Ⅰ)首先求函数的导数,利用导数的几何意义,求函数的图象在点()()0,0f 处的切线方程;(Ⅱ)首先确定函数零点的区间,构造函数()()()ln 2ln 2F x f x f x =+--,利用导数判断函数()F x 的单调性,并得到()()ln 2ln 2f x f x +<-在()0,∞+上恒成立,并利用单调性,变形得到122ln 2x x +<. 【答案详解】(Ⅰ)()2e xf x '=-,所以()f x 的图象在点()()0,0f 处的切线方程为1y x =-.(Ⅱ)令()2e 0xf x '=-=,解得ln 2x =,当ln 2x =时()0f x '>,()f x 在(),ln 2-∞.上单调递增;当ln 2x >时,()0f x '< , ()f x 在()ln 2,+∞上单调递减.所以ln 2x =为()f x 的极大值点,不妨设12x x <,由题可知12ln 2x x <<. 令()()()ln 2ln 242e 2e xxF x f x f x x -=+--=-+,()42e 2e x x F x -'=--,因为e e 2x x -+…,所以()0F x '…,所以()F x 单调递减.又()00F =,所以()0F x <在()0,∞+上恒成立, 即()()ln 2ln 2f x f x +<-在()0,∞+上恒成立.所以()()()()()()()12222ln 2ln 2ln 2ln 22ln 2f x f x f x f x f x ==+-<--=-, 因为1ln 2x <,22ln 2ln 2x -<,又()f x 在(),ln 2-∞上单调递增,所以122ln 2x x <-, 所以122ln 2x x +<. 【名师点睛】思路名师点睛:本题是典型的极值点偏移问题,需先要点分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得x 与ln 2x -在同一个单调区间内,进而利用函数的单调性要点分析.7.已知函数()()3ln f x x k x k R =+∈,()f x '为()f x 的导函数.(1)当6k =时,(i )求曲线()y f x =在点()()1,1f 处的切线方程; (ii )求函数()()()9g x f x f x x'=-+的单调区间和极值; (2)当3k ≥-时,求证:对任意的[)12,1,x x ∈+∞且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【答案】(1)(i )98y x =-;(ii )递减区间为()0,1,递增区间为()1,+∞;极小值为()11g =,无极大值;(2)证明见解析. 【要点分析】(1)(i )确定函数()f x ,求出()f x ',然后利用导数的几何意义求出切线方程即可; (ii )确定函数()g x ,求出()g x ',利用导数研究函数()g x 的单调性与极值即可;(2)求出()f x ',对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立. 【答案详解】(1)(i )当6k =时,()36ln f x x x =+,故()263f x x x'=+. 可得()11f =,()19f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii )依题意,323()36ln g x x x x x =-++,()0,x ∈+∞,从而求导可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x'-+=. 令()0g x '=,解得1x =.当x 变化时,()g x ',()g x 的变化情况如下表:x ()0,11()1,+∞()g x ' -+()g x极小值所以,函数()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞;()g x 的极小值为()11g =,无极大值.(2)证明:由()3ln f x x k x =+,得()23k f x x x'=+. 对任意的[)12,1,x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln h x x x x=--,[)1,x ∈+∞. 当1x >时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当1t >时,()()1h t h >,即12ln 0t t t-->, 因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(1)(ii )可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++->. ③由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,对任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【名师点睛】结论名师点睛:本题考查不等式的恒成立问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集. 8.已知函数21()ln 2f x x a x =-.其中a 为常数. (1)若函数()f x 在定义域内有且只有一个极值点,求实数a 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 【答案】(1)0a >;(2)证明见解析. 【要点分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得()f x 的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时a 的范围,设12x x <,则(1x ∈,)2x ∈+∞,引入函数()))(0g x fx fx x =-≤≤,由导数确定它是减函数,得))f x f x <-,然后利用()()))()21111f x f x f x f x f x ⎤⎤==->=-⎦⎦,再结合()f x 的单调性得出证明. 【答案详解】(1)()2(0)a x ax x x xf x --'==>,当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增,不符合题意,当0a >时,令()0f x '=,得x =,当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,所以此时()f x 只有一个极值点.0a ∴>(2)由(1)知当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,函数()f x 至多有一个零点,不符合题意,当0a >时,令()0f x '=,得x =当x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞时,()0f x '>,()f x 单调递增,故当x =()f x 取得最小值()1ln 2a fa =-,当0a e <<时,1ln 0a ->,0f>,函数()f x 无零点,不合题意,当a e =时,1ln 0a -=,0f =,函数()f x 仅有一个零点,不合题意,当a e >时,1ln 0a -<,0f <,又()1102f =>,所以()f x 在(x ∈上只有一个零点, 令()ln 1p x x x =-+,则()11p x x'=-,故当01x <<时,()0p x '>,()p x 单调递增,当1x >时,()0p x '<,()p x 单调递减,所以()()10p x p ≤=,即ln 1≤-x x ,所以ln 221a a ≤-, 所以22(2)2ln 22(21)0f a a a a a a a a =-≥--=>,又2a >,所以()f x 在)x ∈+∞上只有一个零点.所以a e >满足题意.不妨设12x x <,则(1x ∈,)2x ∈+∞,令()))(0g x f x fx x =--≤≤,则()))ln ln g x a x a x =-+-,()22x ag x ='+=-,当0x <<时,()0g x '<,所以()g x在(上单调递减,所以当(x ∈时,()()00g x g <=,即))f x fx +<-,因为(1x ∈(1x ∈,所以()()))()21111f x f x f x f x f x ⎤⎤==-->+-=-⎦⎦,又)2x ∈+∞,)1x ∈+∞,且()f x在)+∞上单调递增,所以21x x >-,故12x x +>>. 【名师点睛】关键点名师点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设12x x <,则(1x ∈,)2x ∈+∞后关键是引入函数()))(0g x fx f x x =-≤≤,同样用导数得出它的单调性,目的是证得))f x f x +<-,然后利用这个不等关系变形()f x 的单调性得结论.9.已知函数ln ()xf x x=,()g x ax b =+,设()()()F x f x g x =-. (1)若1a =,求()F x 的最大值;(2)若()F x 有两个不同的零点1x ,2x ,求证:()()12122x x g x x ++>. 【答案】(1)最大值为1b --;(2)证明见解析. 【要点分析】(1)首先求出函数的导函数,再判断()F x '的符号,即可得到函数的单调区间,从而求出函数的最大值; (2)由题知,121212ln ln x x ax b ax b x x =+=+,,即2111ln x ax bx =+,2222ln x ax bx =+,要证()()12122x x g x x ++>,即可212112ln ln 2x x x x x x ->-+,令21x t x =,则只需证2(1)ln (1)1t t t t ->>+.构造函数2(1)()ln (1)1t t t t t ϕ-=->+,利用导数说明其单调性即可得证; 【答案详解】解:ln ()()()xF x f x g x ax b x =-=-- (1)解:当1a =时,ln ()xF x x b x=-- 所以21ln ()1xF x x -'=-. 注意(1)0F '=,且当01x <<时,()0F x '>,()F x 单调递增; 当1x >时,()0F x '<,()F x 单调递增减. 所以()F x 的最大值为(1)1F b =--. (2)证明:由题知,121212ln ln x xax b ax b x x =+=+,, 即2111ln x ax bx =+,2222ln x ax bx =+, 可得212121ln ln ()[()]x x x x a x x b -=-++. 121212122()()2()x x g x x a x x b x x ++>⇔++>+212112ln ln 2x x x x x x -⇔>-+. 不妨120x x <<,则上式进一步等价于2211212()ln x x x x x x ->+. 令21x t x =,则只需证2(1)ln (1)1t t t t ->>+. 设2(1)()ln (1)1t t t t t ϕ-=->+,22(1)()0(1)t t t t ϕ-'=>+, 所以()t ϕ在(1+)∞,上单调递增, 从而()(1)0t ϕϕ>=,即2(1)ln (1)1t t t t ->>+, 故原不等式得证. 【名师点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.10.已知函数1()ln f x a x x x=-+,其中0a >.(1)若()f x 在(2,)+∞上存在极值点,求a 的取值范围;(2)设()10,1x ∈,2(1,)x ∈+∞,若()()21f x f x -存在最大值,记为()M a ,则当1a e e≤+时,()M a 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由 【答案】(1)5(2a ∈,)+∞;(2)M (a )存在最大值,且最大值为4e. 【要点分析】(1)求出函数()f x 的导数,将题意转换为1a x x=+在(2,)x ∈+∞上有解,由1y x x =+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,求出a 的范围即可; (2)求出函数()f x 的导数,得到21[()()]()()max f x f x f n f m -=-,求出M (a )11()()()()n f n f m alnm n m n m=-=+-+-,根据函数的单调性求出M (a )的最大值即可. 【答案详解】解:(1)2221(1)()1a x ax f x x x x --+'=--=,(0,)x ∈+∞, 由题意得,210x ax -+=在(2,)x ∈+∞上有根(不为重根),即1a x x =+在(2,)x ∈+∞上有解, 由1y x x=+在(2,)x ∈+∞上递增,得15(2x x +∈,)+∞,检验,52a >时,()f x 在(2,)x ∈+∞上存在极值点,5(2a ∴∈,)+∞;(2)210x ax -+=中2=a 4∆-,若02a <…,即2=a 40∆-≤22(1)()x ax f x x --+∴'=在(0,)+∞上满足()0f x '…,()f x ∴在(0,)+∞上递减,12x x < ()()12f x f x ∴> 21()()0f x f x ∴-<,21()()f x f x ∴-不存在最大值,则2a >;∴方程210x ax -+=有2个不相等的正实数根,令其为m ,n ,且不妨设01m n <<<,则01m n a mn +=>⎧⎨=⎩,()f x 在(0,)m 递减,在(,)m n 递增,在(,)n +∞递减,对任意1(0,1)x ∈,有1()()f x f m …, 对任意2(1,)x ∈+∞,有2()()f x f n …, 21[()()]()()max f x f x f n f m ∴-=-,M ∴(a )11()()()()n f n f m aln m n m n m=-=+-+-, 将1a m n n n =+=+,1m n=代入上式,消去a ,m 得: M (a )112[()()]n lnn n n n =++-,12a e e <+…,∴11n e n e++…,1n >, 由1y x x=+在(1,)x ∈+∞递增,得(1n ∈,]e , 设11()2()2()h x x lnx x x x =++-,(1x ∈,]e ,21()2(1h x lnx x'=-,(1x ∈,]e , ()0h x ∴'>,即()h x 在(1,]e 递增,[()]max h x h ∴=(e )4e =, M ∴(a )存在最大值为4e.【名师点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.11.已知函数()ln(1)ax f x e x =+,2()ln g x x a x=+-,其中a R ∈. (1)若函数()y f x =的图象与直线y x =在第一象限有交点,求a 的取值范围. (2)当2a <时,若()y g x =有两个零点1x ,2x ,求证:12432x x e <+<-. 【答案】(1)1(0,)2;(2)证明见解析. 【要点分析】(1)根据题意设()()(1)ln ax g x f x x e x x =-=+-,问题转化为方程()0g x =,在(0,)+∞有解,求导,分类讨论①若0a …,②若102a <<,③若12a …时,要点分析单调性,进而得出结论. (2)运用要点分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证. 【答案详解】解:(1)设()()(1)ln ax g x f x x e x x =-=+-, 则由题设知,方程()0g x =,在(0,)+∞有解,而1()()1[ln(1)1()11axax g x f x e a x e F x x '='-=++-=-+. 设()()1ax h x e F x =-,则22221()[()()][(1)](n 1)l ax ax ax a h x e aF x F x e a x x +-'=+'=+++.①若0a …,由0x >可知01ax e <…,且11()ln(1)111F x a x x x =++<++…, 从而()()10ax g x e F x '=-<,即()g x 在(0,)+∞上单调递减,从而()(0)0g x g <=恒成立, 因而方程()0g x =在(0,)+∞上无解.②若102a <<,则221(0)0(1)a h x -'=<+,又x →+∞时,()h x '→+∞, 因此()0h x '=,在(0,)+∞上必存在实根,设最小的正实根为0x , 由函数的连续性可知,0(0,)x x ∈上恒有()0h x '<, 即()h x 在0(0,)x 上单调递减,也即()0g x '<,在0(0,)x 上单调递减,从而在0(0,)x 上恒有()(0)0g x g '<'=, 因而()g x 在0(0,)x 上单调递减,故在0(0,)x 上恒有()(0)0g x g <=,即0()0g x <, 注意到ax e ax >,因此()(1)ln(1)ln [ln(1)1]ax g x e x x ax x x x a x =+->+-=+-, 令1ax e=时,则有()0>g x ,由零点的存在性定理可知函数()y g x =在0(x ,1)a e 上有零点,符合题意.③若12a …时,则由0x >可知,()0h x '>恒成立,从而()h x 在(0,)+∞上单调递增,也即()g x '在(0,)+∞上单调递增,从而()(0)0g x g >=恒成立,故方程()0g x =在(0,)+∞上无解. 综上可知,a 的取值范围是1(0,2.(2)因为()f x 有两个零点,所以f (2)0<, 即21012ln a a ln +-<⇒>+,设1202x x <<<,则要证121244x x x x +>⇔-<, 因为1244x <-<,22x >, 又因为()f x 在(2,)+∞上单调递增,所以只要证明121(4)()()0f x f x f x -<==, 设()()(4)g x f x f x =--(02)x <<,则222222428(2)()()(4)0(4)(4)x x x g x f x f x x x x x ----'='-'-=+=-<--, 所以()g x 在(0,2)上单调递减,()g x g >(2)0=,所以124x x +>, 因为()f x 有两个零点,1x ,2x ,所以12()()0f x f x ==, 方程()0f x =即2ln 0ax x x --=构造函数()2ln h x ax x x =--, 则12()()0h x h x ==,()1ln h x a x '=--,1()0a h x x e -'=⇒=, 记12(1ln 2)a p e a -=>>+,则()h x 在(0,)p 上单调递增,在(,)p +∞上单调递减, 所以()0h p >,且12x p x <<, 设2()()ln ln x p R x x p x p-=--+,22214()()0()()p x p R x x x p x x p -'=-=>++, 所以()R x 递增,当x p >时,()()0R x R p >=, 当0x p <<时,()()0R x R p <=, 所以11111112(2ln )x x p ax x lnx x p x p--=<++,即22111111(2)()22l l n n ax x p x px x p x p p -+<-++,211(2ln )(22ln )20p a x ap p p p x p +-+--++>,1(a p e -=,1)lnp a =-,所以21111(23)20a a x e x e --+-+>, 同理21122(23)20a a x ex e --+-+<,所以2112111111(23)2(23)2a a a a x e x e x e x e ----+-+<+-+, 所以12121()[(23)]0a x x x x e --++-<, 所以12123a x x e -+<-+,由2a <得:1122332a x x e e -+<-+<-,综上:12432x x e <+<-. 【名师点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.12.已知函数()2211ln 24f x x ax x x ax ⎛⎫=--+ ⎪⎝⎭.(1)若()f x 在()0,+?单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.【答案】(1)1;(2)0,4e ⎛⎫ ⎪⎝⎭. 【要点分析】 (1)由()f x 在()0,+?单调递增,利用导数知()0f x ¢³在()0,+?上恒成立即可求参数a 的值;(2)由()()f x g x x =有()11ln 24g x x a x x a ⎛⎫=--+ ⎪⎝⎭,利用二阶导数可知()g x '在()0,+?上单调递增,进而可知()01,x e ∃∈,使得()00g x '=,则有()g x 的单调性得最小值()()000011ln 24g x x a x x a h a ⎛⎫=--+= ⎪⎝⎭,结合1344a e <<并构造函数可求0x 取值范围,进而利用导数研究()000031ln ln 42h a x x x x ⎛⎫=-⎪⎝⎭的单调性即可求范围;【答案详解】(1)()()ln f x x a x '=-,又()f x 在()0,+?单调递增,∴()0f x ¢³,即()ln 0x a x -≥在()0,+?上恒成立,(i )当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤; (ii )当1x =时,ln 0x =,则a R ∈;(iii )当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥; 综上所述:1a =; (2)()()11ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,()11ln 24a g x x x '=-+,()212a g x x x ''=+,∵1344a e <<,有()0g x ''>, ∴()g x '在()0,+?上单调递增,又()1104g a '=-+<,()304a g e e '=-+>, ∴()01,x e ∃∈,使得()00g x '=,当()00,x x ∈时,()0g x ¢<,函数()g x 单调递减,当()0,x x ∈+∞时,()0g x ¢>,函数()g x 单调递增,故()g x 的最小值为()()000011ln 24g x x a x x a h a ⎛⎫=--+=⎪⎝⎭,由()00g x '=得00011ln 24a x x x =+,因此()000031ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭,令()11ln 24t x x x x =+,()1,x e ∈,则()13ln 024t x x '=+>, ∴()t x 在()1,e 上单调递增,又1344a e <<,()114t =,()34t e e =,∴0x 取值范围为()1,e ,令()31ln ln 42x x x x x ϕ⎛⎫=-⎪⎝⎭(1x e <<),则()()()21131ln ln 2ln 3ln 102444x x x x x ϕ'=--+=-+->,∴函数()ϕx 在()1,e 上单调递增,又()10ϕ=,()4ee ϕ=, ∴()04e x ϕ<<,即函数()h a 的值域为0,4e ⎛⎫⎪⎝⎭.【名师点睛】本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定;13.已知函数2()22ln ()f x x ax x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【要点分析】(1)求出导函数,根据二次函数的∆与0的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;(2)由()1212,x x x x <是两个极值点得到对应的韦达定理形式,然后利用条件将()()21f x f x -转变为关于12x x ,函数,再运用12x x ,的关系将不等式转化为证22212ln 0x x x -->,构造函数1()2ln (1)g x x x x x=-->,要点分析函数()g x 的单调性,得出最值,不等式可得证. 【答案详解】(1)解:函数()f x 的定义域为(0,)+∞,()2'212()22x ax f x x a x x-+=-+=,则24a ∆=-.①当0a ≤时,对(0,),()0x f x '∀∈+∞>,所以函数()f x 在(0,)+∞上单调递增;②当02a <≤时,0∆≤,所以对(0,),()0x f x '∀∈+∞≥,所以函数()f x 在(0,)+∞上单调递增;③当2a >时,令()0f x '>,得02a x -<<或2a x >,所以函数()f x在⎛ ⎝⎭,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增; 令'()0f x <,得22a a x <<,所以()f x在22a a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减. (2)证明:由(1)知2a >且1212,1,x x a x x +=⎧⎨=⎩,所以1201x x <<<.又由()()()()222122211122ln 22ln f x f x x ax x x ax x -=-+--+()()()()()()22222222221212121212111122ln22ln 2ln x x x x x a x x x x x x x x x x x x x =---+=--+-+=--+. 又因为()()()()()()()()222121212121212121(2)222a x x x x a x x x x x x x x x x x x --=---=--+-=---.所以要证()()()2121(2)f x f x a x x -<--,只需证()22112ln2x x x x <-. 因为121=x x ,所以只需证22221ln x x x <-,即证22212ln 0x x x -->. 令1()2ln (1)g x x x x x =-->,则2'2121()110g x x x x ⎛⎫=+-=-> ⎪⎝⎭,所以函数()g x 在(1,)+∞上单调递增,所以对1,()(1)0x g x g ∀>>=.所以22212ln 0x x x -->. 所以若()f x 存在两个极值点()1221,x x x x >,则()()()2121(2)f x f x a x x -<--. 【名师点睛】本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,要点分析新函数的单调性后从而达到求解最值或证明不等式的目的. 14.已知函数2()(2)()x f x xe a x x a R =-+∈.(1)当1a =时,求函数()f x 的单调区间; (2)当1a e >时,函数()f x 有三个不同的零点1x ,2x ,3x ,求证:1232x x x lna ++<. 【答案】(1)增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明见解析. 【要点分析】(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;(2)由(0)0f =,可得0x =是函数的一个零点,不妨设30x =,把问题转化为证122x x lna +<,即证122x x a e+>.由()0f x =,得(2)0x e a x -+=,结合1x ,2x 是方程(2)0x e a x -+=的两个实根,得到1212x x e e a x x -=-,代入122x x a e +>,只需证1212212x x x x e e e x x +->-,不妨设12x x >.转化为证1212212()10x x x x ex x e----->.设122x x t -=,则等价于2210(0)t t e te t -->>.设2()21(0)t t g t e te t =-->,利用导数证明()0g t >即可. 【答案详解】(1)解:()(22)(1)(2)x x x f x e xe x x e '=+-+=+-, 令()0f x '=,得11x =-,22x ln =.当1x <-或n 2>x l 时,()0f x '>;当12x ln -<<时,()0f x '<.()f x ∴增区间为(,1)-∞-,(2,)ln +∞;减区间为(1,2)ln -;(2)证明:(0)0f = ,0x ∴=是函数的一个零点,不妨设30x =, 则要证122x x lna +<,只需证122x x a e +>. 由()0f x =,得(2)0x e a x -+=,1x ,2x 是方程(2)0x e a x -+=的两个实根, ∴11(2)x e a x =+,①22(2)x e a x =+,②,①-②得:1212x x e e a x x -=-,代入122x x a e+>,只需证1212212x xx x e e e x x +->-,不妨设12x x >.120x x -> ,∴只需证1212212()x x x x e e x x e+->-.20x e >,∴只需证1212212()10x x x x e x x e ----->.设122x x t -=,则等价于2210(0)t t e te t -->>. 设2()21(0)t t g t e te t =-->,只需证()0g t >, 又()2(1)t t g t e e t =--',设()1(0)t t e t t ϕ=-->,则()10t t e ϕ'=->,()t ϕ∴在(0,)+∞上单调递增,则()(0)0t ϕϕ>=.()0g t ∴'>,从而()g t 在(0,)+∞上是增函数, ()(0)0g t g ∴>=.综上所述,1232x x x lna ++<.【名师点睛】本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.15.已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x …都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥. 【要点分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x …,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【答案详解】 (1)证明:()()23x xe ef x -='- 令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减 (2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x …, 即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g ==∴()2533a a e e -+≥,52a a e e -+≥,令(),0ae m m =>,∴152m m +≥,∴2m ≥ ∴2a e ≥,∴ln 2a ≥【名师点睛】本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题.16.已知函数()()21ln 212h x x b x =+-,()21ln 2f x x a x =-.其中a ,b 为常数. (1)若函数()h x 在定义域内有且只有一个极值点,求实数b 的取值范围;(2)已知1x ,2x 是函数()f x 的两个不同的零点,求证:12x x +>. 【答案】(1)(),0-∞;(2)证明见解析. 【要点分析】(1)首先求函数的导数,根据题意转化为222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点,根据二次函数的单调性,列式求解b 的取值范围;(2)求出当函数()f x 有两个零点时,求出a e >,再构造函数()))(0g x fx f x x =-≤≤,利用导数判断函数的单调性,得到))f x f x +<-,再通过构造得到()()21f x f x >-,利用函数的单调性证明结论.【答案详解】(1)()2222121212'b x x b x x x x h x -+⎛⎫=+=> ⎪--⎝⎭,因为函数()h x 在定义域有且仅有一个极值点, 所以222y x x b =-+在1,2⎛⎫+∞⎪⎝⎭内有且仅有一个变号零点, 由二次函数的图象和性质知21122022b ⎛⎫⨯-+< ⎪⎝⎭,解得0b <,即实数b 的取值范围为(),0-∞.(2)()2'(0)a x ax x x xf x -=-=>,当0a ≤时,()'0f x >,()f x 在()0,∞+上单调递增,函数()f x 至多有一个零点,不符合题意,。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案1. 计算函数\( f(x) = x^3 - 3x^2 + 2 \)在点\( x = 1 \)处的导数。

答案:首先求导数\( f'(x) \),得到\( f'(x) = 3x^2 - 6x \)。

然后将\( x = 1 \)代入,得到\( f'(1) = 3(1)^2 - 6(1) = -3 \)。

2. 已知函数\( g(x) = \sin(x) + \cos(x) \),求其在\( x =\frac{\pi}{4} \)处的导数。

答案:求导数\( g'(x) \),得到\( g'(x) = \cos(x) - \sin(x) \)。

然后将\( x = \frac{\pi}{4} \)代入,得到\( g'(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) - \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0 \)。

3. 判断函数\( h(x) = x^2e^x \)在\( x = 0 \)处的单调性。

答案:求导数\( h'(x) \),得到\( h'(x) = 2xe^x + x^2e^x \)。

然后将\( x = 0 \)代入,得到\( h'(0) = 2(0)e^0 + 0^2e^0 = 0 \)。

由于导数为0,无法判断单调性,需要进一步分析。

4. 给定函数\( k(x) = \ln(x) \),求其在区间\( (1, 2) \)上的单调区间。

答案:求导数\( k'(x) \),得到\( k'(x) = \frac{1}{x} \)。

由于\( k'(x) > 0 \)对于所有\( x > 0 \)成立,因此函数\( k(x) \)在区间\( (1, 2) \)上单调递增。

专题 函数与导数(练习)

专题 函数与导数(练习)

(新高考地区)2023届高三数学一轮复习 同步练习函数与导数____班____号 姓名_________一、选择题(1-6单选,7-8多选)1. 已知函数()f x 的导数为()f x ‘,且()()220sin f x x f x x '=++,则()'0f =A .-2B .-1C .1D .22.函数f (x )=2|sinx |+cos2x 在[-π2,π2]上的单调递增区间为 A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 3. 设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是A .(]1,2B .[)4,+∞C .(],2-∞D .(]0,34. 已知过点(),0A a 作曲线()1e x y x =-的切线有且仅有1条,则=aA .3-B .3C .3-或1D .3或15. 已知函数()e ,0ln ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,(e 为自然对数的底数),则函数()()()211e =--⎡⎤⎣⎦F x f f x f x 的零点个数为A .8B .7C .6D .46. 设a ,b 都为正数,e 为自然对数的底数,若1a ae b ++ln b b <,则A .ab e >B .1a b e >+C .ab e <D .1a b e <+7.已知定义在上的函数的导函数为,且,,则下列判断中正确的是 A . B . C . D . 8. 已知()f x 是定义在R 上的奇函数,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,下列结论中正确的有A.函数()f x 在()6,5--上单调递增0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.函数()f x 的图象与直线y x =有且仅有2个不同的交点C.若关于x 的方程2[()](1)()0()f x a f x a a -++=∈R 恰有4个不相等的实数根,则这4个实数根之和为8D.记函数()f x 在[]()*21,2k k k -∈N 上的最大值为k a ,则数列{}n a 的前7项和为12764. 二、填空题9. 若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a =________,b =________.10. 已知函数()ln 2f x x ax =--在区间(1,2)上不单调,则实数a 的取值范围为___________.11.已知不等式e (3)20(1)+--<<x a x x a 恰有2个整数解,则a 的取值范围为___________.12.已知函数()()ln 1f x x x a x a =+-+,.a Z ∈若存在01x >,使得()00f x <,则实数a 的最小值为________.三、解答题13. 已知函数2()(1)ln 1f x a x ax =+++.(1)当2a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(2)设2a ≤-,证明:对任意1x ,2(0,)x ∈+∞,1212|()()|4||f x f x x x -≥-.14. 已知函数()()x f x e ln x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m 时,证明:()0f x >.15.已知函数()()2ln 21f x x ax a x =++++,其中a ∈R .(1)求函数()f x 的单调区间;(2)设Z a ∈,若对任意的0x >,()0f x ≤恒成立,求a 的最大值.1ln22n++<17. 已知函数()()ln 1f x x =+,2()1g x x bx =++(b 为常数),()()()h x f x g x =-.(1)若存在过原点的直线与函数()f x 、()g x 的图象相切,求实数b 的值;(2)当2b =-时,[]12,0,1x x ∃∈使得()()12h x h x M -≥成立,求M 的最大值;(3)若函数()h x 的图象与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且120x x <<,求证:12'02x x h +⎛⎫< ⎪⎝⎭.。

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编 考点01 利用导数求函数单调性,求参数(2)若不等式()1f x ≥恒成立,求a 的取值范围.考点02 恒成立问题1.(2023年全国新高考Ⅱ卷(文))(1)证明:当01x <<时,sin x x x x 2-<<; (2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.2.(2020年全国高考Ⅱ卷(文)数学试题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2019∙全国Ⅰ卷数学试题)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x [0∈,π]时,f (x )≥ax ,求a 的取值范围.4.(2019年全国高考Ⅱ卷(文))已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.考点03 三角函数相关导数问题a=时,求b的取值范围;(i)当0(ii)求证:22e+>.a b4.(2021年全国高考Ⅰ卷数学试题)已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点;∈,π]时,f(x)≥ax,求a的取值范围.(2)若x[0考点04 导数类综合问题参考答案考点01 利用导数求函数单调性,求参数考点02 恒成立问题 1考点03 三角函数相关导数问题2022年8月11日高中数学作业学校:___________姓名:___________班级:___________考号:___________考点04 导数类综合问题 一、解答题)(【点睛】思路点睛:函数的最值问题,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系4.(2022∙全国新高考Ⅱ卷(文))已知函数(2) 和首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;当时,的解为:当113,ax⎛⎫--∈-∞⎪时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,()1+,a x与联立得化简得3210--+=,由于切点的横坐标x x x综上,曲线过坐标原点的切线与曲线的公共点的坐标为和【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注。

高中数学导数专题常考练习题

高中数学导数专题常考练习题

高中数学导数专题常考练习题高考数学中,导数是一个常考的题型。

下面介绍几道典型的导数题目。

1.已知函数$f(x)$的导函数$f'(x)$满足以下条件:①当$f'(x)>0$时,$x2$;②当$f'(x)<0$时,$-1<x<2$;③当$f'(x)=0$时,$x=-1$或$x=2$。

则函数$f(x)$的大致图象是什么?2.已知直线$2x-y+1=0$与曲线$y=ae^{x}$相切(其中$e$为自然对数的底数),则实数$a$的值是多少?3.已知函数$f(x)=ax+(1-a)x^3$是奇函数,则曲线$y=f(x)$在$x=1$处的切线的倾斜角为多少?4.已知函数$f(x)=x+ax+bx^2+a$在$x=1$处的极值为10,则数对$(a,b)$为什么?5.函数$f(x)=x^3-4x^2+mx$在$[0,3]$上的最大值为4,则$m$的值为多少?6.已知函数$f(x)=x-mx^3+4x^2-3$在区间$[1,2]$上是增函数,则实数$m$的取值范围为什么?7.已知偶函数$f(x)(x\neq0)$的导函数为$f'(x)$,且满足$f(1)=0$。

当$x>0$时,$xf'(x)0$成立的$x$的取值范围是什么?8.已知曲线$y=x+\ln x$在点$(1,1)$处的切线与曲线$y=ax^2+(a+2)x+1$相切,则$a$等于多少?9.若函数$f(x)=x^3+x^2-3$在区间$(a,a+5)$上存在最小值,则实数$a$的取值范围是什么?10.已知$f'(x)$是函数$f(x)$的导函数,$f(1)=e$,$x\in\mathbb{R}$,且$2f(x)-f'(x)>0$。

则不等式$f(x)<e^{2x}-1$的解集是什么?11.已知函数 $f(x)=2x^3-ax^2+b$,讨论 $f(x)$ 的单调性。

高考导数大题30道

高考导数大题30道

导数大题1 .已知函数()b ax x x f ++=23的图象在点P (1,0)处的切线与直线03=+y x 平行。 (1)求常数a 、b 的值;(2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )。2 .已知函数R a ax x x f ∈+-=,)(3 (1)假设)(x f 在),1[+∞上为单调减函数,求实数a 取值范围;(2)假设,12=a 求)(x f 在[-3,0]上的最大值和最小值。3 .设函数x e x x f 221)(=. (1)求函数)(x f 的单调区间;(2)假设当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.4 .已知函数.),2,1()(3)(3l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程;(2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =。5 .已知函数3()31,0f x x ax a =--≠ ()I 求()f x 的单调区间;()II 假设()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。7 .已知函数2()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值;(Ⅱ)假设方程()f x m +=求m 的取值范围(其中e 为自然对数的底数);8 .已知函数212()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值;(2)假设在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。

10.已知函数2()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-。 ⑴求函数)(x f 的解析式;⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围;⑶讨论函数21()ln(1)()2h x x f x k =+--零点的个数?12.已知函数b ax x x x f +++=23)(. ( I )当1-=a 时,求函数)(x f 的单调区间;( II )假设函数)(x f 的图象与直线ax y =只有一个公共点,求实数b 的取值范围.13.已知函数).()(2a x x x f += (1)当a =1时,求)(x f 的极值;(2)当0≠a 时,求)(x f 的单调区间.14.(本小题共13分)已知函数))0(,0(31)(23f d cx bx x x f 在点++-=处的切线方程为.2=y (I)求c 、d 的值;(II)求函数f (x )的单调区间。15.已知函数2()(1)f x x x =+ . (Ⅰ)求函数()f x 的单调区间与极值;(Ⅱ)设2()g x ax =,假设对于任意(0,)x ∈+∞,()()f x g x ≥恒成立,求实数a 的取值范围.16.已知函数c bx ax x x f +++=23)(,412)(-=x x g , 假设0)1(=-f ,且)(x f 的图象在点))1(,1(f 处的切线方程为)(x g y =.(Ⅰ)求实数c b a ,,的值;(Ⅱ)求函数)()()(x g x f x h -=的单调区间.17.设函数x x a ax x f 12)36(2)(23++-=()R a ∈.(Ⅰ)当1=a 时,求函数)(x f 的极大值和极小值;(Ⅱ)假设函数)(x f 在区间)1,(-∞上是增函数,求实数a 的取值范围.18.已知函数32()(,f x x ax b a b =-++∈R). (Ⅰ)假设a =1,函数()f x 的图象能否总在直线y b =的下方?说明理由;(Ⅱ)假设函数()f x 在(0,2)上是增函数,求a 的取值范围;(Ⅲ)设123,,x x x 为方程()0f x =的三个根,且1(1,0)x ∈-,2(0,1)x ∈,3(,1)(1,)x ∈-∞-+∞,求证:||1a >.23.已知32()f x ax bx cx =++在区间[01],上是增函数,在区间(0)(1)-+,,,∞∞上是减函数,又1322f ⎛⎫'= ⎪⎝⎭. 〔Ⅰ〕求()f x 的解析式;〔Ⅱ〕假设在区间[0](0)m m >,上恒有()f x x ≤成立,求m 的取值范围.24.已知函数32()2f x x ax bx =+++与直线450x y -+=切于点P 〔1-,1〕. 〔Ⅰ〕求实数,a b 的值;〔Ⅱ〕假设0x >时,不等式2()22f x mx x ≥-+恒成立,求实数m 的取值范围.27.已知函数()32f x x ax bx c =+++,在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅当x>4时,()()245f x x x g x >-+=.〔Ⅰ〕求函数f(x)的解析式;〔Ⅱ〕假设函数y m =与函数f(x)、g(x)的图象共有3个交点,求m 的取值范围.。

高中导数试题及答案解析

高中导数试题及答案解析

高中导数试题及答案解析一、选择题1. 函数y=x^3-3x^2+2的导数是()A. y'=3x^2-6xB. y'=x^2-3xC. y'=3x^2-6x+2D. y'=x^3-3x^2答案:A解析:根据导数的运算法则,对于函数y=x^3-3x^2+2,我们分别对每一项求导:y' = (x^3)' - (3x^2)' + (2)'根据幂函数的导数法则,我们有:(x^3)' = 3x^2(3x^2)' = 6x常数项的导数为0,所以:y' = 3x^2 - 6x2. 函数y=sinx的导数是()A. y'=cosxB. y'=-sinxC. y'=sinxD. y'=-cosx答案:A解析:根据三角函数的导数法则,我们知道:(sinx)' = cosx3. 函数y=e^x的导数是()A. y'=e^xB. y'=-e^xC. y'=e^(-x)D. y'=0答案:A解析:根据指数函数的导数法则,我们知道:(e^x)' = e^x二、填空题4. 函数y=x^2-4x+3的导数是()。

答案:y'=2x-4解析:根据导数的运算法则,对于函数y=x^2-4x+3,我们分别对每一项求导:y' = (x^2)' - (4x)' + (3)'根据幂函数的导数法则,我们有:(x^2)' = 2x(4x)' = 4常数项的导数为0,所以:y' = 2x - 45. 函数y=lnx的导数是()。

答案:y'=1/x解析:根据对数函数的导数法则,我们知道:(lnx)' = 1/x三、解答题6. 求函数y=x^4-2x^3+3x^2-4x+5的导数,并求在x=1处的导数值。

答案:y' = 4x^3 - 6x^2 + 6x - 4当x=1时,y' = 4(1)^3 - 6(1)^2 + 6(1) - 4 = 4 - 6 + 6 - 4 = 0解析:首先,我们对函数y=x^4-2x^3+3x^2-4x+5的每一项求导:y' = (x^4)' - (2x^3)' + (3x^2)' - (4x)' + (5)'根据幂函数的导数法则,我们有:(x^4)' = 4x^3(2x^3)' = 6x^2(3x^2)' = 6x(4x)' = 4常数项的导数为0,所以:y' = 4x^3 - 6x^2 + 6x - 4然后,我们将x=1代入导数表达式中:y' = 4(1)^3 - 6(1)^2 + 6(1) - 4 = 4 - 6 + 6 - 4 = 0 7. 已知函数y=f(x)=x^2-4x+3,求f'(2)的值。

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。

2023高考数学二轮复习专项训练《导数的计算》(含答案)

2023高考数学二轮复习专项训练《导数的计算》(含答案)

2023高考数学二轮复习专项训练《导数的计算》一、单选题(本大题共12小题,共60分)1.(5分)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A. f(a)>eaf(0)B. f(a)>f(0)C. f(a)<f(0)D. f(a)<eaf(0)2.(5分)直线y=kx+1与曲线y=x3+bx2+c相切于点M(1, 2),则b的值为()A. −1B. 0C. 1D. 23.(5分)设f(x)=x3,f(a-bx)的导数是()A. 3(a-bx)B. 2-3b(a-bx)2C. 3b(a-bx)2D. -3b(a-bx)24.(5分)已知函数f(x)=2lnx+f′(2)x2+2x+3,则f(1)=()A. −2B. 2C. −4D. 45.(5分)设f0(x)=sin2x+cos2x,f1(x)=f0′(x),f2(x)=f1′(x),…,f1+n(x)=fn′(x),n∈N*,则f2013(x)=()A. 22012(cos2x-sin2x)B. 22013(sin2x+cos2x)C. 22012(cos2x+sin2x)D. 22013(sin2x+cos2x)6.(5分)曲线y=2sinx+cosx在点(π,−1)处的切线方程为()A. x−y−π−1=0B. 2x−y−2π−1=0C. 2x+y−2π+1=0D. x+y−π+1=07.(5分)若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()] B. (−∞,3]A. (−∞,518,+∞) D. [3,+∞)C. [5188.(5分)[2021湖南省郴州市月考]随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设在放射性同位素钍−234的衰变过程中,其含量N(单位:贝克)与时间t(单位:天)满足函数关系N(t)=N02−124,其中N0为t=0时针-234的含量.已知t=24时,钍−234含量的瞬时变化率为−8ln2,则N(96)=A. 12B. 12ln2C. 24D. 24ln29.(5分)设(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,则|a1|+2|a2|+3|a3|+4|a4|+5|a5|+6|a6|+7|a7|=()A. 10206B. 5103C. 729D. 72810.(5分)函数f(x)=2f′(1)·x+xlnx在x=1处的切线方程为()A. y=2x−2B. y=2x+1C. y=−x−1D. y=x−111.(5分)设f(x)=sin2x,则f′(x)等于()A. cos2xB. 2cos2xC. -sin2xD. 2(sin2x-cos2x)12.(5分)函数y=cos(1+x2)的导数是()A. 2xsin(1+x2)B. -sin(1+x2)C. -2xsin(1+x2)D. 2cos(1+x2)二、填空题(本大题共5小题,共25分)13.(5分)函数f(x)=xsin(2x+5)的导数为____.14.(5分)已知f(x)=ekx,则f′(x)=____.15.(5分)设函数f(x)=x3+(a−1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(1,f(1))处的切线方程为__________.16.(5分)若函数f(x)满足f(x)=2lnx−xf′(1),则f′(1)=__________.17.(5分)写出一个同时具有下列性质①②③的函数f(x):_______.①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=ae x lnx+be xx.(1)求导函数f′(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x+1),求a,b的值. 19.(12分)求下列函数在给定点的导数.(1)f(x)=x14,x=5;(2)f(x)=3(x+1)x2,x=1.20.(12分)已知函数f(x)=12x2−x+lnx.(1)求y=f(x)的导数;(2)求曲线y=f(x)在点(1,f(1))处的切线方程.21.(12分)求下列函数的导数.(1)y=(2+3x)(3−5x+x2);(2)y=(2x−1)2(2−3x)3;(3)y=(3x+2)sin5x;(4)y=e2x cos3x.22.(12分)已知函数f(x)=−13x3−a−12x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.(1)若存在x<0,使得f′(x)=−9,求a的最大值;(2)当a>0时,求函数f(x)的零点个数.23.(12分)求下列函数在指定x处的导数值.(1)y=xsinx,x=π4;(2)y =xe x ,x =1.四 、多选题(本大题共5小题,共25分)24.(5分)若(1+2x)+(1+2x)2+⋅⋅⋅+(1+2x)n =a 0+a 1x +a 2x 2+⋅⋅⋅+a n x n (n ∈N ∗),a 0=6,则下列结论中正确的是()A. n =6B. a 1=42C. ∑ai n i=0=64D. ∑n i=1(−1)i iai =625.(5分)下列说法中正确的有()A. (sin π4)′=cos π4B. 已知函数f(x)在R 上可导,且f ′(1)=1,则limΔx→0f(1+2Δx)−f(1)Δx=2C. 一质点的运动方程为S =t 2,则该质点在t =2时的瞬时速度是4D. 已知函数f(x)=cosx ,则函数y =f ′(x)的图象关于原点对称 26.(5分)下列求导错误的是()A. (log 23)′=13ln2 B. (ln2x)′=12x C. (sin 2x)′=sin2x D. (cosx x)′=−cosx+sinxx 227.(5分)下列选项正确的有( )A. 若f(x)= x sin x +cos2x , 则f′(x) =sin x −x cos x +2sin2xB. 设函数f(x)=x ln x ,若f′(x 0)=2,则x 0=eC. 已知函数f(x)=3x 2e 2x ,则f′(1) =12e 2D. 设函数f(x)的导函数为f′(x ),且f(x)=x 2+3xf ′(2)+ln x ,则f′(2)=−94 28.(5分)设b 为实数,直线y =3x +b 能作为曲线f(x)的切线,则曲线f(x)的方程可以为()A. f(x)=−1xB. f(x)=12x 2+4lnxC. f(x)=x 3D. f(x)=e x答案和解析1.【答案】A;【解析】解:∵对任意实数x,f′(x)>f(x),令f(x)=-1,则f′(x)=0,满足题意显然选项A成立故选A.2.【答案】A;【解析】y=x3+bx2+c的导数为y′=3x2+2bx,可得切线的斜率为3+2b,由条件可得k=3+2b,1+b+c=2,1+k=2,解得k=1,b=−1,c=23.【答案】D;【解析】解;因为f(x)=x3,所以y=f(a-bx)=(a-bx)3,所以y′=3(a-bx)2(a-bx)′=-3b(a-bx)2故选D.4.【答案】D;【解析】此题主要考查导数的运算,属于基础题.先求出f′(2),再求f(1)即可.+f′(2)·2x+2,解:由题意,f′(x)=2x故f′(2)=1+4f′(2)+2,∴f′(2)=−1,∴f(1)=2ln1+f′(2)×12+2×1+3=4,故选D.5.【答案】A;【解析】解:∵f0(x)=sin2x+cos2x,∴f1(x)=f0′(x)=2(cos2x-sin2x),f2(x)=f1′(x)=22(-sin2x-cos2x),f3(x)=f2′(x)=23(-cos2x+sin2x),f4(x)=f3′(x)=24(sin2x+cos2x),…通过以上可以看出:f n(x)满足以下规律,对任意n∈N,fn+4(x)=24fn(x).∴f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2x-sin2x).故选:B.6.【答案】C;【解析】设f(x)=2sinx+cosx,则f′(x)=2cosx−sinx,∴f′(π)=2cosπ−sinπ=−2,∴切线方程为:y+1=−2(x−π),即2x+y−2π+1=0,故选C.7.【答案】C;【解析】解:∵函数f(x)=x3−tx2+3x,∴f′(x)=3x2−2tx+3,若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则f′(x)⩽0即3x2−2tx+3⩽0在[1,4]上恒成立,∴t⩾32(x+1x)在[1,4]上恒成立,令y=32(x+1x),则函数在[1,4]为增函数,当x=4时,函数取最大值518,∴t⩾518,即实数t的取值范围是[518,+∞),故选:C.由题意可得f′(x)⩽0即3x2−2tx+3⩽0在[1,4]上恒成立,由函数的单调性可知t的范围.这道题主要考查函数的单调性和导数符号间的关系,属于中档题.8.【答案】C;【解析】由N(t)=N02−t24方得N′(t)=N02−t24×ln2×(−124),当t=24时,N′(24)=N02−2424×ln2×(−124)=−8ln2,解得N0=384,所以N(t)=384·2−t24,则N(96)=384·2−9624=384·2−4=24.故选C.9.【答案】A;【解析】此题主要考查二项式定理的运用,属于中档题.将(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7两边求导,令x=−1,即可得到答案.解:将(2x−1)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7两边求导,可得14(2x−1)6=a1+2a2x+3a3x²+……+7a7x6,可得x的奇次方的系数为负数,令x=−1可得14(−2−1)6=a1−2a2+3a3+……+7a7,故|a1|+2|a2|+3|a3|+4|a4|+5|a5|+6|a6|+7|a7|=14×36=10206.故选A.10.【答案】C;【解析】此题主要考查曲线的切线方程的求法,导数的几何意义,属于基础题.先求出f′(1)=−1,再求出f(1)=−2,由此可解.解:因为f′(x)=2f′(1)+lnx+1,所以f′(1)=2f′(1)+1,即f′(1)=−1,所以f(1)=2f′(1)=−2,所以切线方程为y=−(x−1)−2=−x−1.故选C.11.【答案】B;【解析】解:因为设f(x)=sin2x,所以f′(x)=(2x)′cos2x=2cos2x.故选B.12.【答案】C;【解析】解:y′=-sin(1+x2)•(1+x2)′=-2xsin(1+x2)故选C13.【答案】sin(2x+5)+2xcos(2x+5);【解析】解:f′(x)=x′sin(2x+5)+x(sin(2x+5))′=sin(2x+5)+2xcos(2x+5),故答案为:sin(2x+5)+2xcos(2x+5),14.【答案】k e kx;【解析】解:∵f(x)=e kx,∴f′(x)=e kx•(kx)′=k e kx,故答案为:k e kx.15.【答案】4x−y−2=0;【解析】此题主要考查函数奇偶性,利用导数研究曲线上某点切线方程,属于基础题.由奇函数的定义求出a的值,然后利用导数的几何意义求出切线的斜率,进而写出切线方程.解:因为函数f(x)=x3+(a−1)x2+ax为奇函数,所以f(−x)=−f(x),所以(−x)3+(a−1)(−x)2+a(−x)=−[x3+(a−1)x2+ax],所以2(a−1)x2=0.因为x∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(1)=4,f(1)=2,所以曲线y=f(x)在点x=1处的切线方程为4x−y−2=0,故答案为:4x−y−2=0.16.【答案】1;【解析】此题主要考查导数的加法与减法的法则,解决此题的关键是对f(x)进行正确求导,属于基础题.利用求导公式对f(x)进行求导,再把x=1代入,即可求解.解:∵函数f(x)的导函数为f′(x),且满足f(x)=2lnx−xf′(1),−f′(1),把x=1代入f′(x)可得f′(1)=2−f′(1),∴f′(x)=2x解得f′(1)=1.故答案为:1.17.【答案】f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足);【解析】本题是开放性问题,合理分析所给条件找出合适的函数是关键,属于中档题.根据幂函数的性质可得所求的f(x).解:取f(x)=x4,则f(x1x2)=(x1x2)4=x14x24=f(x1)f(x2),满足①,f′(x)=4x3,x>0时有f′(x)>0,满足②,f′(x)=4x3的定义域为R,又f′(−x)=−4x3=−f′(x),故f′(x)是奇函数,满足③.故答案为:f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)18.【答案】略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数一、填空题(2017·11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3(2014·12)设函数()3x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞B .(,4)(4,+)-∞-∞C .(,2)(2,+)-∞-∞D .(,1)(4,+)-∞-∞ (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= (2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A. B. C. D.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2-C. 2ln 1+D.)2ln 1(2+(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .6(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8二、填空题(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. (2016·16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . 三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(2016·21)(Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.xxxx14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值.18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数(解析版)(2017·11)A 【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦,∵ ()20f '-=,∴ 1a =-,∴ 导函数()()212x f x x x e -'=+-,令()0f x '=,∴ 12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:从上表可知:极小值为()11f =-.故选A(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2015·5)C 解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +=2x π=时,PA PB +=P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x ,从点P的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B . (2015·12)A 解析:记函数()()f x g x x =,则2()()()x f x f x g x x '-'=,因为当x >0时,xf ´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A .(2014·8)D 解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =.(2014·12)C 解析:∵()x f x m π'=,令()0x f x m π'==得1(),2x m k k Z =+∈,∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥,mxx f πsin 3)(= 的极值为3±, ∴3)]([20=x f ,,34)]([22020+≥+∴m x f x 22200[()]x f x m +<, 2234∴m m <+, 即:24m >,故:2m <-或2m >. (2013·8)D 解析:根据公式变形,lg 6lg 21lg 3lg 3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a . 故选D. (2013·10)C 解析:∵f ´(x )=3x 2+2ax +b ,∴y =f (x )的图像大致如右图所示,若x 0是f(x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确.(2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B.(2012·12)B 解析:因为12x y e =与ln(2)y x =互为反函数,所以曲线12x y e =与曲线ln(2)y x =关于直线y =x 对称,故要求|PQ |的最小值转化为求与直线y =x 平行且与曲线相切的直线间的距离,设切点为A ,则A 点到直线y =x 距离的最小值的2倍就是|PQ |的最小值. 则11()122xxy e e ''===,2x e ∴=,即ln 2x =,故切点A 的坐标为(ln 2,1),因此,切点A 点到直线y =x距离为d ==,所以||2ln 2)PQ d ==-.(2011·2)B 解析:由各函数的图像知,故选B.(2011·9)C 】解析:用定积分求解342420021162)(2)|323S x dx x x x =+=-+=⎰,故选C. (2011·12)D 解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D .二、填空题(2014·15)(1,3)- 解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴|1|2x -<,解得:13x -<<(2016·16)1ln2-解析:ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x = 212x =-,∴1ln 11ln 2b x =+=-.三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.(2017·21)解析:(1)法一:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ , 所以()1ln 0a x x --≥,即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-;当1x =时,()1ln 0a x x --≥成立. 令()1ln g x x x =--,()11'1x g x x x-=-=,当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11xx >-,所以1a ≤; 当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11xx <-.所以,1a ≥. 综上,1a =.法二:洛必达法则:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ ,所以:()1ln 0a x x --≥. 即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-; 当1x =时,()1ln 0a x x --≥成立.令()ln 1x g x x =-,()()()()22111ln 1ln '11x x x x x g x x x ----==--. 令()11ln h x x x =--,()22111'xh x x x x-=-=. 当()0,1x ∈时,()'0h x >,()h x 递增,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()111ln 'ln 1limlimlim 111'x x x x xg x x x x→→→>===--,所以:1a ≤; 当()1,x ∈+∞时,()'0h x <,()h x 递减,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()111ln 'ln 1limlimlim 111'x x x x xg x x x x→→→<===--,所以:1a ≥.故1a =.(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ϕ=--,则()1'2x x ϕ=-.当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0x ϕ<;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()'0x ϕ>. 所以()x ϕ在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞ ⎪⎝⎭递增.又()20e ϕ->,102ϕ⎛⎫< ⎪⎝⎭,()10ϕ=,所以()x ϕ在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎛⎫+∞ ⎪⎝⎭有唯一零点1, 且当()00,x x ∈时,()0x ϕ>;当()0,1x x ∈时,()0x ϕ<; 当()1,x ∈+∞时,()0x ϕ>.又()()'f x x ϕ=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <.因为0x x =是()f x 在()0,1的唯一极大值点,由()10,1e -∈,()10f e -≠得()()120f x f e e -->=所以220()2ef x --<<.(2016·21)(Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax a g x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. (2016·21)证明:⑴()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞,时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. ⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=32(2)(e )2xx x a x x -+⋅++=,[)01a ∈,,由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,,当(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.(2015·21)解析:(Ⅰ)()(1)2mx f x m e x '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;当(0,)x ∈+∞时,10mxe -≥,()0f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mx e f x '-><;当(0,)x ∈+∞时,10mxe-<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1(1)(0)1f f e f f e -≤-⎧⎨--≤-⎩,即11mm e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①. 设函数()1t g t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1me m e ->-;当1m <-时,()0g m ->,即1me m e -+>-,综上,m 的取值范围是[-1,1].(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001). (2014·21)解析:(Ⅰ)1()2()2=220.x x x x x x f x e e x x R f x e e e e --'=--∈∴=+-+-≥=,, ∴当且仅当x =0时等号成立,所以函数()f x 在R 上单调递增. (Ⅱ)22()(2)4()44(2),x x x x g x f x bf x e e x b e e x --=-=-----∴当x >0时,2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++- 2(2)[(22)]x x x x e e e e b --=+-+--,2x x e e -+≥=,2(2)0x x e e -∴+-≥,(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.(2) 当2b >时,若x 满足222x x e e b -<+<-时,即0ln(1x b <<-时,()0g x '<,而g (0)=0,因此当0ln(1x b <<-时,g (x )<0.综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2. (Ⅲ)由(Ⅱ)知,32(21)ln 22g b =-+-,当b =2时,36ln 202g =->,ln 20.6928>>;当14b =+时,ln(1b -=32)ln 202g =--<,18ln 20.693428<<,所以ln2的近似值为0.693.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. (2013·21)解析:(Ⅰ)f ′(x )=1xe x m-+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11xe x -+在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=12xe x -+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0x e =012x +,ln(x 0+2)=-x 0,故f (x ) ≥ f (x 0)=012x ++x 0=20012x x (+)+>0. 综上,当m ≤2时,f (x )>0.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间;(Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. (2012·21)解析:(Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令x =1得,f (x )=1,再由121()(1)(0)2x f x f e f x x -'=-+,令0x =得(1)f e '=. 所以)(x f 的解析式为21()2xf x e x x =-+,∴()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00f x x '>⇔>,()00f x x '<⇔<,所以函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞. (Ⅱ) 若b ax x x f ++≥221)(恒成立,即21()()(1)02x h x f x x ax b e a x b =---=-+-≥ 恒成立,()(1)x h x e a '=-+.(1)当10a +<时,()0h x '>恒成立,()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立,则0b ≤,(1)0a b +=;(3)当10a +>时,()(1)xh x e a '=-+为增函数,由()0h x '=得ln(1)x a =+,故()0ln(1)f x x a '>⇔>+,()0ln(1)f x x a '<⇔<+,当ln(1)x a =+时,()h x 取最小值(ln(1))1(1)ln(1)h a a a a b +=+-++-. 依题意有(ln(1))1(1)ln(1)0h a a a a b +=+-++-≥,即1(1)ln(1)b a a a ≤+-++,10a +>,22(1)(1)(1)ln(1)a b a a a ∴+≤+-++,令22()ln 0u x x x x x =-> (),则()22ln (12ln )u x x x x x x x '=--=-,()00()0u x x u x ''>⇔<<x ⇔>所以当x =()u x 取最大值2eu =.故当1a b +==(1)a b +取最大值2e . 综上,若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e. (2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 解析:(Ⅰ)221(ln )()(1)x x b x f x x x α+-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (Ⅱ)由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.考虑函数2(1)(1)()2ln k x h x x x --=+(0)x >,则22(1)(1)2'()k x x h x x-++=. (i)设0k ≤,由222(1)(1)()k x x h x x+--'=知,当1x ≠时,()0h x '<. 而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x >-,从而当x >0,且x ≠1时,ln ()01x k f x x x -+>-,即ln ()1x kf x x x>+-.(ii )设0<k <1. 由于当x ∈(1,k -11)时,(k -1)(x 2 +1)+2x >0,故h ´(x )>0,而h (1)=0,故当x ∈(1,k-11)时,h (x )>0,可得211x- h (x )<0,与题设矛盾. (iii )设k ≥1. 此时h ´(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x)>0,可得211x -h (x )<0,与题设矛盾.综上可得,k 的取值范围为(-∞,0].。

相关文档
最新文档